
Comprehensive Examination
Department of Physics and Astronomy

Stony Brook University

August 2017 (in 4 separate parts: CM, EM, QM, SM)

General Instructions:
Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take approximately
one hour.

Some of the problems may cover multiple pages. Use one exam book for each problem,
and label it carefully with the problem topic and number and your ID number.

Write your ID number (not your name!) on the exam booklet.

You may use, one sheet (front and back side) of handwritten notes and, with the proc-
tor’s approval, a foreign-language dictionary. No other materials may be used.
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Classical Mechanics 1

A magnetic trap

Consider a non-relativistic particle of mass m moving freely between two fixed curved walls
separated by a distance L(x) = L0(1− x2/a2), where a is a constant with a� L0. Assume
that vx � vy and that the particle crosses the midpoint with initial velocity ~v0, where
v2

0 = v2
0x + v2

0y, as shown below. The initial angle is small, i.e. θ0 ≡ tan−1(v0x/v0y) � 1.
There is no gravity.

Suggestion for a Classical Mechanics problem

1. Consider a particle of mass m moving freely between two fixed curved walls separated by a distance
L(x) = L0(1 � x2/a2), where a is a constant. Assume that vx ⌧ vy and that the particle crosses the
midpoint with velocity ~v0, where v2

0 = v2
0x + v2

0y. Define ✓0 = tan�1(v0x/v0y). There is no gravity.

(a) Write down an exactly conserved quantity associated with the motion.

(b) In addition to the exactly conserved quantity, there is another (approximate) constant of motion.
Write an expression for it.

(c) Derive an approximate expression for the value of xmax, the maximum distance the particle will
reach in its motion in the x-direction. Describe what happens after that.

2. Now consider a particle of mass m and charge q moving on a circular orbit perpendicular to a static
magnetic field ~B = Bx̂ that acts uniformly in the x-direction.

(a) Write down an expression for the kinetic energy of the particle in terms of q, m, B, and the radius
of the orbit.

(b) Now imagine that the particle has a small velocity component in the x-direction, i.e. in the

direction of the magnetic field. Moreover, imagine that the static magnetic field ~B acts in the
x-direction, but has a tiny positive gradient in that direction, i.e. ~B = B(x) x̂. The Lagrangian
of the system is

L =
m

2

�
v2
? + ẋ2

�
+

q

2
Br2✓̇2 ,

where ✓ is the angle with respect to the y-axis in the yz-plane, r is the radius r =
p

y2 + z2,

and v2
? ⌘ ṙ2 + r2✓̇2 is the square of the velocity perpendicular to ~B. Assume ṙ is small, so that

v2
? ' r2✓̇2. Show that Br2 is approximately constant along the particle’s motion.

(c) Argue now that in analogy to the previous problem, there is again a maximum value for x. (Hint:
the total kinetic energy is conserved.) What does the configuration of the magnetic field need to
be in order to confine the particle in this “magnetic trap”.

(a) (6 points) Derive an approximate expression for the value of xmax, the maximum dis-
tance the particle will reach in its motion in the x-direction. Describe what happens
after that.

Hint : the adiabatic invariant, Jy ≡
∮
pydy, is approximately conserved during the

motion.

Now consider a new problem without the walls of part (a). Consider a non-relativistic
particle of mass m and charge q moving on a circular orbit in a plane perpendicular to a
uniform static magnetic field ~B = Bx̂ pointing in the x̂-direction.

(b) (2 points) Write down an expression for the kinetic energy of the particle in terms of
q, m, B, and the radius of the orbit.

(c) (6 points) Now imagine that the particle has a small velocity component in the x-
direction, i.e. in the direction of the magnetic field. Moreover, imagine that the static
magnetic field ~B acts in the x-direction, but has a tiny positive gradient in that direc-
tion, i.e. ~B = B(x) x̂. The Lagrangian of the system is

L =
m

2

(
v2
⊥ + ẋ2

)
+
q

2
Br2θ̇ ,

where θ is the angle with respect to the y-axis in the yz-plane, r is the radius r =√
y2 + z2, and v2

⊥ ≡ ṙ2 +r2θ̇2 is the square of the velocity perpendicular to ~B. Assume

ṙ is small, so that v2
⊥ ' r2θ̇2. Show that Br2 is approximately constant along the

particle’s motion.
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(d) (6 points) Argue now that in analogy to part (a), there is again a maximum value for
x. What does the configuration of the magnetic field need to be in order to confine
the particle in this “magnetic trap”.
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Solution

(a) The energy is conserved. In this case, it is just the kinetic energy,

1

2
mv2

0 =
1

2
mẋ2 +

1

2
mẏ2 .

The adiabatic invariant, Jy, is approximately conserved, where

Jy =

∮
pydy

= 2 m ẏ L(x)

≈ 2 m L0 v0y

= 2 m L0 v0 cos θ0

Combining the two invariants, we have

ẋ2 = v2
0 − ẏ2 = v2

0

(
1− L2

0

L(x)2
cos2 θ0

)

ẋ = 0 =⇒ cos θ0 =
L(x)

L0

= 1− x2

a2
=⇒ 1− 1

2
θ2

0 = 1− x2

a2

=⇒ xmax =
aθ0√

2

Once the particle reaches xmax, it is reflected until it reaches −xmax. It will oscillate between
these two points indefinitely.

(b) The Lorentz force law applied to a particle on a circular orbit is

qv⊥B =
mv2
⊥
r

,

where v⊥ is the velocity of the particle perpendicular to ~B, so that

v⊥ =
qBr

m
.

The kinetic energy is then given by

E⊥ =
1

2
mv2
⊥ =

q2B2r2

2m
.

(c) The action variable corresponding to θ is

Jθ =

∮
pθdθ ,
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where the canonical momentum pθ is given by

pθ = mr2θ̇ +
qBr2

2
.

Since θ̇ = − qB
m

, we have

pθ = −1

2
qBr2 ,

so that
Jθ = −πqBr2 .

Jθ is an adiabatic invariant, so that Br2 is approximately a constant of motion.

(d) The total kinetic energy E, which is conserved, is given by

E = E⊥ + E‖ =
1

2
mv2
⊥ =

q2B2r2

2m
+

1

2
mẋ2 .

Since Br2 is some constant C, we have

1

2
mẋ2 = E − q2CB(x)

2m
.

If B(x) slowly increases as x increases, ẋ will decrease, eventually going to 0. This means
there is a maximum value for x for the particle. The particle will then turn around and move
towards negative x. In order for the particle to be trapped, the magnetic field eventually
also needs to increase in the negative x-direction.
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Classical Mechanics 2

An engineered rope

Consider a flexible, but inextensible, rope with total mass m and an adjustable mass per
length, λ ≡ dm/d`, where ` is the distance along the rope. The rope is to be hung between
two points separated by a horizontal distance L.

The mass per length is adjusted so that λ is proportional to the tension in the rope when
it is hung1. Thus for the rope shown below, λ(x) = cT (x) with c a proportionality constant,
and we have parametrized λ by the x coordinate, i.e. dm = λ d` = λ(x)

√
1 + y′(x)2 dx.

This problem determines the shape of hanging rope y(x) and the necessary mass density.

y

L

y(x)

x

dx

(a) (8 points) Take a small segment of the rope extending from x−dx/2 to x+dx/2. Draw
a well labeled free body diagram for this segment including the tension and gravity.
Use the force balance equations in the x and y directions to determine a differential
equation for the shape of the rope y(x) with the specified mass density, λ(x) = cT (x).

(b) (5 points) Determine y(x). What is the maximum distance, Lmax, such a rope could
traverse?

(c) (3 points) Keeping the mass density λ(`) fixed, if a small weight of mass mo � m is
now hung from the center of the rope, does the height of the center of mass of the rope
increase or decrease under the additional load? Explain physically without detailed
calculations.

(d) (4 points) Now an additional small mass mo is hung, but λ is re-adjusted to maintain
the constraint, λ(x) = cT (x). Determine y(x) with the additional load.

1Assuming that the maximum tension is proportional to the mass density, this engineered rope has an
equal probability of breaking anywhere along its length, and not just at the points of greatest tension.
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Possibly useful integrals: ∫
du

1 + u2
= atan(u) + C

∫
du√
eu − 1

= 2 atan(
√
eu − 1) + C

∫
du sec2(u) = tan(u) + C
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Solution

(a) A free body diagram is shown below.

