### Metropolis Algorithm in POD NC1PiO Analysis

Shilin Liu

**NNGroup Meeting** 

Jul. 8, 2020

#### Goal:

- Introduce a MCMC method (Metropolis Algorithm) from the perspective of my analysis.
- Will focus on the confusions I had when I learnt it
- It won't be fully rigorous for some contents, but the main intuitions will be provided.
- Hopefully everyone will have some ideal how and why MCMC works before the incoming seminar

#### Contents

- Why we use Metropolis Algorithm in the NC1PiO Analysis
- How Metropolis Algorithm works
- Example of Metropolis Algorithm sampling
- Why Metropolis Algorithm works
- How step size affects the sampling
- Adaptive MCMC

### Bayes' Theorem and POD FV Water Mass

#### What is the POD FV water mass

- Yue and I measured the fiducial volume (FV) water mass with scale to be  $1910.4 \pm 10.8 \ kg$
- In the NC1PiO analysis, we measure # of NC1PiO interactions.
- The data we observe (denoted by x) can further constrain the FV water mass (denoted by  $\theta$ ) by Bayes' Theorem:

$$\frac{P(\theta|x)}{P(x)} = \frac{P(x|\theta)P(\theta)}{P(x)}$$

 $P(\theta)$ : Prior distribution of  $\theta$ , before seeing the data x, N(1910,10.8) in this case

 $P(\theta|x)$ : Posterior distribution of  $\theta$ , in presence of data x. It is the information we have on  $\theta$  after seeing the data



#### Bayes' Theorem and POD FV Water Mass

• The data we observe (denoted by x) can further constrain the FV water mass (denoted by  $\theta$ ) by Bayes' Theorem:

$$P(\theta|x) = \frac{P(x|\theta)P(\theta)}{P(x)}$$

 $P(x|\theta)$ : Likelihood function, the conditional probability of x happening in presence of  $\theta$ .

Treat data as an incident from a Poisson distribution with expected rate  $MC(\theta)$ :

$$P(x|\theta) = \frac{MC(\theta)^{data}e^{-MC(\theta)}}{data!}$$

P(x): constant, from law of total probability

$$P(x) = \int P(x|\theta) P(\theta) d\theta$$

Posterior distribution  $P(\theta|x)$  is obtained!



- Observed data and monte carlo prediction MC as a function of  $\theta$
- Only 1 bin shown here as an example for likelihood

### Bayes' Theorem and POD FV Water Mass

The data we observe (denoted by x) can further constrain the FV water mass (denoted by  $\theta$ ) by Bayes' Theorem:

 $P(\theta|x) = \frac{P(x|\theta)P(\theta)}{P(x)}$ 

Posterior distribution  $P(\theta|x)$  is obtained!

#### What is the POD FV water mass

Estimate the posterior distribution by  $E[\theta] = \int \theta \cdot P(\theta|x) d\theta$ 

In real case, there are much more parameters (135 in my analysis)

- Cross-section of NC1Pi0 interaction
- Neutrino flux

• .

Monte carlo prediction is affected by  $\vec{\theta} = (\theta_1, \dots, \theta_{135})$ . The affect on MC( $\vec{\theta}$ ) is correlated from all the parameters Posterior distribution  $P(\vec{\theta}|x)$  is a multi-dimensional distribution



### Curse of High Dimensionality and Monte Carlo Integration

Suppose multi-dimensional posterior distribution  $P(\vec{\theta}|x)$  is obtained

What is the POD FV water mass (cross section of NC1Pi0)

Estimate the posterior distribution by

$$E[\theta_1] = \int \theta_1 \cdot P(\vec{\theta} | x) d\vec{\theta}$$

- There's no analytic form of  $P(\vec{\theta}|x)$
- Numerically if only 2 points chosen for each parameter, 2<sup>135</sup>
  It is impossible to do this integration
- Solution: Monte Carlo integration
  - Sample from posterior distribution  $P(\vec{\theta}|x)$  for a set of samples  $(\vec{\theta}^1, ..., \vec{\theta}^n)$
  - Use sample mean  $\bar{\theta}_1 = \frac{1}{n} \sum_{i=1}^n \theta_1^i$  as an approximation of  $E[\theta_1]$
  - Kolmogorov's Strong Law of Large Numbers applies and  $\bar{\theta}_1$  converges almost surely to  $E[\theta_1]$  as n becomes large
  - The estimation of error of  $\overline{\theta}_1$  is proportional to  $\frac{1}{\sqrt{n}}$ , regardless of the dimension

#### Example of Simple Monte Carlo

We need to sample from posterior distribution  $P(\vec{\theta}|x)$  to estimate  $E[\theta_1] = \int \theta_1 \cdot P(\vec{\theta}|x) d\vec{\theta}$  by sample mean  $\bar{\theta}_1 = \frac{1}{n} \sum_{i=1}^n \theta_1^i$ 

1D example:  $P(\theta) = \sqrt{1 - \theta^2}$ 

Sample from a distribution:

