
Comprehensive Examination
Department of Physics and Astronomy

Stony Brook University

August 2019

General Instructions:

Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take approximately
one hour.

Use one exam book for each problem, and label it carefully with the problem topic and num-
ber and your ID number.

Write your ID number (not your name!) on each exam booklet.

You may use, one sheet (front and back side) of handwritten notes and, with the proc-
tor’s approval, a foreign-language dictionary. No other materials may be used.
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Classical Mechanics 1

The adiabatic oscillator

Many physical systems involve motion at different time scales. We can treat such a system
using a form of the WKB approximation. Consider an undamped harmonic oscillator with
a slowly time dependent frequency ω(t), i.e. |ω̇| � ω2.

(a) (4 points) Write down the time-dependent Lagrangian for a particle of mass m moving
along the x-axis in a harmonic potential with oscillation frequency ω(t).

Substitute the ansatz
x(t) = ea(t)+iθ(t) ,

into the Euler-Lagrange equations for x(t), and without approximation determine the
equations of motion for a(t) and θ(t) by examining the real and imaginary parts.

(b) (4 points) Assuming that ȧ2 , |ä| � ω2, determine the leading-order solution for the
real x(t) given the initial conditions x(0) = x0 and ẋ(0) = v0. Use this result to show
that |ȧ| � ω is equivalent to |ω̇| � ω2.

Hint: a(t) can be expressed in terms of θ̇(t) without approximation.

(c) (4 points) Show that the energy E is not constant in time to first order in ω̇. Comment
on the result in light of Noether’s theorem.

(d) (4 points) Show, however, that the local average E(t)/ω(t) is constant in time to first
order in ω̇. The time average is taken over a local oscillation period T = 2π/ω(t) over
which ω(t) does not change by much. Comment on the result in light of adiabatic
invariants.

An example of such a system might be a pendulum consisting of a heavy mass on a thin
cable with a time-dependent length `(t). Imagine that the length of the cable varies due to
the variation in the temperature throughout the day as

`(t) = `0(1 + β cos(Ωt)) ,

where t = 0 at noon and Ω = 2π/1 day. Assume that β � 1 and that the oscillation
amplitude is small.

(e) (4 points) If the pendulum is at its maximum displacement φ0 at noon, what are the
amplitude and phase of the oscillations at 6:00 p.m.?
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Solution

(a) The Euler-Lagrange equation is simply ẍ+ω(t)2x = 0. Substituting the ansatz gives:(
ä+ iθ̈ + ȧ2 − θ̇2 + 2iȧθ̇ + ω(t)2

)
x(t) = 0 .

The real and imaginary parts give

ä+ ȧ2 − θ̇2 + ω(t)2 = 0 , θ̈ + 2ȧθ̇ = 0 .

(b) The equation from the imaginary part can be integrated:

ȧ = − θ̈

2θ̇
⇒ ea(t) = ea0

√
θ̇0

θ̇(t)
.

Assuming ȧ2 , ä� ω2, we get θ̇2 = ω(t)2, and hence

θ(t) = θ0 ±
∫ t

0

ω(t′)dt′ .

This gives

x(t) = x0

√
ω(0)

ω(t)

(
cos

(∫ t

0

ω(t′)dt′
)

+ q sin

(∫ t

0

ω(t′)dt′
))

, (1)

where
q =

1

ω(0)

(
ω̇(0)

2ω(0)
+
v0
x0

)
.

(c) The energy function is h(q, q̇, t) = pq̇ − L is where p = ∂L/∂q̇ is a function of q̇. Using
the Euler Lagrange equations it is easy to show that

∂h

∂t
=− ∂L

∂t
, (2a)

=mω̇ωx2 . (2b)

The first line is the general result, while the second line is specific to the time dependent
harmonic oscillator. There is no time translational symmetry in this problem so energy is not
conserved. The Noether theorem establishes the link between time translational invariance
and energy conservation.

(d) Now we modify the analysis, writing:

∂E/ω

∂t
=mω̇x2 − E

ω2
ω̇ (3)

' ω̇

ω2
(mω2x2 − E) , (4)

'0 +O((ω̇/ω2)2) . (5)
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In the first line we used Eq. (2) to evaluate Ė. In passing to the second line we used that
ω, ω̇, E are approximately constant over the timescale of the average. To reach the third line
we recognized that since the whole result is already proportional to ω̇/ω2, we may use the
lowest order time-independent simple harmonic oscillator result for the remaining average

1

2
mω2x2 =

E

2
.

Discussion: The theory of adiabatic invariance (in 1d) is concerned with a Hamiltonian
system H(p, q, λ) depending on a parameter λ, which is initially considered to be constant
in time. For a given orbit in phase space, characterized by the energy E and parameter λ,
we define integral

I(E, λ) =
1

2π

∮
p dq , (6)

over the trajectory of the orbit. The line integral in Eq. 6 is (using the Stoke’s theorem) the
area in phase space enclosed by the orbit

I(E, λ) =
1

2π

∫
enclosed−orbital−phase−space−area

dp dq .

If now the parameter λ is changed on a time scale which is long compared to the orbital
period, the quantity I(E, λ) is unchanged in time to first order. The energy E changes (as
required by the Noether theorem) and λ changes, but I remains approximately constant.