θ(x+ dx/2)

T (x − dx/2)

T (x + dx/2)

dmg = λ
√
1 + (y′)2 dx

θ(x − dx/2)

The horizontal force balance equation gives

d

dx
(T (x) cos θ) = 0 with cos θ =

1√
1 + (y′(x))2

, (1)

which upon integration yields the condition

T (x) = T0

√
1 + (y′)2 . (2)

The vertical components of Newton’s law gives

d

dx
(T (x) sin θ) = λ(x)g

√
1 + (y′)2 with sin θ =

y′√
1 + (y′)2

. (3)

Using the constraint
λ(x) = cT (x) , (4)

we find the required differential equation

d

dx
(y′(x)) = cg(1 + (y′)2) . (5)

(b) Letting u = y′(x) we integrate

du

1 + u2
= cgdx , (6)

or
tan−1(u) = cgx+ const . (7)
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By recognizing the tan−1(y′(x)) = θ(x) and taking x = 0 as the bottom of the rope, we
demand that θ(x) = 0 at x = 0. Thus,

dy

dx
= tan(cgx) . (8)

Integrating again ∫
dy =

∫
sin(cgx)

cos(cgx)
dx , (9)

we find

y(x)− ymin = − 1

cg
log(cos(cgx)) . (10)

We may take ymin = 0.

Clearly when

cgx→ π

2
, (11)

y(x) becomes infinitely long. Thus L/2 is limited to

Lmax

2
=

π

2cg
. (12)

(c) The vertical height increases. Imagine pulling from downwards from the center. You
clearly are doing work on the system. The work you do increases the gravitational potential
energy of the rope. The height increases is related to the ∆PE

∆PE = mg∆hcm . (13)

(d) The differential equation of part (a) remains valid. However, when we solve for y′(x) as
in Eq. (7)

y′(x) = tan(θ(x)) = tan(cgx+ θ0) , (14)

the constant θ0 should no longer be set to zero. θ0 is easily interpreted as the angle at the
bottom of the rope.

At x = 0 the bottom of the rope we must satisfy

2T (0) sin(θ0) = mog , T (0) cos(θ0) = T0 , (15)

which is determined by the free body diagram shown below:

T (0)

θ0

m0g

T (0)
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Since the mass is small we have

cos θ0 ' 1 , sin(θ0) ' tan(θ0) ' θ0 , (16)

and thus
θ0 =

m0g

2T0

. (17)

We may determine the integration constant T0 from the total mass. To first order in m0 we
may disregard the modification of y(x) to determine this relation:

m =2

∫ L/2

0

dxλ(x)
√

1 + (y′(x))2 , (18)

=2c

∫ L/2

0

dxT (x)
√

1 + (y′(x))2 , (19)

=2cT0

∫ L/2

0

dx(1 + y′(x)2) , (20)

=2cT0

∫ L/2

0

sec2(cgx) , (21)

=2cT0

[
1

cg
tan(cgx)

]L
2

0

, (22)

m =
2T0

g
tan(cgL/2) . (23)

Putting together the ingredients we have

y(x) =
−1

cg
log(cos(cgx+ θ0)) , (24)

where
θ0 '

mo

m
tan(cgL/2) . (25)
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Classical Mechanics 3 

 

“Gravity” Waves  

 

 The usual waves on a water surface1 may be reasonably well described modeling the water as an 
ideal (viscosity-free), incompressible fluid of density , placed in a constant gravity field g. This 
problem addresses only sinusoidal waves, with all variables independent of one Cartesian coordinate - in 
the Fig. below, of z. 

 

 

 

 

 

 
  
 A (4 points). What general equations should be satisfied by an ideal fluid's density (r, t) and 
velocity v(r, t), where r is a fixed point in a lab reference frame (rather than the fluid particle's 
position)?  

 B (2 points). How may these equations be simplified:  

  - if the fluid is incompressible ( = const)? 

  - in the low-velocity limit? 

 C (4 points). Prove that the simplified equations are satisfied by the following expressions for the 
particle displacements: 

       tkxAetqtkxAetq kyky
yx   sin,,cos, rr , 

provided that the wave's amplitude A is small (kA << 1), and the fluid's depth d is large (kd  >> 1).  

 D (4 points). Calculate the waves’ dispersion relation (k), and find their phase and group 
velocities. 

 E (4 points). Modify these results (including the formulas for qx and qy) for a fluid of a finite 
depth d ~ 1/k (but still d >> A), and analyze the resulting dispersion relation. 

 F (2 points). Qualitatively, how would these dispersion relations be affected by surface tension?   

                                                 
1 Traditionally, they were called "gravity waves", but nowadays this term should probably be reserved for the 
recently observed "real" gravity waves in free space, described by the general relativity. 

x

y

 g

k

d



Solution 

 

 A. Generally, the function v(r, t) has to satisfy the (kinematic) continuity equation 

     vjj 





with  ,0
t

,    (1) 

and the (dynamic) Euler equation - essentially, the 2nd Newton law:1 

       fvv
v





 



P
t

 ,     (2) 

where P = P(r, t) is pressure, and f is the distributed external force by unit volume, in our current case 
equal to g. 

 

 B. For an incompressible fluid ( = const), the continuity equation (1) is reduced to 

      0 v ,      (3) 

while for small velocities (v  0), the term (v)v in the Euler equation (2) is negligible in comparison 
with the partial derivative v/t, so that the equation is reduced to  

               yP
t

g
v  



 .     (4) 

 

 C-D. Using the suggested relations for particle displacements to calculate their velocities, 

           tkxAevtkxAev kyky
yx   cos,sin ,    

we see that Eq. (3) is indeed identically satisfied: 

    0coscos 







 tkxAetkxAe
y

v

x

v kykyyx v . 

 The component of the vector Eq. (4) that is normal to the fluid's surface may also be always 
satisfied with a proper pressure profile (which has no back effect on the incompressible fluid's motion). 
However, the pressure at the fluid's surface has to be equal to the external (say, atmospheric) pressure, 
and hence cannot have a gradient’s component directed along the surface. Generally, the surface 
position ys(x, t) has to be found from the transcendent equation2 

   tkxAetqtxy s
ys

ky  cos,),( r , 

but due to the condition A << 1/k, we may use its linear approximation: 

                                                 
1 The expression in the square brackets of Eq. (2) is just the particle's acceleration, as observed in the lab frame, 
and is called the “convective”, or “advective”, or “material”, or “Lagrangian”  derivative of the velocity. 
2 Here, for convenience, the wave-free fluid level is taken for y = 0 - see Fig. above. 



    1sin that  so,cos),( 



 tkxkA
x

y
tkxAtxy s

s  . 

As a result, the tangential component of Eq. (4) at the surface yields        

      tkxgkA
x

y
gtkxA s  



 sinsin2 .  

This relation is satisfied for all x and t, provided that  

                         2/12   i.e., gkgk   .    (5) 

 This is the requested dispersion relation. For the phase and group velocities it yields 

phase

2/1

group

2/1

phase 2

1

2

1
, u

k

g

k
u

k

g

k
u 




















. 

Note that these waves do not have an acoustic branch (with   k) for any range of frequencies.  

 

 E. At the bottom of a finite layer (in Fig. above, for y = -d), the vertical displacements of the 
fluid particles should vanish: qy = 0. Evidently, this effect may be taken into account by generalizing the 
above solution as  

   tkx
kd

dyk
Aqtkx

kd

dyk
Aq yx  





 sin

sinh

)(sinh
,cos

sinh

)(sinh
. 

Repeating the above calculations, we see that this is indeed a solution of Eqs. (3)-(4), provided that Eq. 
(5) is generalized as 

kdgk tanh2  . 

Note that now for low frequencies (kd << 1, i.e.  << (g/h)1/2) there is acoustic branch, with 

    2/1
groupphase

2/1  with  i.e., gduukgd  . 

For the Earth’s oceans (with d ~ 10 km, g  10 m/s2), this velocity is very high: u ~ 300 m/s, of the order 
of the speed of sound in air.  

 

 F. The surface tension “tries” to keep any surface as flat as possible (to minimize its area A, and 
hence the surface energy Us = A, positive for all mechanically stable fluids). Hence we may guess that 
for a given wave number k , it increases the wave frequency. Indeed, a straightforward analysis (which 
was not required in this exam) yields the following generalization of Eq. (5): 

gk
k

gk 



3
2 . 



Electromagnetism 1

Radiation during a collision

A classical non-relativistic charged particle of charge q and mass m is incident upon a
repulsive mechanical potential U(r)

U(r) =
A
r2
,

so that the force exerted on the particle is F = −∇U(r). The particle moves along the
x-axis and strikes the central potential head on as shown below. The incident kinetic energy
(i.e. the kinetic energy of the particle far from the origin) is K.

origin

(a) (2 points) Determine the particle’s classical trajectory x(t). Adjust the integration
constants so that the particle reaches its distance of closest approach at t = 0. Check
that for late times x(t) approaches vo t with the phyically correct value of vo. Check
that for small times x(t) behaves as x(t) ' xo + 1

2
aot

2 with the physically correct value
of xo.

(b) (4 points) Use dimensional reasoning and the Larmour formula to estimate the total
energy lost to electromagnetic radiation during the collision. How does the energy lost
scale with the incident energy?

(c) (2 points) Calculate quantitatively the energy lost to radiation during the collision
processes. Some relevant integrals are given at the end of this problem.