- Generate samples from a process
- Putting samples into histogram
- Histogram converge to the distribution

Rejection Sampling (low efficiency):

- Randomly generate samples in square
- Reject samples above the distribution
  Inversion Sampling
  Importance Sampling

$$P(\theta) = \sqrt{1 - \theta^2}$$

Some Process

6

#### Advantage of Metropolis Algorithm

We need to sample from posterior distribution  $P(\vec{\theta}|x)$  to estimate  $E[\theta_1] = \int \theta_1 \cdot P(\vec{\theta}|x) d\vec{\theta}$  by sample mean  $\bar{\theta}_1 = \frac{1}{n} \sum_{i=1}^n \theta_1^i$ 

$$P(\vec{\theta}|x) = \frac{P(x|\vec{\theta})P(\vec{\theta})}{P(x) = \int P(x|\vec{\theta})P(\vec{\theta})d\vec{\theta}}$$

- P(x) is also a multi-dimensional integration thus unknow.
- We don't know the normalization constant of  $P(\vec{\theta}|x)$ .
- Previous sampling method mostly require full knowledge of target distribution
- They sometimes can be inefficient
- Metropolis Algorithm can sample from distribution without knowledge of the normalization constant



### How Metropolis Algorithm Works

Metropolis Algorithm is a process devised to generate samples that will converge to a target distribution  $P(\vec{\theta}|x)$  without knowing its normalization constant

$$P(\vec{\theta}|x) = \frac{P(x|\vec{\theta})P(\vec{\theta})}{P(x)}$$

- Choose a starting point  $ec{ heta}^{\,0}$  randomly
- At step t+1, generate  $\vec{\theta}^{t+1}$  by:
  - 1. Propose this step  $\vec{\theta}'$  by random sampling from a distribution  $q(\vec{\theta}' \mid \vec{\theta}^t)$  [e.g.N $(\vec{\theta}^t, \sigma)$ ]  $(\vec{\theta}^t = -0.5, \vec{\theta}' = 2), q(\vec{\theta}' \mid \vec{\theta}^t)$  proposal distribution, doesn't have to be normal distribution, but has to be symmetric,  $q(\vec{\theta}' \mid \vec{\theta}^t) = q(\vec{\theta}^t \mid \vec{\theta}')$

2. Calculate acceptance ratio 
$$\alpha = \frac{P(\vec{\theta}'|x)}{P(\vec{\theta}^t|x)} = \frac{P(x|\vec{\theta}')P(\vec{\theta}')}{P(x|\vec{\theta}^t)P(\vec{\theta}^t)}$$

- a. If  $\alpha > 1$ , accept.  $\vec{\theta}^{t+1} = \vec{\theta}'$
- b. If  $\alpha < 1$ , generate random number r Uniform[0,1]
  - i. If r<  $\alpha$ , accept.  $\vec{\theta}^{t+1} = \vec{\theta}'$
  - ii. If r>  $\alpha$  , reject.  $\vec{\theta}^{t+1} = \vec{\theta}^t$



 $P(x|\vec{\theta})P(\vec{\theta})$ 



#### Example Sampling Steps

- This is a random distribution to be sampled with Metropolis Algorithm
- Starting from (-10, -10),  $q(\vec{\theta}' \mid \vec{\theta}^t)$  taken as  $N(\vec{\theta}^t, 1.5)$

Step: 0



Rejected Steps
 Accepted Steps
 Previous Steps

Step: 1-50

Step: 150-200

#### Metropolis Algorithm Samples' Properties

Metropolis Algorithm is one of the most popular Markov Chain Monte Carlo (MCMC) algorithms

- The samples generated  $(\vec{\theta}^1, ..., \vec{\theta}^n)$  forms a Markov Chain, since  $\vec{\theta}^{t+1}$  is and is only determined by  $\vec{\theta}^t$
- The samples generated  $\vec{\theta}^t$  and  $\vec{\theta}^{t+m}$  are not independent, but they will become closer and closer to being independent as m increase. The correlation between them can be determined by a quantity "autocorrelation"
- It usually can be shown that the sample mean  $\bar{\theta}_1 = \frac{1}{n} \sum_{i=1}^n \theta_1^i$  converges to the expected value  $E[\theta_1] = \int \theta_1 \cdot P(\bar{\theta}|x) d\bar{\theta}$  with a Law of Large Numbers for dependent samples
- The samples generated  $(\vec{\theta}^1, ..., \vec{\theta}^n)$  will converge to the target distribution

# What Causes the Samples to Converge to the Target Distribution

The samples generated  $(\vec{\theta}^1, ..., \vec{\theta}^n)$  will converge to the target distribution

• The main intuitions will be provided below, it is not a rigorous proof

The crucial step is to prove that the target distribution is a stationary distribution of the Markov Chain

