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Goal: 

• Introduce a MCMC method (Metropolis Algorithm) from the perspective of my analysis.

• Will focus on the confusions I had when I learnt it

• It won’t be fully rigorous for some contents, but the main intuitions will be provided.

• Hopefully everyone will have some ideal how and why MCMC works before the incoming seminar
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Bayes’ Theorem and P0D FV Water Mass
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What is the P0D FV water mass
• Yue and I measured the fiducial volume (FV) water mass with scale to be 

1910.4 ± 10.8	𝑘𝑔

• In the NC1Pi0 analysis, we measure # of NC1Pi0 interactions. 
• The data we observe (denoted by x) can further constrain the FV water 

mass (denoted by 𝜃) by Bayes’ Theorem:

𝑃 𝜃 𝑥 =
𝑃 𝑥 𝜃 𝑃(𝜃)

𝑃(𝑥)
	

𝑃 𝜃 : Prior distribution of 𝜃, before seeing the data x, N(1910,10.8) in this 
case
𝑃 𝜃 𝑥 : Posterior distribution of 𝜃, in presence of data x. It is the information 
we have on 𝜃 after seeing the data

                     

P0D Detector



Bayes’ Theorem and P0D FV Water Mass
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• The data we observe (denoted by x) can further constrain the FV 
water mass (denoted by 𝜃) by Bayes’ Theorem:

𝑃 𝜃 𝑥 =
𝑃 𝑥 𝜃 𝑃(𝜃)

𝑃(𝑥)
	

𝑃(𝑥|𝜃): Likelihood function, the conditional probability of x happening in 
presence of 𝜃.

Treat data as an incident from a Poisson distribution with expected rate 
MC(𝜃):

𝑃(𝑥|𝜃)	=
𝑀𝐶(𝜃)!"#"𝑒$%&(()

𝑑𝑎𝑡𝑎!

P(x): constant, from law of total probability

𝑃 𝑥 = 	:𝑃 𝑥 𝜃 𝑃 𝜃 𝑑𝜃

Posterior distribution 𝑃 𝜃 𝑥  is obtained!
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Bayes’ Theorem and P0D FV Water Mass
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The data we observe (denoted by x) can further constrain the FV 
water mass (denoted by 𝜃) by Bayes’ Theorem:

𝑃 𝜃 𝑥 =
𝑃 𝑥 𝜃 𝑃(𝜃)

𝑃(𝑥)
	

Posterior distribution 𝑃 𝜃 𝑥  is obtained!

What is the P0D FV water mass
Estimate the posterior distribution by 𝐸 𝜃 = ∫𝜃 = 𝑃 𝜃 𝑥 𝑑𝜃

                    
In real case, there are much more parameters (135 in my analysis)

• Cross-section of NC1Pi0 interaction
• Neutrino flux
• …

Monte carlo prediction is affected by �⃑� = (𝜃*, … , 𝜃*+,). 
The affect on MC(�⃑�) is correlated from all the parameters
Posterior distribution 𝑃 �⃑� 𝑥  is a multi-dimensional distribution

Likelihood

𝑃(𝑥|𝜃)	=
𝑀𝐶(𝜃)!"#"𝑒$%&(()

𝑑𝑎𝑡𝑎!
Prior
𝑃 𝜃 = 𝑁(1910.4,10.8)

Posterior distribution
𝑃 𝜃 𝑥

All distributions are scaled up so they are visible



Curse of High Dimensionality and Monte Carlo 
Integration
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Suppose multi-dimensional posterior distribution 𝑃 �⃑� 𝑥  is obtained

What is the P0D FV water mass (cross section of NC1Pi0)
Estimate the posterior distribution by 

𝐸 𝜃* = :𝜃* = 𝑃 �⃑� 𝑥 𝑑�⃑�

• There’s no analytic form of 𝑃 �⃑� 𝑥
• Numerically if only 2 points chosen for each parameter, 2*+,
It is impossible to do this integration

Solution: Monte Carlo integration
• Sample from posterior distribution 𝑃 �⃑� 𝑥  for a set of samples (�⃑�*, … , �⃑�-)
• Use sample mean �̅�* =

*
-
∑./*- 𝜃*.  as an approximation of 𝐸 𝜃*

• Kolmogorov’s Strong Law of Large Numbers applies and �̅�* converges almost surely to 𝐸 𝜃*  as n becomes 
large

• The estimation of error of �̅�* is proportional to *
-

, regardless of the dimension     



Example of Simple Monte Carlo 
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We need to sample from posterior distribution 𝑃 �⃑� 𝑥  to estimate 
𝐸 𝜃* = ∫𝜃* = 𝑃 �⃑� 𝑥 𝑑�⃑� by sample mean �̅�* =

*
-
∑./*- 𝜃*.