Now consider a detector placed along the y-axis far from the origin as shown below. The
front face of the detector has an area of πR2, and the detector is placed at a distance L from
the origin with L� R.

origin

detector

L

⇡R2
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(d) (2 points) What is the direction of polarization of the observed light in the detector?
Explain.

(e) (2 points) What is the typical frequency of the photons that are emitted at 90o?
Explain.

(f) (5 points) For the detector described above, determine the average number of photons
received by the detector per unit frequency:

dN

dω
. (1)

Some relevant integrals are given at the end of the problem.

(g) (3 points) We have determined the photon radiation spectrum using classical electro-
dynamics. For what values of the parameters A and K is this approximation justified?
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Useful integrals and formulas for EM1:

1. For positive integer n, we note the integrals

∫ ∞

−∞
du

1

(1 + u2)n
= π cn (2)

where

c1, c2, c3, c4, . . . = 1,
1

2
,
3

8
,

5

16
, . . . (3)

2. For positive integers n, we note the integrals

∫ ∞

0

du
cos(xu)

(u2 + 1)n+
1
2

= cn x
nKn(x) (4)

where

c1, c2, c3, c4, . . . = 1,
1

3
,

1

15
,

1

105
, . . . (5)

and Kn(x) are the modified Bessel functions. The RHS of Eq. (4) is illustrated below.

 0
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 0.3

 0.4
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 0.7

 0.8
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 1
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c
n
 x

n
 K

n
(x

)

x

n=1
n=2
n=3
n=4
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Solution

(a) It is convenient to use dimensionless variables. The dimensional constants for the clas-
sical problem are

K,A,m , (6)

from which we can select a unit for meters, seconds, and kilograms. The unit of velocity can
be taken as

K =
1

2
mv2

o =⇒ vo ≡
√

2K

m
, (7)

which phyiscally is the velocity as r →∞. The unit of meters is

K =
A
x2
o

=⇒ xo ≡
√
A
K
, (8)

which (by energy conservation) is the distance of closest approach2. The unit of seconds is
therefore

to ≡
xo
vo
≡
√

(mA)/2

K
. (9)

We need to solve for the trajectory x(t). The velocity is given by the first integral (i.e.
enegy conservation)

1

2
mv2(t) +

A
x(t)2

= K . (10)

Switching to dimensionless variables,

v̄ =
v

vo
, x̄ =

x(t)

xo
, (11)

the dimensionless form of energy conservation reads

v̄2 +
1

x̄2
= 1 . (12)

Solving Eq. (12) for v̄ we have

v̄ =

√
1− 1

x̄2
. (13)

Finally, we write v̄ = dx̄/dt̄ and integrate Eq. (13) to find

√
x̄2 − 1 = t̄+ constant . (14)

2Note that this is the distance of closest approach in the absence of energy loss due to radiation. In
the limit of classical electrodynamics one first determines the trajectories of charged particles (ignoring the
radiation), and then soves for the subsequent radiation. This is in effect ignoring radiations back reaction.
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We choose the integration constant to be zero, so that at t = 0 the trajectory is at the
turning point x̄ = 1 and find

√
x̄2 − 1 = t̄ or x̄(t̄) =

√
1 + t̄2 (15)

Restoring units, the trajectory is

x(t) =

√
2Kt2

m
+
A
K
. (16)

It is easy to check that this trajectory satisfies the appropriate limits.

(b) The energy lost to radiation is

Eloss =

∫ ∞

−∞
dt
q2

4π

2a2

3c3
(17)

We need to use dimensional reasoning to estimate a and the time interval over which the
acceleration is active.

Using the dimensional analysis of the previous section, the integral is of order

∫
dt a2 ∼ v2

o

to
. (18)

and thus

Eloss ∼
q2

4πto

v2
o

c3
∼ q2K2

m
√
Amc3

. (19)

The energy lost scales as the velocity to the fourth power, K2 ∝ v4
o .

(c) We next evaluate the integral in Eq. (17) precisely. For reference we record the acceler-
ation:

a(t) =
vo
to

d2x̄

dt̄2
=
vo
to

1

(1 + t̄2)3/2
. (20)

The relevant integral is

∫ ∞

−∞
dt a2 =

v2
o

to

∫ ∞

−∞
dt̄

(
d2x̄

dt̄2

)2

=
v2
o

to

∫ ∞

−∞

dt̄

(1 + t̄2)3
=
v2
o

to

(
3π

8

)
. (21)

The energy lost is therefore

Eloss =
q2

4π

2

3c3

∫ ∞

−∞
dt a2 , (22)

=
q2

4πto

v2
o

c3

(π
4

)
. (23)
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(d) The radiation electric field is

Erad(t, r) =
q

4πrc2
n× n× a(te) , (24)

where the emission time is
te = t− r

c
. (25)

For the problem at hand a = a(t)x̂ and thus

n× n× x̂ = −x̂ . (26)

So the radiation field is polarized in the −x̂ direction.

(e) The typical frequency is given by dimension reasoning

ωo ∼
1

to
(27)

(f) To determine the yield of photons, we Fourier transform the radiation field and square
this Fourier transform. The Fourier transform of the electric field (in the −x̂ direction)
reaching the detector

Erad(ω, r) =
q

4πrc2

∫ ∞

−∞
dte−iωta(te) . (28)

After switching to variables to integrate over the emission time,

eiωt = eiω(te+r/c) = eikreiωte , k ≡ ω

c
, (29)

the integral reads

Erad(ω, r) =
q eikr

4πrc2

∫ ∞

−∞
dtee

−iωtea(te) . (30)

Thus, after switching to dimensionless variables

ω̄ = ωto t̄e =
te
to
, (31)

Thus we find

Erad(ω, r) =
q eikr

4πrc2
vo

∫ ∞

−∞
dt̄ee

−iω̄t̄e 1

(1 + t̄2e)
3/2

, (32)

=
q eikr

4πrc2
vo [2ω̄K1(ω̄)] . (33)

Squaring the radiation field, we find the yield of photons

~ω
dN

dωdΩ
=
c

π
|rErad(ω, r)|2 . (34)
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Assembling the ingredients, and expressing the result in terms of the fine structure constant
α = q2/(4π~c) = 1/137, we find

dN

dωdΩ
=

α

4π2

(vo
c

)2 1

ω
[2ω̄K1(ω̄)]2 . (35)

The solid angle is ∆Ω = πR2/L2, and thus we find

dN

dω
=
πR2

L2

α

4π2

(vo
c

)2 1

ω
[2ω̄K1(ω̄)]2 . (36)

In the low frequency limit the term in brackets approaches

[2ω̄K1(ω̄)]2 → 22 , (37)

and thus in low frequency limit we find

dN

dωdΩ
=

α

4π2

(
2vo
c

)2
1

ω
. (38)

Notice that this expression is independent of A, and is in fact indentical to the radiation for
impulsive scattering where v(t) changes instantaneously:

vimpulse(t) =

{
−vo x̂ t < 0

vo x̂ t > 0
. (39)

Indeed, in the low frequency limit the radiated waves do not have the temporal resolution
to resolve events of order the collision time to. Thus, as far as the radiation of these low
frequency waves is concerned, the collision happens instantaneously.

(g) To determine the validity of the classical approximation, we note that the typcal fre-
quency is 1/to. The energy of the emitted photon has to be small compared to the kinetic
energy of the particle for the classical approximation to be valid

~ω � K . (40)

With 1
to

= K√
(mA)/2

, we find

2~2

mA � 1 . (41)
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Electromagnetism 2

A cylindrical shell in a magnetic field

Consider an infinitely long cylindrical ohmic shell of conductivity σ and radius a. The
walls have thickness ∆, with ∆� a. The shell is placed in a uniform, but time dependent,
external magnetic field Hext(t), which is directed along the z-axis as shown below. The goal
of this problem is to determine the magnetic field inside the cylinder. The thickness ∆ is
sufficiently small that the induced current density may be considered (spatially) constant
inside the shell wall in parts (a)–(c).

y

x
z

Hext(t) Hin(t) =?

part (e)

(a) (1 point) For a specified surface current K = K(t) φ̂, how is the magnetic field inside
the shell related to the external magnetic field.

(b) (5 points) Determine a differential equation for the evolution of the magnetic field
inside the cylinder. Check that your equation is dimensionfully correct.

(c) (5 points) For a sinusoidal external field, Hext(t) = Hoe
−iωt, determine the amplitude

of the magnetic field’s sinusoidal oscillations inside the cylinder. Make a graph of the
ratio of the interior to exterior amplitudes as a function of frequency.

(d) (4 points) At higher frequency the induced current changes appreciably over the wall
thickness ∆. Estimate the frequency where this (neglected) dynamics becomes impor-
tant.

(e) (5 points) Determine the amplitude of magnetic field’s sinusoidal oscillations inside
the cylinder without assuming that the induced current is constant within the walls.
Check that for small ∆ you reproduce the results of part (c).