For the harmonic oscillator the phase space orbits are ellipses characterized by the energy
E and frequency ω. The maxima and minima along the q and p axes of the ellipse are

q± =±
√

2E

mω2
, p± = ±

√
2mE . (7)

The area of the ellipse is πq+p+. Thus, the area in phase space enclosed by the elliptic orbit
is

I(E, λ) =
πq+p+

2π
=
E

ω
. (8)

Now, as the frequency is changed in time, adiabatic invariance implies that E(t)/ω(t) will
remain approximately constant.

In a quantum mechanical WKB approximation for the eigen-energies, the integral in
Eq. (6) is discrete, I = E/ω = (n+ 1

2
)~. In the quantum mechanical adiabatic approximation

the energy level n remains fixed as ω(t) and E(t) slowly change in time. Thus, there is a
consistency between classical and quantum mechanical adiabatic approximations when n is
large and the WKB approximation applies.

(e) The frequency is

ω(t) =

√
g

`(t)
≡ ω0

√
1

1 + β cos(Ωt)
≈ ω0[1−

1

2
β cos(Ωt)] , ω0 ≡

√
g

`0
.
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Then we have

θ(t) ≈ θ0 + ω0[t−
β

2Ω
sin(Ωt)] , ω(0) = ω0

√
1

1 + β
, ω̇ ≈ ω0βΩ

2
sin(Ωt) .

The WKB solution must be mapped onto the angle from the axis φ(t). The adiabatic
theorem says that E/ω is constant. Denoting the amplitude of φ oscillations φmax(t), then
since E ∝ mg`φ2

max, and ω ∝ 1/
√
`, we have

φmax(t) ∝
1

(`(t))3/4
. (9)

Thus

φ(t) = φ0

(
1 + β

1 + β cos(Ωt)

) 3
4

cos(ω0[t−
β

2Ω
sin(Ωt)]) . (10)

At 6:00 p.m. we have Ωt = 1
2
π, and hence the amplitude φsunset and phase shift ϕ are

φsunset = φ0 (1 + β)
3
4 , ϕ = −ω0β

2Ω
.

Eq. (10) can also be derived directly from the equation of motion. The Lagrangian of
the pendulum

L =
1

2
m(`(t)φ̇)2 − 1

2
mg`(t)φ2 +O(m ˙̀2)︸ ︷︷ ︸

∼(small)2

(11)

where here and below we neglect terms of second order ∼ ˙̀2. The equation of motion is

φ̈+ 2

(
˙̀

`

)
φ̇ = −ω2(t)φ . (12)

with ω2(t) = g/`(t). Because of the ˙̀φ̇ term (which is first order in ˙̀), Eq. (1) is not directly
applicable. However, substituting x(t) ≡ `(t)φ(t) into Eq. (12) yields

ẍ = −ω2(t)x (13)

after dropping terms of order ˙̀2 and ῭which are second order in the adiabatic approximation.
Thus Eq. (1) is applicable to `(t)φ(t) and this reasoning ultimately yields Eq. (10) for φ(t).
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Classical Mechanics 2

Stellar Orbits

The gravitational potential of the Milky Way galaxy can be reasonably approximated by
the axisymmetric form

Φ(r, z) =
1

2
v20 ln

(
r2 +

z2

q2

)
, (1)

where r =
√
x2 + y2 is the radial distance from the z-axis (i.e. we are using cylindrical

coordinates r, φ, z), and v0 and q are constants. In this problem we will study the orbits of
stars in this potential.

(a) (2 points) For a star test particle of mass m, determine two constants of motion.

(b) (6 points) Find the location and period of stable circular orbits.

(c) (6 points) Now, consider orbits which are nearly circular r(t) = rcirc + δr(t), z =
zcirc + δz(t). Determine the frequency of small oscillations in δr and δz. What do we
mean by “small”? (That is, what are the criteria on δr and δz for this analysis to be
valid?)

(d) (6 points) Our sun is at a distance of about 8 kpc (2.5 × 1017 km) from the center
of the Milky Way galaxy, on an orbit that is approximately circular with a period of
225 million years. The sun undergoes vertical oscillations with an period of 87 million
years, and radial oscillations with a period of 160 million years. Determine matter
density profile. If you are uncertain of your results from (b) and (c) leave the result in
terms of v0 and q for partial credit. Newton’s constant is G = 6.67× 10−11 m3kg−1s−2.
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Solution

(a) (2 points) For a star test particle of mass m, identify and define two constants of motion.

