

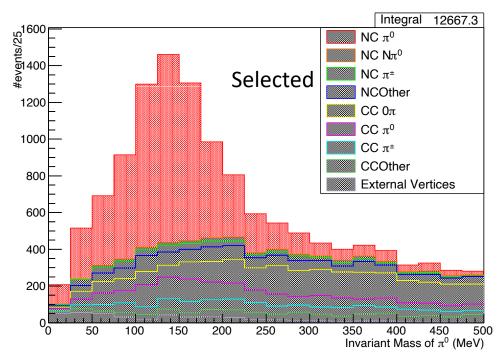
Extended Binned Likelihood including Monte Carlo Statistical Uncertainty in **Bayesian Inference**

NN Group Meeting

03/02/2023

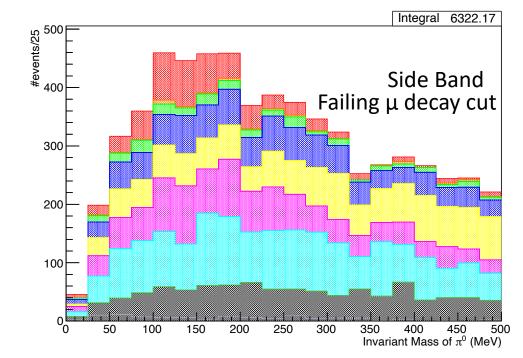
Shilin Liu

Selected Sample and Side Band Sample



P6T P0D water-in MC Events

NC $1\pi^0$	46.0% (5814 events)
NC N π^0	1.8% (230 events)
NC $\pi^{+/-}$	3.2% (409 events)
NC Other	8.0%(1026 events)
CC 0π	16.4% (2084 events)
$CC \pi^0$	9.8% (1252 events)
$CC \pi^{+/-}$	6.4% (817 events)
CC Other	4.9% (627 events)
External to POD	3.4% (427 events)

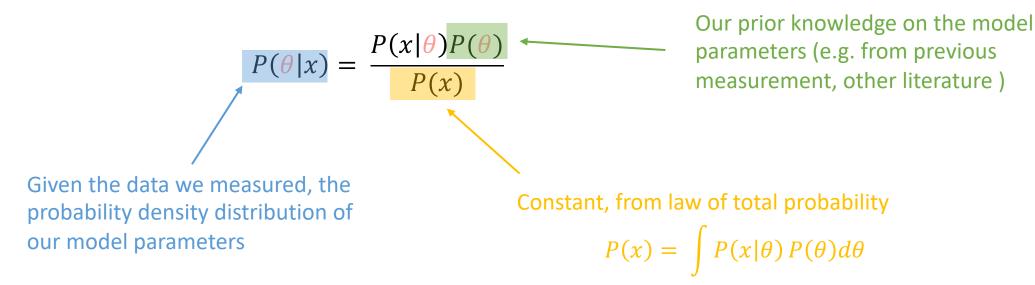


P6T P0D water-in MC Events

NC $1\pi^0$	8.4% (529 events)
NC N π^0	0.6% (41 events)
NC $\pi^{+/-}$	3.4% (218 events)
NC Other	13.7%(867 events)
СС 0π	17.9% (1131 events)
$CC \pi^0$	16.3% (1030 events)
$CC \pi^{+/-}$	24.7% (1561 events)
CC Other	13.6% (859 events)
External to POD	1.5% (93 events)

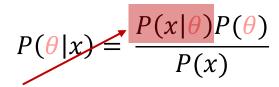
Bayes' Theorem and Model Parameters

• The data we observe (denoted by x) can constrain our model parameters (denoted by θ) by Bayes' Theorem:



Bayes' Theorem and Extended Binned Likelihood

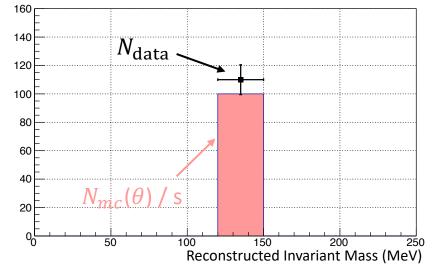
• The data we observe (denoted by x) can constrain our model parameters (denoted by θ) by Bayes' Theorem:



- What we want to discuss today. Likelihood:
- 1. Given that our model parameters are true
- 2. The probability density distribution of observing the data we obtained

