ESG 213 STUDIES IN NANOTECHNOLOGY (ELECTIVE)

Credit: 3

COURSE CATALOG DESCRIPTION:

The emerging field of nanotechnology develops solutions to engineering problems by taking advantage of the unique physical and chemical properties of nanoscale materials. This interdisciplinary, co-taught course introduces materials and nano-fabrication methods with applications to electronics, biomedical, mechanical and environmental engineering. Guest speakers and a semester project involve ethics, toxicology, economic and business implications of nanotechnology. Basic concepts in research and design methodology and characterization techniques will be demonstrated. Course is cross-listed as BME 213, MEC 213, and EST 213 and is required for the Minor in Nanotechnology Studies (NTS).

PRE- OR COREQUISITE(S): Prerequisites: PHY 131 or PHY 125; CHE 131 or ESG 198

TEXT(S) OR OTHER REQUIRED MATERIAL: G.L. Hornyak, J.J. Moore, H.F. Tibbals and J.

Dutta, "Fundamentals of Nanotechnology", CRC Press, 2009

Website resources at: www.stonybrook.edu/nanotechnology

COURSE LEARNING OUTCOMES	SOS	ASSESSMENT TOOLS
Understanding tools used in design and analysis of nanotechnology	a b k	Laboratory report
Nanotechnology applications in electronics, energy, environmental engineering and medicine	aij	Quizzes
Understanding the societal implications of nanotechnology, including the role of ethics and regulations	g f h	Presentations

COURSE TOPICS

Week 1. What is nanotechnology?

Week 2. Nanobusiness

Week 3. Nanomanufacturing

Week 4. Nanotechnology in electronics and optics

Week 5. Lab: Formation of metallic nanoparticles

Week 6. Nanomechanics

Week 7. Nanostructures and nanocomposites

Week 8. Materials characterization techniques

Week 9. Safety issues in nanotechnology and research

Week 10. Lab: Making a dye-based solar cell

Week 11: Nanobiotechnology

Week 12: Medical applications of nanotechnology

Week 13: Environmental nanotechnology

Week 14: Societal implications of nanotechnology

Week 15: Final presentations

CLASS/ LABORATORY SCHEDULE:

ESM Spring	201	Nanotechnology Studies	LEC	1	Tu	PM	PM
------------	-----	------------------------	-----	---	----	----	----

CURRICULUM

This course contributes 3 credit hours toward meeting the required 48 hours of engineering topics.

STUDENT OUTCOMES (SCALE 1-3):

3 – Strongly supported				2 – Supported				1- Minimally supported		
3	2				2	2	2	3	2	2
А	В	С	D	E	F	G	Η	Ι	J	Κ

LEAD COORDINATOR(S) WHO PREPARED THIS DESCRIPTION AND DATE OF PREPARATION:

Gary Halada, 5/19/ 2010