The potential is time-independent so total energy is conserved and since it is azimuthally
symmetric the z-component of the angular momentum is conserved. These are

E =
1

2
mṙ2 +

1

2
mr2φ̇2 +

1

2
mż2 +mΦ(r, z) , (2)

Lz = mr2φ̇ . (3)

(b) (6 points) To find the location and period of stable circular orbits, we note that

E =
1

2
m(ṙ2 + ρ2φ̇2 + ż2) +mΦ(r, z) , (4)

=
1

2
mṙ2 +

1

2
mż2 +

L2
z

2mr2
+mΦ(r, z) , (5)

so that
Veff (r, z) =

L2
z

2mr2
+mΦ(r, z) . (6)

Taking the first and second derivatives of the effective potential w.r.t. r and z, we see there
is a minimum at

rcirc =
Lz
mv0

, zcirc = 0 (7)

This corresponds to a circular orbit in the z = 0 plane. This means that for each value
of Lz there is a unique stable circular orbit in the z = 0 plane of the galaxy, just like for
Coulomb or Keplerian potentials ∼ 1/r (the location of the orbit for a given Lz will, of
course, differ for those potentials). It’s also worth noting that for the z = 0 orbit we’ve
found here, the result is identical to what we’d have found if we started with spherically a
symmetric potential (q = 1 in Eq. (1)) so from this single orbit, we can’t learn about the
asphericity of the potential.

The period of orbits is

τ =

∫
dφ

φ̇
=

2πmr2circ
Lz

=
2πLz
mv20

=
2πrcirc
v0

. (8)

The coefficient v0 in the potential is therefore the characteristic velocity of a particle on
circular orbit (i.e. vcirc ∼ 2πrcirc/τ = v0). Interestingly, in this potential the typical ve-
locities of stars are roughly constant with radius. This is in contrast to the potential for
a central mass distribution for which the circular velocity decreasing with increasing r (for
Φ(r) = −GM/r, vcirc =

√
GM/r).

(c) (6 points) Now, consider orbits which are nearly circular r(t) = rcirc + δr(t), z =
zcirc + δz(t). Determine the frequency of small oscillations in δr and δz. What do we
mean by “small"? (That is, what are the criteria on δr and δz for this analysis to be valid?)
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The Euler-Lagrange equations give equations of motion

r̈ − rφ̇2 +
∂Φ

∂r
= 0 , (9)

d

dt

(
mr2φ̇

)
= 0 , (10)

z̈ +
∂Φ

∂z
= 0 . (11)

Thus for near circular orbits we have,

δ̈r +

(
3
Lz
m2r4

+
∂2Φ

∂r2
+

∂2Φ

∂r∂z

)∣∣∣∣
r=rcirc,z=0

δr = 0 , (12)

δ̈z +

(
∂2Φ

∂z2
+

∂2Φ

∂r∂z

)∣∣∣∣
r=rcirc,z=0

δz = 0 , (13)

which reduces to

δ̈r + ω2
rδr = 0 , (14)

δ̈z + ω2
zδz = 0 , (15)

where

ωr =
√

2
v0
rcirc

, (16)

ωz =
1

q

v0
rcirc

. (17)

We have dropped higher order terms in δr and δz. Rewriting the potential in terms of rcirc,
δr, and δz, we see

Φ(r, z) =
1

2
v20 ln

(
r2circ

(
1 +

δr

rcirc

)2

+ r2circ
δz2

q2r2circ

)
, (18)

=
1

2
v20

(
ln
(
r2circ

)
+ ln

(
1 + 2

δr

rcirc
+
δr2

r2circ
+

δz2

q2r2circ

))
. (19)

So, “small" oscillations in this case refers to oscillations with amplitudes δr � rcirc and
δz � qrcirc. The more squashed the disk is (i.e. the smaller q is, resulting in more rapid
gradients of the potential with z), the stricter the requirement on δz in comparison to δr.

(d) (6 points) Our sun is at a distance of about 8 kpc (2.5× 1017 km) from the center of the
Milky Way galaxy, on an orbit that is approximately circular with a period of 225 million
years. The sun undergoes vertical oscillations with a period ≈ 87 million years and radial
oscillations with a ≈ 160 million year period. Determine matter density profile. If you are
uncertain of your results from (b) and (c) leave the result in terms of v0 and q for partial
credit. Newton’s constant is G = 6.67× 10−11 m3kg−1s−2.
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Poisson’s equation tells us

4πGρ(r, z) = ∇2Φ(r, z) , (20)

=
1

r

∂

∂r

(
r
∂Φ

∂r

)
+
∂2Φ

∂z2
. (21)

So that
ρ(r, z) =

v20
4πGq2

(
r2 + (2− 1/q2)z2

(r2 + z2/q2)2

)
. (22)

From (b) and (c) we can determine the parameters of the gravitational potential.

v0 =
2πrcirc
τ

≈ 220 km/s , (23)

which gives the normalization for the density profile of

v20
4πGr2circ

≈ 9.5× 10−22 kg/m3 ≈ 0.5GeV/cm3 , (24)

and
q =

ωr√
2ωz
≈ 0.4 . (25)
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Classical Mechanics 3 
 

Waves vs. oscillations 

 A uniform flexible membrane of area aa, with mass  per unit area, is stretched on a thin plane 
frame, with an isotropic tension   per unit length – see figure below.  

 

 

 

 

 

 

 A (6 points). Use any approach you like to derive the 2D wave equation describing small 
transverse displacements z(x, y, t) of the membrane. (Here x and y are the coordinates in the plane’s 
frame.)  

 B (3 points). Use the derived equation to calculate the frequency spectrum of standing waves in 
the system; sketch a few lowest wave modes. 