Standard treatment: treat data as an incident from a Poisson distribution with expected rate N_{mc}/s :

$$P(x|\theta) = \frac{(N_{mc}/s)^{N_{data}}e^{-N_{mc}/s}}{N_{data}!}$$



- Observed data and Monte Carlo prediction MC as a function of θ
- s is the POT scaling factor between Mote Carlo and Data
- Only 1 bin shown here as an example for likelihood

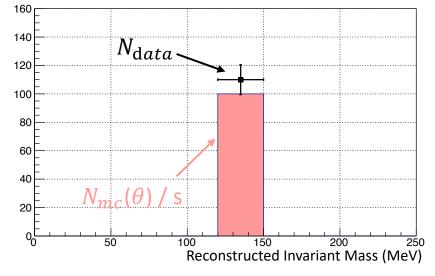
Defect of Extended Binned Likelihood

• The data we observe (denoted by x) can constrain our model parameters (denoted by θ) by Bayes' Theorem:

$$P(\theta|x) = \frac{P(x|\theta)P(\theta)}{P(x)}$$

Monte Carlo sample is a finite sample, N_{mc} does not strictly represent Strangtaped lateration appectration of M_{mc} as an incident from a Poisson distribution with strend of education M_{mc} and N_{mc} and N_{θ}

$$P(x|\theta) = \frac{(N_{mc}/s)^{N_{data}}e^{-N_{mc}/s}}{N_{data}!}$$



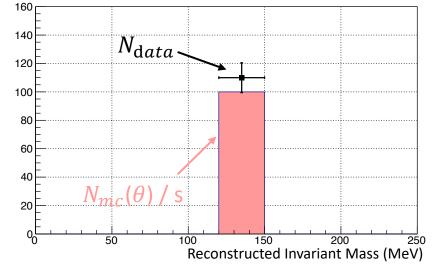
- Observed data and Monte Carlo prediction MC as a function of θ
- s is the POT scaling factor between Mote Carlo and Data
- Only 1 bin shown here as an example for likelihood

Solution: Derive it with Bayes' Theorem

• From the law of total probability

$$P(x|\theta) = \int P(x|N_{true}) \left[\int P(N_{true}|N_{\theta})P(N_{\theta}|\theta)dN_{\theta} \right] dN_{true}$$

$$P(N_{true}|\theta)$$



- Observed data and Monte Carlo prediction MC as a function of θ
- s is the POT scaling factor between Mote Carlo and Data
- Only 1 bin shown here as an example for likelihood

Solution: Derive it with Bayes' Theorem

• From the law of total probability

 $P(x|\theta) = \int P(x|N_{true}) \left[\int P(N_{true}|N_{\theta}) P(N_{\theta}|\theta) dN_{\theta} \right] dN_{true}$

 N_{true} : Data Truth Expectation Poisson distribution:

$$P(x|N_{true}) = \frac{N_{true}^{N_{data}}}{N_{data}!} e^{-N_{true}}$$

 $N_{\theta} \text{:}$ Monte Carlo Truth Expectation

Recall the condition: Given that our model parameters are true.

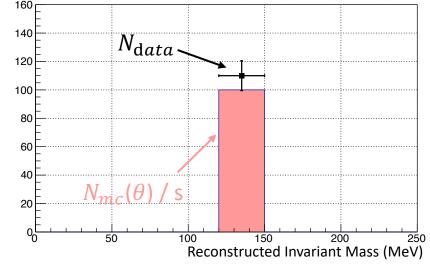
We expect N_{θ} to equal N_{true} $P(N_{true}|N_{\theta}) = \delta(N_{true} - N_{\theta}/s)$ Apply Bayes' Theorem again: $P(N_{\theta}|\theta) = \frac{P(\theta|N_{\theta})P(N_{\theta})}{P(\theta)}$

- 1. $P(N_{\theta})$: only information we have is that N_{θ} is finite, assume a uniform distribution between [0, large number]
- *2.* $P(\theta)$: constant

3.
$$P(\theta|N_{\theta})$$
: Poisson distribution

$$P(\theta|N_{\theta}) = \frac{N_{\theta}^{N_{mc}}}{N_{mc}!}e^{-N}$$

θ



- Observed data and Monte Carlo prediction MC as a function of θ
- s is the POT scaling factor between Mote Carlo and Data
- Only 1 bin shown here as an example for likelihood