Hint: Magnify and analyze the highlighted region shown in the figure to relate the
interior and exterior. Treat the walls of the cylinder as having infinite transverse (y
and z) extent, so that all fields in the walls are functions x only.
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Solution:

(a) First we note that for a specified current

n× (Hext −Hin) =
K

c
(1)

Taking n = ρ̂, H = H ẑ, K = K(t) φ̂, and noting that ρ̂× ẑ = −φ̂ we have

Hext(t)−Hin(t) = −K(t)

c
. (2)

One can (and should) also reason the signs in this equation using the right hand rule. Either
way

Hin(t) = Hext(t) +
K(t)

c
. (3)

(b) The changing flux inside the cylinder induces a voltage. This voltage produces a current
K(t) given by Ohms Law. Given the current we can relate the internal and external magnetic
fields through Eq. (3).

The voltage induced is

−
∮
E · d` =

1

c
∂t

∫
B · da . (4)

For the geometry at hand

− Eφ(2πa) =
1

c
Ḣin(t)πa2 , (5)

and thus
E = − a

2c
Ḣin . (6)

From Ohm’s Law, J = σE, and the surface current K = J∆, we find

K = −a∆σ

2c
Ḣin . (7)

Using the boundary conditions in Eq. (3) we have finally

a∆σ

2c2
Ḣin(t) +Hin(t) = Hext(t) . (8)

We note that since [σ] = s−1 it is easily seen that

τm ≡
a∆σ

2c2
, (9)

has units of time. To make sense of these numbers, note that magnetic diffusion coefficient
for copper is of order

D ≡ c2

σ
∼ cm2

millisec
. (10)

Thus the time constant of this equation is of order

τm ∼ millsec

(
cm2

a∆

)
. (11)
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(c) Solving Eq. (8) for a sinusoidal steady state, Hext(t) = Hoe
−iωt and Hin(t) = Hine

−iωt,
we have

− iωτmHin +Hin = Ho . (12)

Thus, Hin = Ho/(1− iωτm), and the oscillation amplitude is

|Hin| =
|Ho|√

1 + (ωτm)2
. (13)

(d) At higher frequency the skin depth becomes important. The skin depth is of order

δ(ω) ∼
√
D

ω
∼
√

c2

σω
. (14)

The dynamics changes when the skin depth is comparable to ∆

δ(ω) ∼ ∆ . (15)

Solving for ω, we find that the dynamics changes when

ω ∼ c2

σ∆2
. (16)

So, for a magnetic diffusion coefficient of order Eq. (10), we find

ω ∼ kHz

(
cm2

∆2

)
. (17)

(e) Now we solve more precisely for the fields inside the walls. The magnetic fields obey the
diffusion equation. This follows from Ampere’s Law

∇×B =
σ

c
E , (18)

and Faraday’s Law

−∇×E =
1

c
∂tB . (19)

Indeed, taking the curl of Ampere’s Law, using ∇×∇×B = ∇(∇·B)−∇2B and ∇·B = 0,
we find the magnetic diffusion equation

D∇2B = ∂tB , D ≡ c2

σ
. (20)

Since the wall thickness is very small compared to the radius, ∆� a, we can approximate
the geometry as one dimensional, up to correction of order ∆/a. the radial coordinate is
in the x direction, and the φ direction (the direction of the electric field and current) is
in the y direction. We choose x = 0 to be the inside wall of the cylindrical shell, so that
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x = ∆ is the outside wall of the cylindrical shell. The diffusion equation for sinusoidal field,
B(t,x) = B(x)e−iωt ẑ, reads

∂2
xB(x) = −i ω

D
B(x) . (21)

The electric field is determined from Eq. (18)

− c

σ

dB

dx
(x) = Ey(x) . (22)

Solving Eq. (21) we have
B(x) = C0e

iκx + C1e
−iκx (23)

where

κ =

√
iω

D
=

1 + i√
2

√
ω

D
. (24)

Equivalently, we will use
B(x) = C0 cos(κx) + C1 sin(κx) , (25)

since is slightly simpler to analyze the boundary conditions in this form.

We have boundary conditions at x = 0

B(0) = Hin (26)

and this sets C0 = Hin. The electric field at the x = 0 boundary is given by Eq. (6)

Ey(0) =
+iωa

2c
Hin , (27)

and this (through Eq. (22)) sets the derivative of B(x) at x = 0

B′(0) = −κ
2a

2
Hin , (28)

fixing the coefficient C1 = (κa)/2. To summarize

B(x) = Hin

[
cos(κx)− κa

2
sin(κx)

]
. (29)

Finally since B(∆) = Hext we find

Hin =
Hext

cos(κ∆)− κa
2

sin(κ∆)
, (30)

and thus the amplitude is

Hin =
Hext

| cos(κ∆)− a
2∆
κ∆ sin(κ∆)| . (31)

We can check that when κ∆� 1

|Hin| '
|Hext|
|1− iωτm|

=
Hext√

1 + (ωτm)2
, (32)
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Figure 1: The field in the center divided by the external field. See text for further explana-
tion

where we have recognized that
κ2a∆

2
= iωτm . (33)

We have assumed that a/∆� 1. Thus for (κ∆)2 � ∆/a we can neglect the cos(κ∆) term
in comparison to the sin(κ∆) term in the denominator of Eq. (31). For (κ∆)2 ∼ ∆/a we may
approximate cos(κ∆) ' 1 up to correction of order a/∆. Thus in a uniform approximation
(i.e. an approximation which is valid for all κ∆) we have

|Hin| =
Hext

|1− iωτm sin(κ∆)
κ∆
|
, (34)

which is our final result.

Taking a/∆ = 10 for instance, we plot the full result (Eq. (34)) and its low frequency
approximation (Eq. (13)) in Fig. 1. At large frequency the skin-depth leads to exponential
suppression, rather than the 1/ω behaviour predicted by the low frequency approximation.

25



Electromagnetism 3

Angular momentum in a wave packet

Consider a wave packet with a transverse profile Eo(x, y) propagating in the z direction
(see eq. (3) for a complete specification of E and B). Although the precise form of Eo(x, y)
is not needed below, for definiteness you may assume that the wave packet has a Gaussian
profile for

Eo(x, y) = Ae−x
2+y2

4σ2 , (1)

and is infinitely broad in the z direction. The following integrals may be useful:
∫ ∞

−∞
du e−αu

2

=

√
π

α
, (2a)

∫ ∞

−∞
du e−αu

2

eiku =
√
πe−

k2

4α . (2b)

(a) (2 points) When all derivatives of Eo(x, y) are neglected, show that3

E(0)(t, r) =Eo(x, y) ei(kz−ωt)
(x̂+ iŷ)√

2
, (3a)

B(0)(t, r) =ẑ ×E(0) , (3b)

is a solution to the Maxwell equations for ω = ck.

(b) (3 points) Calculate the time averaged energy per length in the wave packet, 〈U〉.
(c) (5 points) When the derivatives of Eo(x, y) are not neglected, Eq. (3) is not a solution

to the Maxwell equations. Determine the corrections to E(0) and B(0) to first order in
gradients for kσ � 1.

Hint: try a solution for E (and analogously for B) of the form

E(t, r) = E(0) + E(1)(x, y)ei(kz−ωt)ẑ , (4)

and determine the correction E(1)(x, y) in terms of Eo(x, y) and its derivatives.

(d) (4 points) Write the solution to part (c) as a linear superposition of the plane wave
solutions to the Maxwell equations. First use the superposition to qualitatively explain
the correction to the electric field (proportional to ẑ), and then use the superposition
to precisely reproduce this correction.

(e) (4 points) Calculate the z-component of the time averaged angular momentum per
length in the wave packet, 〈Lz〉, to the lowest non-trivial order in kσ.

(f) (2 points) Determine the ratio 〈Lz〉 / 〈U〉. Interpret the result using photons.

3This is Gaussian or Heaviside-Lorentz units. In SI units the magnetic field reads, B(0) = 1
Z0
ẑ × E(0)

where Z0 =
√

µ0

ε0
' 376 Ohms is the vacuum impedance.
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Solution

(a) The Maxwell equations in free space read

∇ ·E =0 , (5a)

−1

c
∂tE +∇×B =0 , (5b)

∇ ·B =0 , (5c)

−1

c
∂tB −∇×E =0 . (5d)

Substituting

E =Eoe
i(kz−ωt)ε+ , (6a)

B =Eoe
i(kz−ωt)ẑ × ε+ , (6b)

with Eo constant, gives the conditions

ẑ · ε+ =0 , (7a)

iω

c
ε+ + ikẑ × (ẑ × ε+) =0 , (7b)

ẑ · (ẑ × ε+) =0 , (7c)

iω

c
(ẑ × ε+)− ik(ẑ × ε+) =0 . (7d)

These equations are all clearly satisfied if ω = ck and ε+ = (x̂+ iŷ)/
√

2.