 

Now consider a discrete-point analog of the system, with 4 particles of equal masses m, connected with 
light, flexible strings that are stretched with equal tensions T – see figure below. (Just as in the case of 
the membrane, the thin frame does not allow the string ends to deviate from its plane.) 

 

 

 

 

 

 

 

 

 C (4 points). Use any approach you like to derive the system of equations describing small 
transverse oscillations zi,j(t) of the particles.  

 D (5 points). Use the derived system to calculate the modes and frequencies of the oscillations. 
(Hint: You may take clues from the system’s symmetry and from the solution of Part B.) 

 E (2 points). Compare the calculated frequencies with those of the membrane quantitatively, and 
comment.  

a
aF 

aF 

d

d

d
m

T T

T

T



Solution 

 A (6 points). Let us consider the membrane that has deviated, in dynamics, from the frame’s 
plane z = 0, by a small distance z(x, y, t), and calculate the z-components of the forces dF exerted on a 
small rectangular fragment of the membrane, of area dxdy << a2, by its adjacent parts. First let us 
consider the forces acting on two opposite edges of the fragment normal to the x-axis (both of length dy) 
within the plane [x, z] – see Fig. below.  

 

 

 

 

 

 

 If z is not only small (z << a), but also changes significantly only on distances of the order of a, 
for the part of dFz that is due to any of these forces we may write  

             
 

,
],[ 

x

z

dy

Fd zx        

where   is the membrane’s tension (stretching force per unit width), and  

          
x

z
x 


        

is the (small) tilt of the membrane, within the [x, z] plane – see Fig. above. This force, acting on one 
edge of our fragment of length dx, is nearly compensated by that acting on it opposite edge, so that the 
net force exerted on the fragment by these two forces is only due to the tilt gradient: 
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dF
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z zx  . 

 If the deviation z is as sufficiently small and smooth as assumed, the expression in the square 
brackets may be well approximated as (2z/x2)dx. Now adding a similar contribution from the forces 
acting, in the [y, z] plane, on other two edges of our fragment, we get 

      dxdyzdxdy
y

z

x

z
dFdFdF yxzzz zyzx

2
,2

2

2

2

,, 














  . 

With this expression, the 2nd Newton law for the transverse motion of the membrane fragment, of mass 
dm = dxdy, takes the form 

      .2
,2

2

z
t

z
yx


       (1) 

This is the standard 2D wave equation. Alternatively, it may be derived from the Lagrangian function of 
the system, calculated in the quadratic approximation in the function z(x, y, t) and its partial derivatives. 

       

Fd

dyd F

dx

 2/dxx 
 2/dxx 

x

z )2/( dxxd z F

)2/( dxxd z F



 B (2 points). In our case, equation (1) has to be solved with boundary condition zon frame = 0. 
Directing the x- and y-axes along the edges of the frame, with the origin in one of its corners, the 
boundary condition becomes 

          








.,0for ,0

,,0for ,0
at  0

axay

ayax
z     (2) 

 The boundary problem (1)-(2) may be readily solved by the variable separation method, i.e. by 
looking for the solution in the standard form 

           tTyYxXzzctyxz mnmnmn
mn

mnmn ,,
,

,, with  ,),,(   ,    

where cn,m are constant coefficients determined by initial conditions. Plugging the partial solution zn,m 

into Eq. (1), and dividing both sides of the equation by XnYmTn,m, we get 

     
2

2

2

2

2

,
2

,

111

dy

Yd

Ydx

Xd

Xdt

Td

T
m

m

n

n

mn

mn





.    (3) 

This equality may hold for all x, y, and t only if each of its 3 terms is a constant. Calling these constants, 
respectively, k2, kx

2, and ky
2, so that Eq. (3) becomes 

       222
yx kkk  ,      (4) 

we get similar linear ordinary differential equations for the functions Tn,m, Xn, and Ym, whose solutions 
are sinusoidal functions of, respectively, t, kxx, and kyy, where 

            
2/1

22   where,  i.e., 















vkvk .   (5) 

The constant v has the physical sense of the velocity of (dispersion-free, isotropic) propagation of 
transverse waves on the membrane. 

  Now requiring all functions Xn and Ym to satisfy the boundary conditions following from Eq. (2): 

        ,00,00  aYYaXX mmnn  

we get the following spectra of the corresponding wave numbers: 

             ,...,2,1,with ,,  mnm
a

kn
a

k yx


   (6) 

so that the partial solutions of the problem (each describing a specific “mode”, in our case a specific 
standing wave on the membrane) are 

          constcossinsin ,,  t
a

ym

a

xn
z mnmn 

,    (7) 

where n,m is the frequency of the mode. The spectrum of these frequencies follows from Eqs. (4)-(6): 

                .  where,
2/1

0

2/122
0

2/122
, 













a
v

a
mnvkkkv yxmn  (8) 



 Figure below shows a sketch of the first four modes (7), in the order of their frequencies (8). 
(The signs show those of the functions zn,m in each of 4 quadrants, at a certain time instant.) Note that the 
modes {1, 2} and {2, 1} have the same frequency 1,2 = 2,1 = 50, but differ by their orientation on 
the membrane. 