Coincidence with Binominal Distribution

• From the law of total probability

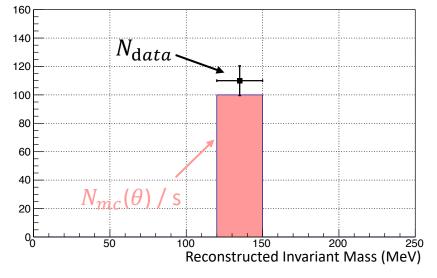
$$P(x|\theta) = \int P(x|N_{true}) \left[\int P(N_{true}|N_{\theta})P(N_{\theta}|\theta)dN_{\theta} \right] dN_{true}$$

$$\downarrow$$

$$\frac{1}{ub} \frac{1}{P(\theta)} \frac{s}{s+1} \frac{(N_{data} + N_{mc})!}{N_{data}!N_{mc}!} (\frac{1}{s+1})^{N_{data}} (\frac{s}{s+1})^{N_{mc}}$$

Binominal distribution with total number of events $N_{data} + N_{mc}$ Two out comes:

- 1. Data
 - $P(data) = \frac{1}{s+1}$
 - Number of outcome: *N*_{data}
- 2. MC
 - $P(mc) = \frac{s}{s+1}$
 - Number of outcome: *N_{mc}*



- Observed data and Monte Carlo prediction MC as a function of θ
- s is the POT scaling factor between Mote Carlo and Data
- Only 1 bin shown here as an example for likelihood

Bayesian Likelihood with Monte Carlo Stat Err

Extended binned likelihood: $-\ln \mathcal{L}_{stat} = \frac{N_{mc}/s}{N_{data}} + \frac{N_{data}}{N_{mc}/s}$

Approximated Barlow-Beeston (from TN-395): $-\ln \mathcal{L}_{stat} = N_{MC}^{true} - N_{data} + N_{data} \ln \frac{N_{data}}{N_{MC}^{true}} + \frac{(\beta-1)^2}{2\sigma_{\beta}^2}$

$$\begin{cases} \beta^2 + (N_{mc}\sigma_{\beta}^2 - 1)\beta - N_{data}\sigma_{\beta}^2 = 0\\ (\sigma_{\beta} = \sqrt{\sum w^2/N_{mc}}) & \Rightarrow \beta \Rightarrow N_{MC}^{true} = \beta N_{mc} \end{cases}$$

Bayesian likelihood: $-\ln \mathcal{L}_{stat} = (N_{mc} + N_{data} + 1) \ln \left(1 + \frac{1}{s}\right) - \frac{N_{mc} \ln \left(1 + \frac{N_{data}}{N_{mc}}\right)}{N_{data} \ln \frac{N_{data}}{N_{\theta}/s + N_{data}/s}}$

• When s is large:
$$-\ln \mathcal{L}_{stat} \approx \frac{1}{s} + N_{mc}/s + N_{data}/s - \frac{N_{data}}{N_{data}} + \frac{N_{data}}{N_{mc}/s + N_{data}/s}$$

Similar idea as Barlow-Beeston, account for likelihood data vs. truth & mc vs. truth

Comparison

Approximated Barlow-Beeston likelihood is derived in frequentist inference, and with assumptions

- β follows normal distribution, σ_{β} approximated as a constant (assumed in implementation)
- In frequentist inference, maximum likelihood is wanted, solve for β

These are valid and reasonable in frequentist inference, and even an almost acceptable approximation in Bayesian inference.

Bayesian Likelihood (the Bayesian and accurate way)

- Entirely derived from Bayes' theorem
- Assumes N_{θ} follows a uniform distribution (no prior information on it except the upper bound)
- Can be thought of as data constrains N_{θ} , and N_{θ} constrains model

Bayesian Likelihood (TN under finalization)

- A detailed TN has been written describing and deriving the likelihood
- T2K-TN-454
- Next slides will show some example of MCMC sampling results from this likelihood