(b) The energy per length is

U =

∫
dx

∫
dy

1

2

〈
E2 +B2

〉
, (8)

=

∫
dx

∫
dy

1

4

(
|E|2 + |B|2

)
(9)

=
1

2

∫
dx

∫
dy (Eo(x, y))2 , (10)

=A2(πσ2) . (11)

We used the fact that
|x̂± iŷ|2 = 2 |ẑ × (x̂± iŷ)|2 = 2 (12)

We also used the “time-averaging theorem”

〈A(t)B(t)〉 ≡
〈
Re[Ae−iωt] Re[Be−iωt]

〉
=

1

2
Re[AB∗] (13)

(c) We need to satisfy

∇ ·E =0 . (14)
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Substituting the suggested ansatz, this equation reads

1√
2
∂xEo(x, y) +

i√
2
∂yEo(x, y) + ikE(1)(x, y) = 0 , (15)

and thus

E(1) =
i√
2k

(
∂Eo
∂x

+ i
∂Eo
∂y

)
. (16)

For the magnetic field, we have

B(0) = Eo
(−ix̂+ ŷ)√

2
ei(kz−ωt) . (17)

So since ∇ ·B = 0,
−i√

2
∂xEo +

1√
2
∂yEo + ikB(1) = 0 , (18)

we find

B(1) =
i√
2k

(
−i∂Eo

∂x
+
∂Eo
∂y

)
. (19)

(d) A general superposition (which is a pure plane in the z-direction) can be written

E(t, r) =
∑

s=±

∫
dkxdky
(2π)2

Eo(k, s)e
i(kxx+kyy+kzz−ω(k)t)εs(k) , (20)

where

k · εs(k) =0 , (21)

εs(k) · ε∗s(k) =1 , (22)

and of course
ω(k) = c

√
k2
x + k2

y + k2
z . (23)

The superposition we described above has

kz � kx, ky ∼
1

σ
,

and is nearly circularly polarized. Qualitatively it is easy to see the need for a longitudinal
correction to E(0). The wave packet is a super-position of Fourier modes, one of which
is shown in Fig. 1. The electric field points along the polarization vector, ε(k). Sine the
polarization vector is perpendicular to k, it points partly in the z direction when kx and ky
are non-zero. Thus, there must be a component of the electric field in the z-direction. We
will now show how this reasoning quantitatively reproduces part (b).

First we note that to linear order in k⊥/kz

k =
√
k2
⊥ + k2

z ' kz , (24)
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x̂

kz
k

ǫ(k)

kx
ẑ

Figure 1: A typical Fourier mode in the wave packet and its polarization vector ε(k).

implying that ω = ck ' ckz are all approximately constant, and may be brought out of the
integral in Eq. (20). We next decompose k and ε into components transverse and parallel
to ẑ

k ≡~k⊥ + kzẑ , (25)

ε ≡~ε⊥ + εzẑ . (26)

Intuition from the plane wave solutions says that |~ε⊥| � εz. Indeed, from the orthogonality
condition

~k⊥ · ~ε⊥ + kzεz = 0 (27)

we find that

−
~k⊥ · ~ε⊥
k

= εz . (28)

The distribution is therefore

E(t, r) = ei(kz−ωt)
∫
dkxdky
(2π)2

Eo(kx, ky)e
i(kxx+kyy)

(
~ε⊥ −

~k⊥ · ~ε⊥
k

ẑ

)
. (29)

Taking ~ε⊥ = (x̂+ iŷ)/
√

2, and using the properties of Fourier transforms, i.e.

ikj︸︷︷︸
Fourier space

↔ ∂j︸︷︷︸
coordinate space

, (30)

yields

E(t, r) = Eo(x, y)
(x̂+ iŷ)√

2
+

i√
2k

(∂xEo(x, y) + i∂yEo(x, y)) ẑ . (31)

Clearly we want
Eo(x, y) = Ae−(x2+y2)/(4σ2) , (32)

29



and thus

Eo(kx, ky) =

∫
dx dy Eo(x, y) e−ikxx−ikyy = A (4πσ2) e−σ

2(k2
x+k2

y) , (33)

fully specifying the fourier decomposition in Eq. (29).

(e) The time averaged angular momentum per length is

L =
1

c

∫
dx

∫
dy 〈r × (E ×B)〉 . (34)

The integrand of the z-component of the angular momentum involves

ẑ · (r × (E ×B) = (ẑ ·E)(r ·B)− (r ·E)(ẑ ·B) . (35)

We see that because of the ẑ ·E and ẑ ·B terms the angular momentum necessarily involves
the first correction, E(1) and B(1). The time averaged angular momentum involves

〈ẑ · (r × (E ×B))〉 =
1

2
Re[(ẑ ·E)(r ·B)∗]− 1

2
Re[(r ·E)(ẑ ·B)∗] . (36)

Straightforward steps yield

Re[(ẑ ·E)(r ·B)∗] =Re[(ẑ ·E(1))(r ·B0)∗] , (37)

=Re[
1

2ik
(∂xEo + i∂yEo) (−ixEo + yEo)

∗] , (38)

=
1

2k
(xEo∂xEo + yEo∂yEo) , (39)

=
1

4k

(
x∂xE

2
o + y∂yE

2
o

)
. (40)

Similarly

Re[(r ·E)(ẑ ·B)∗] =Re[(r ·E(0))(ẑ ·B1)∗] , (41)

=Re

[
(xEo + iyEo)

1

2k
(∂xEo + i∂yEo)

∗
]
, (42)

=
1

2k
(xEo∂xEo + yEo∂yEo) , (43)

=
1

4k

(
x∂xE

2
o + y∂yE

2
o

)
. (44)

Thus

〈Lz〉 =
1

c

∫
dx

∫
dy 〈ẑ · (r × (E ×B))〉 , (45)

=

∫
dx

∫
dy

1

4ck

(
x∂xE

2
o + y∂yE

2
o

)
. (46)

Integrating by parts we find

〈Lz〉 =
1

2ck

∫
dx

∫
dy E2

o , (47)

=
1

ck
A2(πσ2) . (48)
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(f) For the required ratio we find
〈Lz〉
〈U〉 =

1

ω
. (49)

This is consistent with our quantum expectation. Each photon of definite frequency ω and
wave number k ' ω

c
ẑ carries energy E = ~ω and spin angular momentum ~:

〈Lz〉
〈U〉 =

~
~ω

. (50)
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Quantum Mechanics 1

A charged massive spinless particle in a magnetic field

Consider the spinless particle with charge e and mass m in a constant magnetic field B
directed along the z-axis

1. (4 points) Write down the non-relativistic Hamiltonian describing this problem, and
find the operator of particle velocity v̂.

2. (4 points) Establish the commutation relations for the spatial components of this
operator [v̂i, v̂j], and for [v̂i, x̂j], where x̂j is the coordinate operator. Explain physically
what these commutators imply about measurements of the system.

3. (8 points) (i) Write down the Schrödinger equation describing the problem and find
the energy spectrum. (ii) Using the Schrödinger equation from (i), write down the wave
function of the lowest Landau level explicitly. (iii) Determine the degeneracy of this energy
level for a system of area A = LxLy perpendicular to the magnetic field.

4. (4 points) Evaluate the commutator of the angular momentum component l̂z and
velocity component v̂z. Provide a physical interpretation of the result.
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Solution

1. We choose ~A = (−By, 0, 0) so that ~∇× ~A = Bẑ. The Hamiltonian is

H =

(
~p− e

c
~A
)2

2m
=

(
px + e

c
By
)2

2m
+

p2
y

2m
+

p2
z

2m
(51)

The operator of particle velocity is

~v =
1

m

(
~p− e

c
~A
)

(52)

2. The commutators are (ω = eB/mc)

[vi, vj] =
i~ω
m

εijz

[vi, xj] =
−i~
m

δij (53)

The first commutator indicates that the pair vx, vy cannot be measured simultaneously, and
the second commutator indicates that all the pairs vi, xi cannot be measured simultaneously,
i.e.

∆vx∆vy ≥
1

2

~ω
m

∆vx∆x ≥
~

2m
etc. (54)

3. The Shrodinger equation for the stationary states Ψ(x, y, z) = e−iEt/~eikxx+ikzzϕ(y) is
(ȳ = c~kx/eB)

(
− ~2

2m

d2

dy2
+

1

2
mω2(y + ȳ)2 +

~2k2
z

2m

)
ϕ(y) = Eϕ(y) (55)

The spectrum and wavefunctions are (a = (~/mω)
1
2 )

E(n, kz) =

(
n+

1

2

)
~ω +

~2k2
z

2m

Ψ(x, y, z) =
eikxx+ikzz

2π

e−
1
2

(y−ȳ)2

a2

(2a
√
π)

1
2

(56)
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with degeneracy d = BA/ch/e where A is the area of the plane transverse to the magnetic
field.