1D example: 𝑃 𝜃 = 1 − 𝜃0

Sample from a distribution:
• Generate samples from a process
• Putting samples into histogram
• Histogram converge to the distribution

Rejection Sampling (low efficiency):
• Randomly generate samples in square
• Reject samples above the distribution
Inversion Sampling
Importance Sampling 
…

𝑃 𝜃 = 1 − 𝜃!

𝜃

Some Process

𝜃" 𝜃! 𝜃#…



Advantage of Metropolis Algorithm 
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We need to sample from posterior distribution 𝑃 �⃑� 𝑥  to estimate 
𝐸 𝜃* = ∫𝜃* = 𝑃 �⃑� 𝑥 𝑑�⃑� by sample mean �̅�* =

*
-
∑./*- 𝜃*.

𝑃 �⃑� 𝑥 =
𝑃 𝑥 �⃑� 𝑃(�⃑�)

𝑃(𝑥) = 	∫𝑃 𝑥 �⃑� 𝑃 �⃑� 𝑑�⃑� 

• P(x) is also a multi-dimensional integration thus unknow.
• We don’t  know the normalization constant of 𝑃 �⃑� 𝑥 .

• Previous sampling method mostly require full knowledge of target distribution
• They sometimes can be inefficient

• Metropolis Algorithm can sample from distribution without knowledge of the 
normalization constant

𝑃 𝜃 = 1 − 𝜃!

𝜃

Metropolis 
Algorithm

𝜃" 𝜃! 𝜃#…



How Metropolis Algorithm Works
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Metropolis 
Algorithm

�⃑�" �⃑�! �⃑�#…

𝑃 𝑥 �⃑� 𝑃(�⃑�)

𝛼

Metropolis Algorithm is a process devised to generate samples that will converge to a 
target distribution 𝑃 �⃑� 𝑥  without knowing its normalization constant

𝑃 �⃑� 𝑥 =
𝑃 𝑥 �⃑� 𝑃(�⃑�)

𝑃(𝑥)
• Choose a starting point �⃑�1 randomlly
• At step t+1, generate �⃑�#2* by:

1. Propose this step �⃑�$ by random sampling from a distribution q(�⃑�$ | �⃑�%) [e.g.N(�⃑�%, 𝜎)] 
(�⃑�# =-0.5, �⃑�* =2), q(�⃑�* | �⃑�#) proposal distribution, doesn’t have to be normal distribution, but 
has to be symmetric, q(�⃑�* | �⃑�#)  = q(�⃑�#	| �⃑�* ) 

2. Calculate acceptance ratio 𝛼 = 3 �⃑�4 𝑥
3 �⃑�# 𝑥

= 3 𝑥 �⃑�4 3((+)
3 𝑥 �⃑�# 3((,)

a. If 𝛼	>1, accept. �⃑�%&" = �⃑�$ 
b. If 𝛼	<1, generate random number r - Uniform[0,1]

i. If r< 𝛼, accept. �⃑�%&" = �⃑�$ 
ii. If r> 𝛼 , reject. �⃑�%&" = �⃑�%



Example Sampling Steps
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• This is a random distribution to be sampled with Metropolis Algorithm
• Starting from (-10, -10), q(�⃑�4 | �⃑�#) taken as N(�⃑�#,1.5)

                    

Rejected Steps
Accepted Steps
Previous Steps

Step: 1-50

Step: 150-200



Metropolis Algorithm Samples’ Properties
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Metropolis Algorithm is one of the most popular Markov Chain Monte Carlo (MCMC) algorithms

• The samples generated (�⃑�*, …, �⃑�-) forms a Markov Chain, since �⃑�#2* is and is only determined by �⃑�#

• The samples generated �⃑�# and �⃑�#25 are not independent, but they will become closer and closer to being 
independent as m increase. The correlation between them can be determined by a quantity “autocorrelation”

• It usually can be shown that the sample mean �̅�* =
*
-
∑./*- 𝜃*.  converges to the expected value 𝐸 𝜃* =

∫𝜃* = 𝑃 �⃑� 𝑥 𝑑�⃑� with a Law of Large Numbers for dependent samples

• The samples generated (�⃑�*, …, �⃑�-) will converge to the target distribution

                    



What Causes the Samples to Converge to the Target 
Distribution

11

The samples generated (�⃑�*, …, �⃑�-) will converge to the target distribution
• The main intuitions will be provided below, it is not a rigorous proof

The crucial step is to prove that the target distribution is a stationary distribution 
of the Markov Chain
• Taking steps (�⃑�#, �⃑�#20	, �⃑�#26	…, �⃑�#205), suppose they form the target 

distribution 𝑃 �⃑� 𝑥
• The next steps (�⃑�#2*, �⃑�#202*	, �⃑�#262*	…, �⃑�#2052*) will also form the target 

distribution
• (This is not rigorous, it is usually introduced directly in terms of applying 