Binned Likelihood with Monte Carlo Statistical Uncertainty in Baysian Inference

Shilin Liu, Clark McGrew

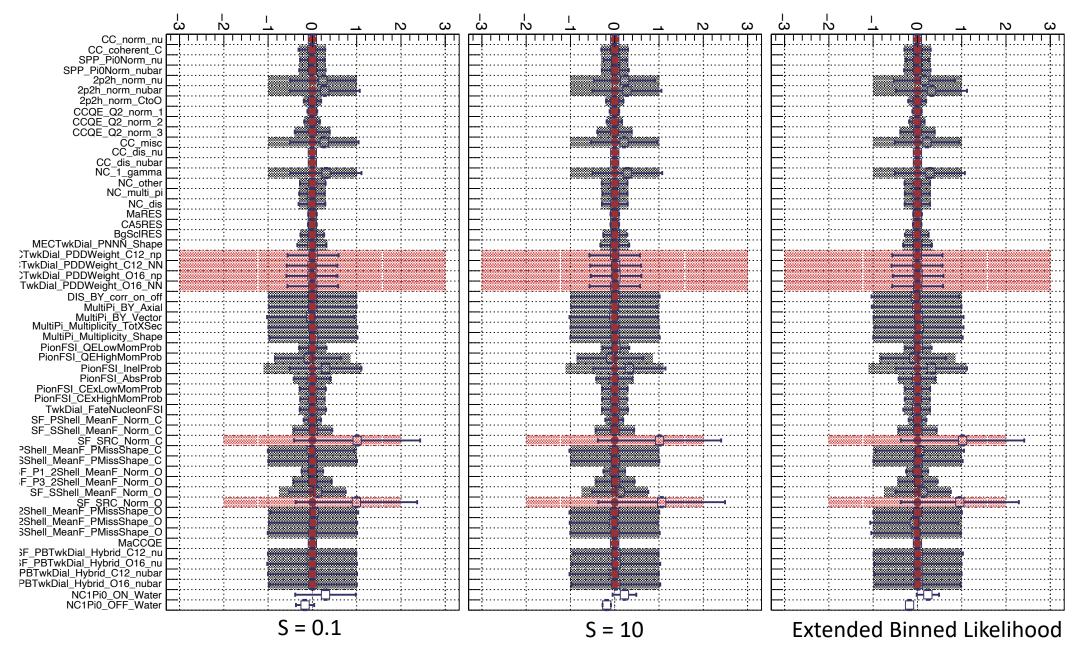
January 2023

1 Introduction

Bayes's theorem is used to obtain the data evidenced theory parameters distribution, as shown in (1):

$$P(\boldsymbol{\theta}|\boldsymbol{x}) = \frac{P(\boldsymbol{x}|\boldsymbol{\theta})P(\boldsymbol{\theta})}{P(\boldsymbol{x})}$$
(1)

MCMC Sampling Results for My Bayesian Likelihood



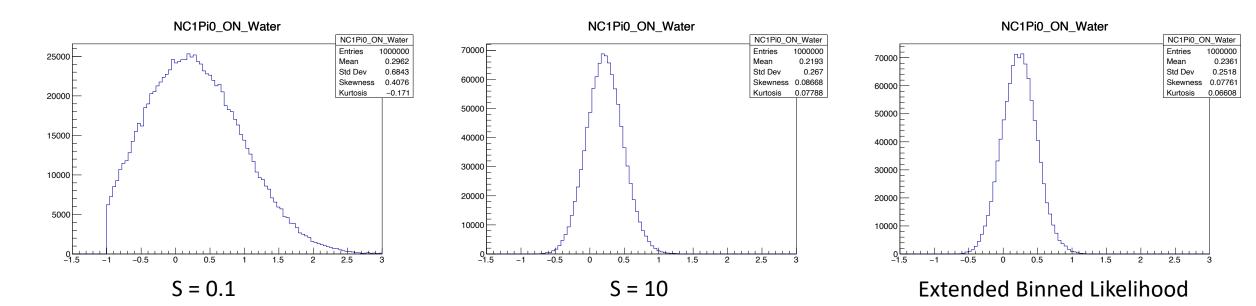
10

MCMC Sampling Results for My Bayesian Likelihood

As expected, no constraint to xsec parameters, MCMC is sampling the prior distribution of them

Thinking about following cases separately

- Extended binned likelihood: Data constrains the generated MC, assuming no MC stat fluctuation My Bayesian Likelihood: data constrains the truth histogram \rightarrow the truth histogram constrains model (parameter)
- S = 0.1, Monte Carlo sample is small, we know less about where the parameter is
- S = 10, Monte Carlo sample is large, we know better about where the parameter is
- S = 10, still a little wider (std dev) comparing to extended binned likelihood, which is from MC stat fluctuation



Backup