4. The angular momentum Lz is given by

Lz = xpy − ypx = m(xvy − yvx) +
eB

c
y2 → m(xvy − yvx) +

eB

2c
(x2 + y2) (57)

where the rightmost equation corresponds to the cylindrical gauge ~A = (− B
2y
, B

2x
, 0) for

manifest rotational symmetry in the plane. Now, we have

[Lz, vz] = mεzij [xivj, vz] = ie~
(
~x · ~B − zB

)
= 0 (58)

which also shows that [Lz, H] = 0. So Lz is conserved.
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Quantum Mechanics 2

Parity violation in atomic hydrogen

This problem is about the weak interactions, but its solution requires only non-relativistic
quantum mechanics.

In atomic hydrogen, weak currents associated with the exchange of Z0 bosons (mZ =
92.6 GeV/c2) give rise to an additional interaction between the electron and the proton of
the form

Hw = βw[~s · ~p δ3(~r) + δ3(~r) ~s · ~p] with βw ≈ 1.4× 10−8 m4/Js (59)

Here, ~s and ~p are the spin and the momentum operators of the bound electron, and the
proton is assumed to be fixed at ~r = 0. The weak interaction leads to a modification of
selection rules for electric-dipole transitions, and may thus e.g. be characterized via optical
spectroscopy.

(a) (5 points) (i) Assuming that Hw has no effect, calculate the lifetime of both the 2p(m =
0) and the 2s states due to spontaneous decay with an electric-dipole approximation.
(ii) Use your result to estimate the lifetimes of these states in seconds. [Hint: The
decay rate, or Einstein A coefficient, is A = ω3

0|D|2/3πε0~c3, where D is the electric
dipole moment and ~ω0 the energy difference. A list of hydrogen wave functions and
useful integrals is given at the end of this problem.]

(b) (2 points) Estimate the spatial range of the weak interaction and compare it to the
Bohr radius of the bound electron. In view of this result, how justified is the use of
the δ functional in the expression for Hw?

(c) (9 points) (i) Using symmetry arguments, show that Hw violates parity. (ii) Give
a rough estimate for the (leading-order) modification to the lifetime of an electron
in 2s [Hint: the 2s1/2 and 2p1/2 states are separated in energy by the Lamb shift,
∆E ' 4 × 10−6 eV and mix; very crudely assume ~s · ~p ∼ (~/2)pr and ignore angular
dependencies]

(d) (4 points) Determine whether Hw can produce a permanent electric-dipole moment in
the 2s state. If so, what would this imply for time-reversal symmetry?
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QM2: Wave-functions and integrals

• The hydrogen wave functions read:

ψ1s(r, θ, φ) ∝ e−r/a0 (60a)

ψ2s(r, θ, φ) ∝ (2− r/a0)e−r/2a0 (60b)

ψ2p,m=±1(r, θ, φ) ∝ r

a0

e−r/2a0 sin θe±iφ (60c)

ψ2p,m=0(r, θ, φ) ∝ r

a0

e−r/2a0 cos θ (60d)

• A relevant integral ∫ ∞

0

dx xne−x = n! (61)
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Solution

(a) The decay rate is given by the Einstein-A coefficient, where ~D = 〈ψf | e~r |ψi〉. Since we
are in n = 2, decay is to the 1S state.

(1) To evaluate ~D between 2P (m = 0) and 2S, use the (well-known) hydrogen wave-
functions

ψ210(~r) = Λ2
r

a0

e−r/2a cos θ; ψ100(~r) = Λ1e
−r/a0 (62)

with Λ1 = (πa3
0)−1/2 and Λ2 = (32πa3

0)−1/2. Switching to spherical coordinates (x =
r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ), it is clear that Dx,y = 0 since both
wavefunctions are even in φ. This leaves the calculation of Dz:

Dz =

∫
d3r ψ210(~r) er cos θ ψ100(~r) (63)

=
e

a0

Λ1Λ2
4π

3

∫ ∞

0

dr r4 e−kr, where κ =
3

2a0

(64)

=
e

a0

Λ1Λ2
4π

3

∂

∂κ4

∫ ∞

0

dr e−κr (65)

=
e

a0

Λ1Λ2
4π

3

4!

κ5
=

128
√

2

243
ea0 ≈ 0.74ea0 (66)

For the calculation of A, the transition frequency ω0 between 2P and 1S is needed.
Using the (well-known) Rydberg formula ~ω0 = E1(1/22 − 1/12) yields ω0 = 2π ×
2.47× 1015 Hz. Plugging D and ω0 into the expression for the A coefficient then yields
the decay rate

Γ2P1S = 6.26× 108s−1 =
1

1.6 ns
(67)

(2) On the other hand, since ψ200 has no angular dependence (i.e. is even), ~D for decay
from 2S to 1S (also even) is zero, such that there is no spontaneous optical decay from
2S,

Γ2S1S = 0. (68)

(b) First use the Heisenberg uncertainty ∆E∆t ∼ ~, where ∆E = mZc
2 is the rest energy

of the Z0 boson, to determine the lifetime ∆t. Assuming propagation at c, this gives
the range of the Z0

λz ∼
c~

mZc2
=

~
mZc

, (69)

which is just its (reduced) Compton wavelength. Comparing λZ to the Bohr radius of
the bound electron

a0 =
1

α

~
mec

(70)

yields
λz
a0

= α
me

mz

=
1

137

5.1× 105

9.3× 1010
= 4× 10−8, (71)
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such that the use of the δ function in Hw for a point-like interaction at the origin is
certainly very well justified.

(c) (1) Parity is violated since Hw ∝ ~s·~p. Spin ~s is an axial vector that does not change sign
under P , while ~p is a polar vector that changes sign. In other words, P †HwP = −Hw,
or [Hw, P ] = 2HwP 6= 0.

(2) The weak interaction Hw mixes the eigenstates of the hydrogen atom. To lowest
order this leads to a perturbation of the 2S state

|2S〉′ = |2S〉+
〈2P |Hw |2S〉

∆E
|2P 〉 (72)

where ∆E is the differential Lamb shift. Evaluation of the matrix element yields

〈2P |Hw |2S〉 = βw
~
2

[
〈2P | p̂rδ3(~r) |2S〉+ 〈2P | δ3(~r)p̂r |2S〉

]
(73)

= βw
~
2

[
〈2P | ~

i

∂

∂r
δ3(~r) |2S〉+ 0

]
(74)

= −iβw~
2

2

[
∂ψ210

∂r

]

r=0

ψ200(0) (75)

= −iβw~
2

2
× Λ2

a0

× 2(2a0)−3/2 (76)

= −i βw~2

16
√
πa4

0

(77)

such that the 2P state is mixed in with the amplitude

∣∣∣∣
〈2P |Hw |2S〉

∆E

∣∣∣∣ =
7× 10−37J

4× 10−6 eV
= 1× 10−12 (78)

Perturbations of the 1S state due to Hw are negligible since the energy differences
involved are many orders of magnitude higher.

The rate for electric-dipole transitions between 2P and 1S was already calculated in
(a); therefore the decay rate from |2S〉′ is now 4

Γ2S′1S = 1× 10−12 × Γ2P1S = 6× 10−4 s−1 =
1

1.7× 103 s
(79)

(d) A permanent electric dipole in the 2s state (and similarly in any other state) would
require 〈2S ′| z |2S ′〉 6= 0. However, based on the results in (c), the amplitude,

〈2P |Hw |2S〉 /∆E = iA (80)

4This is exceedingly hard to measure. Experiments with atomic Cesium in which the effect is amplified
by an order of magnitude compared to hydrogen, employed interference with a Stark-induced transition
amplitude to detect the still very small transition amplitude [Wood et al, Science 275, 1759 (1997)].
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is imaginary. This means that

〈2S ′| z |2S ′〉 = [〈2S| − iA 〈2P |] z [|2S〉+ iA |2P 〉] (81)

= 〈2S| z |2S〉+ iA 〈2S| z |2P 〉 − iA 〈2P | z |2S〉+ A2 〈2P | z |2P 〉 (82)

= 0 + 〈2S| z |2P 〉 (iA− iA) + 0 (83)

= 0 (84)

If there were a permanent electric dipole moment, it would break time-reversal symme-
try, since it would be unchanged under time reversal, other than angular momentum.
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Quantum Mechanics 3

Scattering from a spherical shell

Consider a particle of mass m and energy E scattering on a 3-dimensional and spherically
symmetric shell potential V (r) as described by the Hamiltonian

H =
~p 2

2m
+ V (r) =

~p 2

2m
+ α δ(r − r0) (1)

a. (5 points) Determine the stationary S-state wavefunction for E > 0 and the corre-
sponding phase shift.

b. (5 points) In the long wavelength limit, give the form of the phase shift and the
explicit form of the scattering length.

c. (5 points) How many bound states can exist for the lowest partial wave and how
does their existence depend on α? A graphical proof is acceptable.