 

 

 

 

 

 

 C (4 points). The equation describing the motion of particles in the discrete version of the system 
may be derived similarly to that of the membrane. This analogy is more complete if we start not with the 
small, 4-particle system specified in the assignment, but with a large system of similar particles and 
strings, with the period d in each of the directions x, y. Figure below shows the diagram of forces exerted 
on an arbitrary internal particle (with number i in the x-direction, and number j in the y-direction) by the 
two x-oriented strings. 

 

 

 

 

 

 

Similarly to what was done for the membrane, for small oscillations (with z << d) we may write  
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 TTTTT  . 

Now adding a similar contribution from the y-oriented string, we get the full transverse force exerted on 
the particle: 

 
d

zzzzz
F jijijijiji

jiz
,1,1,,1,1

,

4
 

T , 

so the 2nd Newton law for it yields 

           jijijijiji
ji zzzzz

ddt

zd
m ,1,1,,1,12

,
2

4 
T

.   (9) 

This equation has to be solved with the same boundary conditions z(t)on frame = 0 as for the membrane. 

 D (5 points). For a large-size system, solving the system of many mutually-coupled ordinary 
partial equations (9) is harder than solving the single partial differential equation (1). However, the small 
size and high symmetry of our system (of 4 particles) makes such a solution easy. Indeed, we may 
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consider the points where the strings contact the frame as additional particles, but with zero transverse 
displacements, so that they give zero contributions to the right-hand side of Eqs. (9) written for the 
adjacent internal particles. For example, for the top-right particle (assigning it the numbers i = 1, j = 1, 
with the natural sequential numbering of other particles) we may write 

          1,12,11,22
1.1

2

400 zzz
ddt

zd
m 

T
,    (10) 

with the similar simplifications for other 3 particles.  

 Generally, plugging into the resulting system of 4 linear ordinary differential equations the 
oscillatory solution zi,j = ci,jexp{it}, we get a system of 4 linear algebraic homogeneous equations for 4 
distribution coefficients ci,j, whose condition of consistency is 

d

m

/
  where,0

4110

1401

1041

0114
2

T

















. 

 However, instead of trying to solve this equation, in our particular (highly symmetric) case, it is 
easier (as was suggested in the Hint) to assume that the 4 different oscillation modes of the discrete-
particle system1 have the same symmetry as the lowest modes of the membrane oscillations, sketched 
above. This means the following relations between the particle oscillations: 

    mode {1, 1}: z11 = z12 = z21 = z22,      (11) 

    mode {1, 2}: z11 = -z12 = z21 = -z22,      (12) 

    mode {2, 1}: z11 = z12 = -z21 = -z22,  

    mode {2, 2}: z11 = -z12 = -z21 = z22. 

 Due to this symmetry, the corresponding oscillation frequencies may be calculated using just one 
equation, for example, Eq. (10) for z1,1. For example, with the substitution of z12 and z21 from Eq. (11) 
for the {1, 1} mode, we get simply 

  02  i.e.,400 1,12
1.1

2

1,11,11,12
1.1

2

 z
ddt

zd
mzzz

ddt

zd
m

TT
. 

This is just the usual equation of a harmonic oscillator with frequency 

        
2/1

0011   where,2 







md

T .    (13) 

 Very similarly, using Eq. (12) for the {1, 2} mode, we may reduce the same Eq. (10) to 

  04  i.e.,400 1,12
1.1

2

1,11,11,12
1.1

2

 z
ddt

zd
mzzz

ddt

zd
m

TT
. 

                                                 
1 As a reminder, the general theory of oscillations in a coupled linear system of N particles tells us that it may 
have only N normal modes.  



The similar calculation for the mode {2, 1} yields the same final equation for z11, so that the frequencies 
of this two modes are equal (just as they are for the membrane): 

           02112 2  .     (14) 

Finally, for the {2, 2} mode we get  

  06  i.e.,400 1,12
1.1

2

1,11,11,12
1.1

2

 z
ddt

zd
mzzz

ddt

zd
m

TT
, 

giving the highest frequency of the spectrum: 

         022 6  .      (15) 

 E (2 points). The first way to compare the results for the continuous system (the membrane) and 
the system of the discrete particles is to look at the ratio of their frequencies. From Eqs. (8) and (13)-
(15), we have:  

   discretecontinuous22211211 6/4/4/2  vs 8/5/5/2///  . 

So the ratios are quite close, with a somewhat larger deviation for the highest mode {2, 2}. 

 Moreover, looking at the systems, we may assume that they should have closest properties at the 
following relations of their parameters:  

.,,3 
2d

m

d
da   T

 

Plugging these relations into Eq. (8), we get 

discrete

2/1

continuous

2/12/1

0  1.000      vs1.047
3
























mdmdmd

TTT . 

So, the difference of the values of this frequency scale (and hence of the fundamental frequencies 1,1 = 
20) in the two systems is below 5%. 



Electromagnetism 1

A cylinder and a line charge

A line charge with linear charge density λ is placed at a distance R and parallel to a con-
ducting cylinder of radius b (R > b), which is grounded.

a. 8 points Determine the electrostatic potential at any point and discuss its limits.

b. 8 points Determine the charge per area σ(θ) induced on the surface of the cylinder.
For R/b = 2, 4, evaluate and sketch σ(θ) as function of the azimuthal angle θ.

c. 4 points Determine the force per unit length on the line charge. Explain its behav-
ior as the line charge approaches the cylinder.
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Solution

a. We show below a planar configuration of the set up with the line charge at R and its
harmonic image at R′, i.e. RR′ = b2. The geometry is shown below.