Markov Chain transition kernel to a probability density distribution. But in the 
algorithm, the Markov Chain transition is from a sample step to another 
sample step, so in this way it is easier to explain)

                    



What Causes the Samples to Converge to the Target 
Distribution
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• Taking steps (�⃑�#, �⃑�#20	, �⃑�#26	…, �⃑�#205), suppose they form the target 
distribution 𝑃 �⃑� 𝑥

• The next steps (�⃑�#2*, �⃑�#202*	, �⃑�#262*	…, �⃑�#2052*) is a transition of each 
of previous �⃑�# = �⃑� to another point �⃑�#2* = 𝑌 (�⃑� and 𝑌	here denotes 
random points in parameter space)

• Take 2 random point X, Y in 𝑃 �⃑� 𝑥 .
• Probability density of a transition from X to Y:

𝑃 𝑋 → 𝑌 = 𝑃 𝑋 𝑥 ∗ 𝑞 𝑌 𝑋 ∗ 1	 (𝛼 > 1 so always accept)
• Probability density of a transition from Y to X:

𝑃 𝑌 → 𝑋 = 𝑃 𝑌 𝑥 ∗ 𝑞 𝑋 𝑌 ∗ 𝛼 = - 𝑋 𝑥
- 𝑌 𝑥 = 𝑃 𝑋 → 𝑌          **𝑞 𝑌 𝑋  = 𝑞 𝑋 𝑌

• There’s no transition between X and Y. Same can be shown for all random 
points. This is called detailed balance. And thus 𝑃 �⃑� 𝑥  is a stationary 
state.

• It can be shown that if 𝑞 𝑌 𝑋  can propose any point in parameter space 
with a positive probability density, the Markov Chain will converge to the 
stationary distribution.

𝑃 �⃑� 𝑥

Summary:
• Choice of 𝑞 𝑌 𝑋 = 𝑞 𝑋 𝑌  and acceptance 

ratio 𝛼 ensures the target distribution is the 
stationary distribution of Markov Chain

• Choice of proposal distribution q also 
ensures that the Markov Chain will converge 
to the stationary distribution

• Taking ratio of target distribution 𝛼 = - 𝑋 𝑥
- 𝑌 𝑥  

allows us to sample without normalization 
constant



Why Step Size Matters
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• This is a random distribution to be sampled with Metropolis Algorithm
• Starting from (-10, -10)
                    

Rejected Steps
Accepted Steps
Previous Steps

Step: 1-50 Step: 1-100Step: 1-100

Step size too small Step size too big



Posterior Predictive Distribution
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𝑃 I𝑋 𝑋 = 𝑃( I𝑋|�⃑�)𝑃 �⃑� 𝑋

Predictive data distribution: 
• Give model parameter �⃗�
• /𝑋: predictive data
Example:
• /𝑋' 	~ Poisson(MC_X(�⃑�())

Posterior predictive distribution:
• Predictive new data /𝑋 given 

observed data X
• What we want

Posterior distribution:
• Sampled from MCMC

Take from MCMC output:
• �⃑�(

Obtain predictive data:
• /𝑋'

Nominal MC

Observed 
Data



Posterior Predictive Checks and Bayesian P-value
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Need to compare observed data X ~ posterior predictive distribution ( I𝑋*, I𝑋0, … , I𝑋-)
• If ~ comparable: model fit ok
• Else: check model

Quantitatively: 
• Calculate test statistics T( I𝑋) and T(X)
• Bayesian p-value 𝑃 = Pr(T( I𝑋) > T(X))
• For example: T can be Likelihood used in MCMC sampling

If Bayesian p-value is near 0 or 1 à This is bad, model misfit
• Observed data à extrema of fake simulated data

Note:
This method tells if a model misfit
This method doesn’t support the model

P = 0.35



Summary
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• Bayes’ Theorem can be used in extraction of xsec

• Posterior distribution is multi-dimensional and hard to integrate over, and the normalization 
constant is always unknow

• Use Metropolis Algorithm to sample from posterior distribution, use sample mean to approximate 
the expectation value of parameters

• Metropolis Algorithm is a process devised to generate samples that will converge to a target 
distribution without knowing the distribution’s normalization constant
• Step size is important in sampling speed

• Posterior predictive checks can tell if model misfit



Backup
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Adaptive Metropolis Algorithm (Clark’s Code) 
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• Both Yue and I use Clark’s Adaptive Metropolis Algorithm

• Auto tune step size so the overall acceptance rate of all sample is 44% for one parameter or 23.4% 
for five or more parameters

• It uses the covariance matrix of historical and accepted samples in the multivariate normal 
distribution to propose the next step. 

• The proposal distribution becomes closer to the target distribution comparing to multivariate 
normal distribution without covariance, the proposal will be more efficient.
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