- Taking steps  $(\vec{\theta}^t, \vec{\theta}^{t+2}, \vec{\theta}^{t+4}, ..., \vec{\theta}^{t+2m})$ , suppose they form the target distribution  $P(\vec{\theta}|x)$
- The next steps  $(\hat{\theta}^{t+1}, \hat{\theta}^{t+2+1}, \hat{\theta}^{t+4+1}, ..., \hat{\theta}^{t+2m+1})$  will also form the target distribution
- (This is not rigorous, it is usually introduced directly in terms of applying Markov Chain transition kernel to a probability density distribution. But in the algorithm, the Markov Chain transition is from a sample step to another sample step, so in this way it is easier to explain)

#### What Causes the Samples to Converge to the Target Distribution $\sum_{x \in P(\vec{\theta}|x)} p(\vec{\theta}|x)$

- Taking steps  $(\vec{\theta}^t, \vec{\theta}^{t+2}, \vec{\theta}^{t+4}, ..., \vec{\theta}^{t+2m})$ , suppose they form the target distribution  $P(\vec{\theta}|x)$
- The next steps  $(\vec{\theta}^{t+1}, \vec{\theta}^{t+2+1}, \vec{\theta}^{t+4+1}, ..., \vec{\theta}^{t+2m+1})$  is a transition of each of previous  $\vec{\theta}^t = \vec{X}$  to another point  $\vec{\theta}^{t+1} = \vec{Y}$  ( $\vec{X}$  and  $\vec{Y}$  here denotes random points in parameter space)
- Take 2 random point X, Y in  $P(\vec{\theta}|x)$ .
- Probability density of a transition from X to Y:  $P(X \rightarrow Y) = P(X|x) * q(Y|X) * 1 \ (\alpha > 1 \text{ so always accept})$
- Probability density of a transition from Y to X:  $P(Y \to X) = P(Y|x) * q(X|Y) * \left(\alpha = \frac{P(X|x)}{P(Y|x)}\right) = P(X \to Y) \qquad **q(Y|X) = q(X|Y)$
- There's no transition between X and Y. Same can be shown for all random points. This is called detailed balance. And thus  $P(\vec{\theta}|x)$  is a stationary state.
- It can be shown that if q(Y|X) can propose any point in parameter space with a positive probability density, the Markov Chain will converge to the stationary distribution.



Summary:

- Choice of q(Y|X) = q(X|Y) and acceptance ratio  $\alpha$  ensures the target distribution is the stationary distribution of Markov Chain
- Choice of proposal distribution q also ensures that the Markov Chain will converge to the stationary distribution
- Taking ratio of target distribution  $\alpha = \frac{P(X|x)}{P(Y|x)}$ allows us to sample without normalization constant

### Why Step Size Matters

- This is a random distribution to be sampled with Metropolis Algorithm ٠
- Starting from (-10, -10) ۲



13

**Rejected Steps** 

**Accepted Steps** 

Previous Steps

#### Posterior Predictive Distribution



14

15

#### Posterior Predictive Checks and Bayesian P-value

Need to compare observed data X ~ posterior predictive distribution  $(\tilde{X}_1, \tilde{X}_2, ..., \tilde{X}_n)$ 

- If  $\sim$  comparable: model fit ok
- Else: check model

Quantitatively:

- Calculate test statistics  $T(\tilde{X})$  and T(X)
- Bayesian p-value  $P = Pr(T(\tilde{X}) > T(X))$
- For example: T can be Likelihood used in MCMC sampling

If Bayesian p-value is near 0 or 1  $\rightarrow$  This is bad, model misfit

• Observed data  $\rightarrow$  extrema of fake simulated data

#### Note:

This method tells if a model misfit This method doesn't support the model



 $\chi^2$  data

#### Summary

- Bayes' Theorem can be used in extraction of xsec
- Posterior distribution is multi-dimensional and hard to integrate over, and the normalization constant is always unknow
- Use Metropolis Algorithm to sample from posterior distribution, use sample mean to approximate the expectation value of parameters
- Metropolis Algorithm is a process devised to generate samples that will converge to a target distribution without knowing the distribution's normalization constant
  - Step size is important in sampling speed
- Posterior predictive checks can tell if model misfit

## Backup

#### Adaptive Metropolis Algorithm (Clark's Code)

- Both Yue and I use Clark's Adaptive Metropolis Algorithm
- Auto tune step size so the overall acceptance rate of all sample is 44% for one parameter or 23.4% for five or more parameters
- It uses the covariance matrix of historical and accepted samples in the multivariate normal distribution to propose the next step.
- The proposal distribution becomes closer to the target distribution comparing to multivariate normal distribution without covariance, the proposal will be more efficient.



#### Reference

- Taboga, Marco (2017). "Metropolis-Hastings algorithm", Lectures on probability theory and mathematical statistics, Third edition. Kindle Direct Publishing. Online appendix. <u>https://www.statlect.com/fundamentals-of-statistics/Metropolis-Hastings-algorithm</u>.
- Ben Lambert. A Student's Guide to Bayesian Statistics
- Robert, C. P. and G. Casella (2013) Monte Carlo Statistical Methods, Springer Verlag.