~L0 ~L

~R~R0

~r

The total potential at point ~r is then reduced to two line charges

V (~r) = ϕ+ ϕ′ + V0 = −2(λLogL+ λ′LogL′) + V0 , (1)

with λ′ = −λ and ~r = ~L′ + ~R′ = ~R+ ~L. We can fix V0 by noting that when L,L′ are on the
cylinder, then L/L′ = R/b, and the potential vanishes if V0 = 2λLog (R/b). As a result, (1)
reads

V (~r) = 2λLog

(
L′R

Lb

)
. (2)

For ~r = r(cos θ, sin θ), ~R = (R, 0), and ~R′ = (b2/R, 0), we can find the potential more
explicitly

V (~r) = λLog

(
r2 + b2(b/R)2 − 2rR(b/R)2 cos θ

r2 +R2 − 2rR cos θ

)
+ V0 . (3)

For L′ ≈ L, the potential is about constant with V (~r) ≈ V0. For L,L′ � R � b, we
have L′ ' r and ~L ' ~r − ~R, and then the potential is dipole-like in the plane V (~r) =

2λRcos(θ)/r + V0 with ~L′ ≈ ~r.

b. The surface density induced on the cylinder by the line charge is (cos θ = r̂ · R̂) given by
the boundary conditions 4πσ = n · (Eout −Ein):

σ(θ) = − 1

4π

∂

∂r

(
2λLog

(
L′R

Lb

))∣∣∣∣
r=b

=
λ

2πb

(
1−R2/b2

1 +R2/b2 − 2R/b cos(θ)

)
. (4)

More explicitly, we have

17
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b

)]
 

R/b=2

R/b=4

Figure 1: The charge per unit area σ(θ) given by Eq. (5).

σ(θ) = − λ

2πb

(
3

5− 4cos(θ)

)
,

R

b
= 2 ,

σ(θ) = − λ

2πb

(
15

17− 8cos(θ)

)
,

R

b
= 4 , (5)

which are sketched below in Fig. 1.

c. The electric field has two pieces ~E = ~E0(~r) + ~Eind(~r), where ~E0 = −2λLogL is the
Coulomb field of the original line of charge, and ~Eind is the induced field (the field of the
image charge). The induced force between the polarized cylinder and the line of charge is

~f = λ ~Eind

∣∣∣
~r=~R

=λ

( −2λ

R−R′
)
R̂ , (6)

=− 2λ2 ~R

R2 − b2 , (7)

and is manifestly attractive. As the line charge approaches the cylinder, the polarization
increases and so does the attraction, explaining the singular behavior of (7) as R→ b.

18



Electromagnetism 2

Radiation from a current sheet:

(a) (5 points) The retarded Green function of the 1 + 1 dimensional wave equation dimen-
sional wave equation is defined as the solution to(

1

c2
∂2

∂t2
− ∂2

∂x2

)
G(tx|t′x′) = δ(t− t′)δ(x− x′) . (1)

Show that the retarded Green function is

G(tx|t′x′) =
c

2
θ (t− t′ + (x− x′)/c) θ(t− t′ − (x− x′)/c) . (2)

Does G(tx|t′x′) satisfy the appropriate boundary conditions? Explain.

Now consider an infinite sheet spanning the yz plane, with uniform surface current, K(t) =
K(t) ẑ.

z

y

x

K(t)

(b) (5 points) Determine the gauge potentials ϕ(t, x) and A(t, x) in the Lorenz gauge
(without approximation) to the right and left of the sheet. Check that the Lorenz
gauge condition is satisfied.

(c) (5 points) Determine the electric and magnetic fields, and the energy radiated per unit
time and area by the current sheet.

(d) (5 points) The electric and magnetic fields close to the sheet can be calculated using
the elementary methods of Ampere’s and Faraday’s laws. (i) For x > 0, use these
methods to calculate the magnetic field B(t, x) and the electric field difference, ∆E ≡
E(t, x)−E(t, 0), close to the sheet. (ii) Show that the general results of (c) agree
with these calculations in the appropriate limit. (iii) How close to the sheet does one
need to be in order for the elementary methods to be applicable? Assume that the
time-dependent currents are characterized by a time scale τ .
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Solution:

(a) Writing

x+ =
x0 + x1√

2
, x− =

x0 − x1√
2

, (3)

where x0 = ct and the inverse relations

x0 =
x+ + x−√

2
, (4)

x1 =
x+ − x−√

2
, (5)

we have

∂

∂x+
=
∂x0

∂x+
∂

∂x0
+
∂x1

∂x+
∂

∂x1
, (6)

=
1√
2

∂

∂x0
+

1√
2

∂

∂x1
, (7)

and similarly
∂

∂x−
=

1√
2

∂

∂x0
− 1√

2

∂

∂x1
. (8)

