List of Comprehensive Exams Topics

Mechanics

- 1. Basic Mechanics
 - Newton's laws and conservation laws, the virial theorem
- 2. The Lagrangian and Hamiltonian Formalism
 - The Lagrange formalism and the principle of least action principle
 - The Hamiltonian formalism
 - Poisson brackets
 - Symmetries and conservation laws in the Lagrangian and Hamiltonian formalisms. Noether theorem.
- 3. Some Basic Problems
 - One-dimensional and 1D-reducible problems
 - Equilibrium and statics
 - Planetary motion and Kepler's laws
 - Elastic scattering and the Rutherford formula
 - Motion of (relativistic) particles in external electromagnetic fields
 - Adiabatic invariance

4. Oscillations

- Free and forced oscillations
- Weakly nonlinear oscillations and associated approximation scheme
- Parametric resonance and excitation
- 5. From Oscillations to Waves
 - Coupled oscillators
 - 1D waves. Periodic systems. Reflections at interfaces and boundaries
- 6. Rigid Body Motion
 - Angular velocity vector and the moment of inertia tensor; fixed-axis rotation
 - Tops, free rotation, Euler equations, precession
 - Non-inertial reference frames
- 7. Fluid Mechanics
 - Equations of motion for ideal and viscous fluids. Compressible and incompressible fluids. Reynolds number. Hydrostatics.

Classical Electrodynamics

- 1. Fundamental Electrostatics
 - The electrostatic field and potential, Gauss' law
 - Electric field energy and the electrostatic stress tensor
 - Capacitance
 - Method of images
 - Separation of variables and Green functions in cartesian, spherical, and cylindrical coordinates
- 2. Polarization and Dielectrics
 - The multipole expansion and electric dipoles
 - Dielectric media and boundary conditions
- 3. DC Currents
 - Continuity equation, Kirchhoff laws, and Ohm's law
 - Energy dissipation rate in Ohmic materials
- 4. Magnetism and Magnetic Materials
 - Magnetic interaction of currents
 - Vector-potential and Ampère's law
 - Magnetic flux, energy, and inductance
 - Magnetic dipoles
 - Magnetic media and boundary conditions
 - The magnetic stress tensor
- 5. Time-Dependent Electromagnetism
 - Electromagnetic induction
 - Self and mutual inductances
 - Quasistatic approximation and the skin effect
 - Gauge invariance in classical electrodynamics
 - Displacement current
 - Inductors and AC circuits at an elementary level (i.e. LR, LC, LRC circuits)
- 6. Electromagnetic Wave Propagation
 - Plane waves: velocity, power
 - Waves in media
 - Dissipation and dispersion, Kramers Kronig relations
 - Reflection and refraction
 - Waves in waveguides, resonant cavities

- 7. Radiation, Scattering, Interference, and Diffraction
 - Near zone vs. radiation zone
 - Multipole radiation (electric, magnetic, and quadrupole radiation)
 - Radiation spectrum
 - Basics of scattering: dipole scattering and light electron scattering
 - Born approximation, Fresnel and Fraunhofer diffraction
- 8. Special Relativity
 - Relativistic kinematics (time dilation, length contraction, simultaneity), momentum, mass, and energy
 - Maxwell equations in covariant form
 - Transformation of field strengths and the electromagnetic stress tensor
 - The action, Lagrangian, and Hamiltonian of particles in electromagnetic fields.
 - The action, Lagrangian, and Hamiltonian of the electromagnetic field
- 9. Radiation by Relativistic Charges
 - Liénard-Wiechert potentials
 - Radiation fields and radiated energy from relativistic particles
 - Synchrotron radiation
 - Radiation during collisions
 - Photons and the limitations of classical electrodynamics

Quantum Mechanics

- 1. Formalism of Quantum Mechanics
 - Continuity equation
 - States, state vectors, and linear operators
 - State basis and matrix representation
 - Change of basis, unitary operators, and matrix diagonalization
 - Observables: expectation values and Ehrenfest's theorem, uncertainties, and uncertainty relations, virial theorem
 - Quantum dynamics: the Schrodinger, Heisenberg, and interaction pictures