d. (5 points) What is the scattering length when a bound state appears at E = 0?
Describe the behavior of the scattering length as a function of α, from repulsive to attractive
and give a well labeled sketch of your description.
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Solution: Zahed

a. The radial part of the wavefunction solution to the Shrodinger equation for l = 0 is
of the form ψ(r) = χ(r)/r and solves

χ′′ − βδ(r − r0)χ = −k2χ (2)

with E = ~2k2/2m and β = 2mα/~2. The finite solution is of the form

χ(r) = sinkr r < r0

a sin(kr + δ) r > r0 (3)

and solves

sinkr0 = a sin(kr + δ0)

β

k
sinkr0 = a cos(kr0 + δ)− coskr0 (4)

Hence the phase shift is fixed by

tan(kr0 + δ) =
tan(kr0)

1 + β
k
tan(kr0)

(5)

and the amplitude by

a2 = 1 +
β

k
sin(2kr0) +

β2

k2
sin2(kr0) (6)

b. In the long wavelength limit k → 0 Eq. 5 expands as

kr0 + tanδ

1− kr0tanδ
≈ kr0

1 + βr0

(7)

and in leading order

tanδ ≈ −kr0
βr0

1 + βr0

→ δ(k) ≈ Ak (8)

with the scattering length

A = − r0

1 + 1
βr0

= − r0

1 + ~2

2mαr0

(9)

c. For bound states E < 0 and Eq. 2 reads
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Figure 1: Graphical solution of Eq. 12

χ′′ − βδ(r − r0)χ = k2χ (10)

with −E = ~2k2/2m and β = 2mα/~2. The finite solution is now of the form

χ(r) = sinhkr r < r0

a e−kr r > r0 (11)

and solves

1 +
2kr0

βr0

= e−2kr0 (12)

One bound state exists only if α < 0 (recall β = 2mα/~2) as is seen by examining Fig. 1.
The condition for its existence is

βr0 < 0→ α < − ~2

2mr0

(13)

d. A sketch of the scattering length as a function of α is shown in Fig. 2. From Eq. 9 it
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Figure 2: The scattering length given by Eq. 9 versus α.

follows that

A = 0 α = 0

A = ±∞ α = α∓ = − ~2

2mr0

∓ 0

A = −r0 α = ±∞ (14)

There is a bound state as E → +0 for α = α∓ for which δ = ∓π/2.
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1 

Statistical Mechanics 1 

 

Semi-circular energy distribution 

 

 A system of identical, non-interacting, spin-½  particles has N >> 1 orbital single-particle 
eigenenergies , with the following semi-circular distribution function: 

                 


 for ,
2 2/122N ,   (1) 

where ()d is the number of different eigenenergies within a small interval d.  

  

 A (2 points). What number Ng of particles in the system provides the lowest value of its ground 
state energy Eg, and what is this value?  

 B (8 points). Now let us temperature be different from zero, but the number of particles still have 
the value Ng calculated in Task A. Derive an explicit expression for the free energy F of the system. (An 
integral that cannot be worked out analytically in the general case is acceptable.) 

 C (6 points). Simplify your result for F, and calculate the entropy S of the system, in the limit of 
low (but still non-zero) temperature. 

 D (4 points). Simplify your general result for F, and calculate S, in the opposite, high-energy 
limit, and interpret your result. 

 



Solution

(A) The state with the lowest energy has half filling, Ng = N/2× 2 = N .

(B) The partition function is

−βF = logZ = log
∏

εk<0

(1 + e−βεk)2 (15)

=2

∫ 0

−Λ

ρ(E) log(1 + e−βE) (16)

=
4N

π

∫ 0

−π/2
dθ cos2 θ log(1 + e−βΛ sin θ). (17)

(C) The leading term for β →∞ is

−βF =
4N

π

∫ 0

−π/2
dθ cos2 θ(−β)Λ sin θ (18)

=
4N

3π
βΛ. (19)

However this term does not contribute to the entropy. To find the entropy we have to expand
the free energy to next order in T . This is done simplest by subtracting the leading part
resulting in

−βδF =
4N

π

∫ 0

−π/2
dθ cos2 θ log(1 + eβΛ sin θ) (20)

=
4N

π

∫ π/2

0

dθ cos2 θ
∞∑

n=1

1

n
(−1)n+1e−nβΛ sin θ (21)

≈4N

π

∫ ∞

0

dx
∞∑

n=1

1

n
(−1)n+1e−nβΛx (22)

=
4N

π

∞∑

n=1

1

n
(−1)n+1 1

nβΛ
(23)

=
4N

πβΛ

π2

12
. (24)

The entropy approaches zero for T < Λ/N . The excitations above the ground state are
given by particle-hole excitations, which have a level spacing of the order of single particle
energies. So for T < Λ/N pny the ground state contributes to the entropy, so that its values
becomes zero.

(D)

−βF =
4N

π

∫ 0

−π/2
dθ cos2 θ log 2 = N log 2 (25)
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So F = −TN log 2 resulting in an entropy of S = N log 2. At high temperature the bulk of
the density of states determines the entropy, and is given by the logarithm of the answer of
question b).
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Statistical Mechanics 2

1D Boltzmann gases

Consider a monoatomic gas of identical non-relativistic particles with mass m. The
particles are confined to move along a line segment of length L and they can pass through
each other, so that the gas can be treated as ideal.

(a) (4 points). Calculate the chemical potential of such monoatomic gas in equilibrim at
temperature T and density n = N/L, where N � 1 is the total number of particles.

(b) (6 points) Now assume that two atoms can form a bound state, a diatomic molecule
with binding energy ∆. Calculate the density n2at = N2at/L of such diatomic molecules
in equilibrium with the monoatomic gas at temperature T and express it through the
density n1at = N1at/L of the latter. The total number of atoms N1at + 2N2at = N is
conserved.

(c) (5 points) Further, consider internal harmonic oscillations of the diatomic molecules
from part (b) with frequency ω � ∆/~. Calculate the chemical potential µ2at,osc of
such diatomic gas assuming that T � ∆.

(d) (5 points) Finally, find the density of oscillating diatomic molecules n2at,osc in equilib-
rium with the monoatomic gas with density n1at and temperature T . Compare this
result to part (b) and discuss the difference qualitatively in the cases T � ~ω and
T � ~ω.
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Solution

(a) There are at least two ways to compute the chemical potential of an ideal one-dimensional
gas. One way is to use the grand canonical partition function. For one molecule, the partition
function within a linear segment of length L is

Z1p =

∫
dx dp

2π~
exp

(
− p2

2mT

)
=

L

2π~
·
√
mT

∫
dx e−x

2/2 = L

(
mT

2π~2

)1/2

=
L

λ
, (1)

where λ =
√

2π~2

mT
is the thermal wavelength of the gas. For N identical molecules, the

partition function is (Z1p)
N/N !, where the N -th power of Z1p comes from independent inte-

gration over the coordinates and the momenta of N particles and the factorial accounts for
N -permutation of integration variables describing identical states of the system (Boltzmann’s
counting). Then, the grand canonical partition function

ZG(µ) =
∞∑

N=0

eNµ/T
ZN

1p

N !
= exp

(
eµ/TZ1p

)
(2)

and the particle number can be expressed using the grand potential Ω(T, V, µ) = −T logZG =
−eµ/T LT

λ
as

〈N〉 =
T

ZG

(
∂ZG
∂µ

)

T,L

= −
(
∂Ω

∂µ

)

T,L

= eµ/T
L

λ
⇔ µ = T log

(
N
λ

L

)
= T log(λn) (3)

Replacement of 〈N〉 with N is justified if N � 1 and its fluctuation δN =
√
N � N .

Another way is to compute the Gibbs potential for N particles using the 1-dimensional
equivalent of pressure κ = −

(
∂F
∂L

)
T

, where F (T, L) = −T logZN(T, L) is the free energy of
the ideal 1-d gas:

F = −T logZN = −T log
ZN

1p

N !
≈ TN(− log

L

λ
+ logN − 1) (4)

(Stirling’s formula was used for N !) and the Gibbs potential G = F + κL = F − L
(
∂F
∂L

)
T

,

G = F − L
(
∂F

∂L

)

T

= TN(− log
L

λ
+ logN − 1) + TN = Nµ (5)

leading to the same result for µ.

(b) Equilibrium between the monoatomic and the diatomic gases is determined by the bal-
ance of their chemical potentials,

µ2at = 2µ1at , (6)

(It follows from the fact that the total Gibbs potential

G = µ1atN1at + µ2atN2at = µ1at(N − 2N2at) + µ2atN2at , (7)
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attains the minimum value while the diatomic molecules can dissociate or recombine, but
number of atoms is conserved N1 + 2N2 = N = const, or ∆N2at = −2∆N1at. The extremum
condition G = Gmin leads to dG/dN2at = µ2at − 2µ1at = 0).