Thus

2
∂

∂x+
∂

∂x−
=

(
∂

∂x0

)2

−
(

∂

∂x1

)2

, (9)

is the wave operator. From here it is straightforward to verify that(
2
∂

∂x+
∂

∂x−

)
c

2
θ(x+)θ(x−) = cδ(x+)δ(x−) = δ(t)δ(x) . (10)

Further c/2θ(x+)θ(x−) has support only in the forward light cone, and therefore satisfies the
required retarded boundary conditions. The full Green function is

G(tx|t′x′) =
c

2
θ (t− t′ + (x− x′)/c) θ(t− t′ − (x− x′)/c) . (11)

(b) The wave equation in three dimenisons reads

−�A =
j

c
, (12)

and so for problem at hand (the current sheet) we have(
1

c2
∂2

∂t2
− ∂2

∂x2

)
Az =

K(t)

c
δ(x) . (13)

So a formal for solution for Az(t, x) can be written

Az(t, x) =

∫
dt′dx′G(tx|t′x′) K(t′)

c
δ(x′) . (14)
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For x > 0 we have

Az(t, x) =

∫
dt′
c

2
θ(t− t′ + x/c) θ(t− t′ − x/c)K(t′) , (15)

=
c

2

∫ t−x/c

−∞
dt′
K(t′)

c
, (16)

while for x < 0 we have

Az(t, x) =

∫
dt′
c

2
θ(t− t′ + x/c) θ(t− t′ − x/c)K(t′) , (17)

=
c

2

∫ t+x/c

−∞
dt′
K(t′)

c
. (18)

The scalar potential ϕ is zero since the charge density is zero at all times. The gauge
condition is then obviously satisfied

1

c
∂tϕ+∇ ·A = ∂zA

z = 0 . (19)

(c) To the right of the sheet x > 0, we find

By =− ∂Az

∂x
= +

K(t− x/c)
2c

, (20)

Ez =− 1

c

∂Az

∂t
= −K(t− x/c)

2c
. (21)

We can compute the Poynting vector at x = 0+:

S = cE ×B =− cEzBy x̂ , (22)

=c

(
K(t)

2c

)2

x̂ . (23)

To the left of the sheet x < 0, the result is similar

By =− ∂Az

∂x
= −K(t− |x|/c)

2c
, (24)

Ez =− 1

c

∂Az

∂t
= −K(t− |x|/c)

2c
, (25)

and the Poynting vector at x = 0− is

S = cE ×B =− cEzBy x̂ , (26)

=c

(
K(t)

2c

)2

(−x̂) . (27)
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B(t)
B(t)

K(t)

Ez(t, x)

x

h

K(t)

Figure 1: (a) Amperian loop used to determine the magnetic field. (b) Loop used to deter-
mine the electric field using Faraday’s law.

The energy radiated per time and area A is found by integrating over both sides of the sheet
yielding a factor of two, and the energy radiated per area per time is

1

A

∮
S · da =

1

2c
K2(t) . (28)

(d) (i) Finally we can use the elementary results to determine the electric and magnetic
fields. Drawing an Amperian loop of length ` as shown in Fig. 1(a) we find∮

B · d` =
I

c
, (29)

2B(t)` =
K(t)

c
` . (30)

Reinserting the direction of the magnetic field we find

B(t) =

{
K(t)
2c
ŷ x > 0

−K(t)
2c
ŷ x < 0

. (31)

One can also immediately check that the boundary conditions are satisfied:

n× (B2 −B1) =
K(t)

c
, or By|x=0+ − By|x=0− =

K(t)

c
. (32)

To determine the induced electric field we use Faraday’s Law in integral form∮
E · d` = −1

c
∂t

∫
B · da . (33)
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Drawing a surface as shown in Fig. 1(b) for x > 0 we find

(Ez(t, x)− Ez(t, 0))h = +
1

c
∂tB

y(t)hx , (34)

where we have recognized that the normal to the surface is in the negative y direction for a
loop as drawn in Fig. 1(b), and thus B · da < 0. Thus,

∆Ez(t, x) =
1

2c2
∂tK(t)x x > 0 (35)

A similar loop to the left of the wire yields (with careful attention to signs) the full result

∆Ez(t, x) =
1

2c2
∂tK(t)|x| . (36)

(ii) This agrees with the expansion of part (c) for |x|/c smal compared to τ :

By '± K(t)

2c
, (37a)

Ez(t, x) '− K(t)

2c
+
|x|
2c2

∂tK(t) . (37b)

(iii) For the expansion in Eq. (37) to make sense we must have |x| < cτ .
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Electromagnetism 3

Radiation during linear acceleration

(a) (6 points) An ultra-relativistic (γ � 1) positively charged particle of charge q and mass
m is traveling with velocity v0 ≡ c tanh y0 in the negative z direction from positive
infinity as shown below. At z = 0 the particle enters a semi-infinite region (z < 0) of
homogeneous electric field directed in the positive z direction, E = E ẑ.

E = 0E 6= 0

z=0

q

(i) Determine the particle’s position z(τ) as a function of proper time τ when the
particle is in the electric field.

(ii) Determine how long (in the laboratory frame) the particle remains in the electric
field.

(b) (6 points) Determine the total energy radiated by the particle as it accelerates in the
electric field.