2. 1D Wave Mechanics

- Free particle: Wave packets
- Motion in simple potential profiles, harmonic oscillator
- The WKB approximation
- Transfer matrix, resonant tunneling, and metastable states
- Coupled quantum wells
- 1D band theory, effective mass, Bloch oscillations, Landau-Zener tunneling
- 3. 3D Wave Mechanics
 - Minimal substitution, the Aharonov-Bohm effect and magnetic flux quantization
 - Landau levels and the quantum Hall effect
 - Scattering and diffraction
 - Axially-symmetric systems
 - Spherically-symmetric systems, the isotropic harmonic oscillator
 - Atoms and the periodic table

4. Some Exactly Solvable Time Dependent Problems

- Two-level (spin-1/2 systems) systems, Bell's theorem
- Feynman's path integral for quadratic Lagrangians
- Coherent (or Glauber) states
- 5. Symmetries in Quantum Mechanics and Angular Momentum
 - Translational symmetry and linear momentum.
 - Angular momentum, rotational symmetry, and spherically-symmetric problems
 - Spin and its addition to orbital angular momentum. Clebsch-Gordan coefficients
 - Parity symmetry. Time reversal and anti-unitary operators. Kramers degeneracy
 - Gauge symmetry and gauge invariance in nonrelativistic quantum mechanics
- 6. Approximation Methods
 - Variational method

- Eigenvalue and eigenstate problems in a perturbative approximation. Examples: the linear and quadratic Stark effects, fine structure of atomic levels, the Zeeman effect
- Time-dependent perturbations; the quantum-mechanical Golden Rule for time dependent and step-like perturbations
- The adiabatic approximation
- 7. Open Quantum Systems
 - Mixed states and the density matrix representation
 - Density matrix dynamics, dissipation, dephasing, and relaxation
- 8. Multiparticle Systems
 - Distinguishable and indistinguishable particles
 - Singlets, triplets, and the exchange interaction
 - Second quantization
- 9. Interaction with the Quantized Electromagnetic Field
 - Electromagnetic field quantization
 - Spontaneous and stimulated emission
 - The photoelectric effect and photocount statistics
- 10. Basics of Relativistic Quantum Mechanics
 - The Dirac equation and its plane wave solutions

Statistical Mechanics

- 1. Thermodynamics
 - The laws of thermodynamics, entropy, temperature, heat capacity
 - Thermodynamic potentials
 - Systems with variable number of particles
 - Thermal Machines (refrigerators, engines, etc)
 - Examples: Clausius-Clapeyron equation, throttling process
- 2. Principles of Physical Statistics
 - Statistical ensemble and probability
 - Microcanonical ensemble and distribution
 - Canonical ensemble and the Gibbs distribution
 - Harmonic oscillator statistics and its major applications
 - Grand canonical ensemble and distribution
 - Systems of independent quantum particles
- 3. Ideal and Not-So-Ideal Gases
 - Ideal classical gas and its chemical potential
 - Degenerate Fermi gas
 - Bose-Einstein condensation
 - Gases of weakly interacting particles
 - First order phase transitions; the van der Waals equation of state

4. Continuous Phase Transitions

- Basic notions of continuous phase transitions
- Landau's mean-field theory
- Ising model: Weiss mean field theory
- Ising model in 1D, critical exponents, and qualitative features in 2D

5. Fluctuations

- Characterization of fluctuations
- Fluctuations of energy, the number of particles, volume, and temperature
- Fluctuations as functions of time; the correlation function and the spectral density
- Fluctuations and dissipation, Green-Kubo formula
- Brownian motion, the diffusion equation, and the Fokker-Planck equation
- 6. Elements of Kinetics
 - The Liouville theorem
 - The Boltzmann equation and the relaxation-time approximation.
 - The Ohm law and the Drude formula

• Electrochemical potential and drift-diffusion equation