The chemical potential for the diatomic gas is computed similarly to the monoatomic case
except for twice the molecular mass (2m) and the energy counted from the (−∆) “baseline”

equal to the binding energy, ε(p) = p2

4m
−∆. Therefore, its one-molecule partition function

and chemical potential are (following the derivation in (A))

(Z1p)2at =

∫
dx dp

2π~
exp

(
− p2

4mT
+

∆

T

)
=

L

λ2at

e+∆/T , (8)

µ2at = T log
N2at

(Z1p)2at

= T log(λ2atn2at)−∆ , (9)

where the diatomic thermal wavelength is λ2at =
√

π~2

mT
. The balance equation for the

chemical potentials 2µ1at = µ2at yields

2T log(λ1atn1at) = T log(λ2atn2at)−∆ ⇒ n2at =
1

λ2at

(λ1atn1at)
2e∆/T = n2

1ate
∆/T

√
4π~2

mT
(10)

(c) Oscillations within diatomic molecules are independent from their motion as a whole.
Thus, summation over the internal degrees of freedom in the partition function can be per-
formed independently, thus leading to the following expression for a single diatomic molecule,

(Z1p)2at,osc = (Z1p)2at · Zint , (11)

where the first factor corresponds to the translational motion of the molecule as a whole, and
the second factor is a statistical sum for the internal (relative) motion of the atoms within.
For harmonic oscillations with frequency ω, the energy levels are quantized as

Ek = −∆ + k~ω (12)

assuming that the ground state E0 = −∆ corresponds to the binding energy ∆. The internal
partition function is

Zint ≈ e∆/T

∞∑

k=0

e−k~ω/T =
e∆/T

1− e−~ω/T (13)

where the summation over k has been extended to infinity introducing negligible exponen-
tially suppressed correction ∝ e−∆/T � 1 because T � ∆. The additional factor in the
partition function leads to a modified expression for the chemical potential in comparison to
the rigid molecule (part (b)),

µ2at,osc = T log
N2at,osc

(Z1p)2at,osc

= T
[

log(λ2atn2at)−
∆

T
+ log(1− e−~ω/T )

]

= µ2at + T log(1− e−~ω/T ) .

(14)
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(d) Using the equilibrium condition µ2at,osc = 2µ1at, we get

n2at,osc =
n2

1ate
∆/T

1− e−~ω/T

√
4π~2

mT
=

n2at

1− e−~ω/T . (15)

where n2at is the equilibrium density of non-oscillating diatomic molecules computed in
part (b).

If T � ~ω, the internal molecular oscillations are “frozen out”, and the diatomic equi-
librium density n2at,osc ≈ n2at is the same as for the rigid molecules. In the opposite limit
T � ~ω, the above equation (15) can be simplified as

n2at,osc ≈
n2at

1− 1 + ~ω/T
=

T

~ω
n2at , (16)

and the factor T/(~ω) may be qualitatively interpreted as enhancement of the equilibrium
density of diatomic molecules due to their internal degeneracy ≈ T

~ω because of the relative
motion of the atoms.
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1 

Statistical Mechanics 3 

 

Molecular field 

 

 The molecular-field approach in the theory of continuous phase transitions,1 first suggested in 
1908 by P.-E. Weiss, is based on taking the random variable s (say, a component of a classical “spin” 
variable s) in the form 

sssss  ~  and,with  ,~  . 

 

 A (6 points). Apply the molecular-field approach to the Ising model of ferromagnetic transitions, 

 
 1  and   0with  ,

',

  j
j

j
jj

j'j sJshssJE , 

where {j, j’} means the pairs of nearest neighbors, on an infinite, d-dimensional cubic lattice. In 
particular, derive a self-consistency equation for the order parameter . 

 B (3 points). Use the self-consistency equation to calculate the critical temperature Tc of the 
phase transition, and sketch the magnetization curves (h) at T < Tc and T > Tc. How close is it to the 
calculated Tc to the exact values (in the same model), for d = 1, 2, and 3? Briefly explain the sign of the 
difference.    

 C (9 points). Apply the same approach to the so-called classical Heisenberg model, 

 
0with  ,

',

  JJE
j

j
jj

j'j shss . 

(Here, in contrast with the Ising model, the spin of each site is modeled with a classical 3D vector s of a 
fixed length s = 1.) Again, calculate the critical temperature and analyze the magnetization curves at low 
and high temperatures. 

 D (2 points). Compare the molecular-field results for Tc  in these two models, and interpret their 
difference. 

 

                                                 
1 Sometimes it is called the mean-field theory; however, this terminology may be misleading, because it invites  
confusion with the Landau-type mean-field theories (such as the Ginzburg-Landau or Gross-Pitaevskii equations), 
which are of a higher level of phenomenology, and in particular treat Tc as a given parameter. 



 

 

Solution 

  

 A (6 points). Plugging ss ~ into the first term of Ising model’s energy,  

  
 

 
j

j
jj

j'j shssJE
',

~~  . 

multiplying the parentheses, and neglecting the term quadratic in small deviations s~ , we get 

 
 

    
 

,

~~

'

2

',
'

2

',

2








j
j

j
j'

j
j

j
j

jj
jj

j
j

jj
j'j

shsJdsJdNdJ

shssJshssJE




 

where N is the total number of the nodes is the lattice (which later will be taken infinite), and d is the 
number of the nearest neighbors per node, equal to the dimensionality of the lattice. Now changing the 
summation index in one of the sums from j’ to j, and merging 3 similar terms, we may rewrite this 
expression as 

              JdhhshNdJE
j

j 2with  , efef
2   .   (1) 

 Besides the first, deterministic term, this is the energy of N independent “spins” in the effective 
field hef, which is contributed by the actual field h, and the average “molecular field” 2Jd of the 
adjacent spins. The (well-known) statistics of such a system may be readily calculated from the Gibbs 
distribution applied to the statistical ensemble of single spins, each with just two possible states s = 1, 
and hence two possible energies, E = hef: 

,cosh2expexpexp,exp
1

exp
1 efefefef

T

h

T

h

T

h

T

E
Z

T

h

ZT

E

Z
W 







































 




   

where W are the probabilities of the corresponding states, and T  kBTK is temperature in energy units. 
In particular, for the statistical average   s, which plays the role of the order parameter, we get 

         
      

T

h

Th

ThTh
Wss eftanh

)/cosh(2

/1/exp1

ef

efef 


 


 .  (2) 

Plugging this result into the above definition of hef, we get the following self-consistency equation: 

           
T

h
JDhh ef

ef tanh2 .     (3) 



 

 B (3 points). Sketching the left-hand part and right-hand part of Eq. (3) as functions of hef , for 
various h  and T (see Fig. below),  

 

 

 

 

 

 

 

we see that the magnetization curves (h) become hysteretic (and hence there is a nontrivial solution   
0, describing the ordered ferromagnetic state in the absence of the external field) only if T < Tc, where 

.2JdTc   

 This value of Tc is higher than the exact values of the ratio: 0 for d = 1, 2.27J for d = 2, and 4.51J 
for d = 3. The reason for this difference is that the molecular-field theory limits the thermally-induced 
fluctuations of spins sj to very small values, and hence prevents a fair description of their accumulation 
with the growth of T, which eventually results in the destruction of the ferromagnetic state, i.e. to the 
phase transition, at T = Tc.  

 

 C (9 points). Let us align the axis z with the direction of magnetic field h; then the state energy 
may be rewritten as 

 
 

 
j

j
j,j'

zj'zjyj'yjxj'xjm shssssssJE . 

 In the molecular-field theory, each Cartesian components of the spin should be represented in a 
form similar to ,~ss   with a different statistical average for each component. Due to the symmetry 

of the problem with respect to reflections x  -x and y  -y, such average, sz  , may be different 
from zero only for the z-component. Hence the first two terms under the double sum include only the 
squares of fluctuation terms: 

 
 

  
 

1~with  ,~~~~~~
'   sshssJssssJE

j
j

j,j'
zjzj

j,j'
zj'zjxj'xj  . 

Multiplying the parentheses under the first sum, and neglecting the terms quadratic in small fluctuations, 
we get Eq. (1) again, but with sj replaced with szj, which can take any real values from -1 to + 1. 

 As a result, the statistics is now different from the Ising model, and should be described by a 
continuous probability density w(sz), with the density of states uniformly distributed over all directions 
of the vector s. Calculating it from the Gibbs distribution with E = -hefsz =  - hefcos, we get 
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so that the order parameter  may be calculated as 
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 This function (hef) is qualitatively, but not quantitatively similar to that given by Eq. (2) for the 
Ising model; most importantly, it has a three-fold lower slope at the origin: 

Th h 3

1
0ef

ef








. 

This difference immediately maps on the phase transition temperature Tc, giving 

3

2Jd
Tc  . 

 

 D (2 points). The lower values of Tc in the classical Heisenberg model is a natural result of the 
spin-to-field interaction weakening due to the availability of intermediate values, -1 < sz < +1, of the 
field-aligned spin component sz. In turn, this availability is an immediate result of taking into account 
two other Cartesian components of the vector s. 