(c) (2 points) At what angle(s) relative to the z-axis is the radiation peaked? Explain.

(d) To determine the radiation of low frequency photons, the particle’s acceleration may
be treated with an impulsive approximation

a(t) = 2v0 ẑ δ(t) . (1)

(i) (4 points) For what range of frequencies is the impulsive approximation valid?
Explain.

(ii) (2 points) Use dimensional and physical reasoning to deduce the dependence on
ω of the distribution of radiated photons per unit frequency dN/dω (at low fre-
quency).
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Solution:

(a.i) We will set c = 1 and record the relativistic Equation of Motion (EOM):

duµ

dτ
=

q

m
F µ

νu
ν , (2)

where uµ = (γ, γv) is the four velocity. Since the only non-vanishing component is F z
0 = E

the EOM reads
duz

dτ
=

q

m
Eu0 . (3)

Parametrizing the velocity by the rapidity v = tanh(y) so that

uz = sinh(y) , u0 = cosh(y) , (4)

the EOM now reads
dy

dτ
=

q

m
E . (5)

Integrating we find
y = ατ , α ≡ q

m
E , (6)

where we have chosen the integration constants so that the particle reaches zero velocity
(rapidity) at τ = 0. The particle has rapidity y(τ) = ±y0 at times

τ± ≡ ±
y0
α
, (7)

and thus τ+ and τ− are the proper times that the particle exits and enters the electric field
respectively.

To find the z coordinate we integrate the velocity

dz

dτ
= uz , (8)

using uz = sinh(y) to find

z(τ) =

∫
dτ sinh(ατ) , (9)

=
1

α
cosh(ατ) + const . (10)

Since at τ = τ± the particle is at z = 0, we adjust the integration constant to arrive at our
final result.

z =
1

α
(cosh(ατ)− cosh(ατ+)) . (11)

(a.ii) Similarly, we may determine the time as a function of proper time. Using

dt

dτ
= u0 , (12)
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and u0 = cosh(ατ), we find

t =

∫
dτ cosh(ατ) , (13)

=
1

α
sinh(ατ) + const . (14)

The integration constant is arbitrary and defines t = 0. The time that elapses between when
the particle enters the electric field and when the particle exits the electric field is

tin =t(τ+)− t(τ−) , (15)

=
2

α
sinh(ατ+) . (16)

(b) We will determine the acceleration of the particle and then integrate the relativistic
Larmour formula to determine the radiation. The total radiated per retarded time is a
Lorentz invariant

dW

dt
=

q2

4πc3
2

3
AµAµ , (17)

where
Aµ =

d2xµ

dτ 2
, (18)

is the proper acceleration.
Since

xµ =
1

α
(sinh(ατ) + const, cosh(ατ) + const) , (19)

the proper acceleration is
Aµ = α(sinh(ατ), cosh(ατ)) , (20)

and the proper acceleration squared is

AµAµ = α2 . (21)

We used the familiar identity, cosh2− sinh2 = 1. Integrating over time we find the total
radiated power is proportional to tin.

W =

∫
dt
dW

dt
, (22)

=

∫ τ+

τ−

dτ
dt

dτ

e2

4πc3
2

3
α2 , (23)

=
q2

4πc3
2

3
α2 [t(τ+)− t(τ−)] , (24)

=
q2

4πc3
2

3
α2tin . (25)
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(c) The intent of this question is to understand the qualitative features of soft bremsstrahlung,
which accompanies all collisions at high energies. For an impulsive collision with change in
velocity from v1 → v2 the energy radiated per frequency is

ω
dN

dωdΩ
∝
∣∣∣∣n× n× β2

1− n · β2

− n× n× β1

1− n · β1

∣∣∣∣2 . (26)

where for the problem at hand β2 = vẑ while β1 = −vẑ. The important feature is the
appearance of the “antenna” like factors

n× n× β
1− n · β . (27)

Such factors produce radiation which is highly collimated in the direction of of motion. This
means that the radiation will be peaked near β2 and β1, which corresponds to θ = 0 (for
β2) and θ = π (for β1) for the problem at hand.

(d.i) When the frequency ω is much smaller than t−1in the emitted radiation can not resolve
the acceleration process, and perceives the acceleration as happening instantaneously.

(d.ii) Another important feature of Eq. (26) is that

dN

dω
∝ 1

ω
, (28)

which says that the energy per frequency dW/dω = ω dN/dω is independent of frequency.
This feature can be “derived” by recognizing that the dN/dω has units of time, and 1/ω is
the only quantity with units of time in the impulsive approximation.

To summarize the results of (c) and (d) which highlight the generic features of soft
bremsstrahlung, Fig. 1 shows a schematic plot of dN/d cos θ and dN/dω
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Figure 1: Two graphs showing the qualitative features of soft bremsstrahlung accompanying
high energy collisions: (a) the angular dependence, and (b) the frequency dependence dN/dω,
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Quantum Mechanics 1

An electron in E&M fields

An electron is confined to move within the [x, y] plane. An external magnetic field
B = Bẑ is applied. Neglect spin.

(a) (2 points) What are the stationary values (i.e. eigenvalues) of the electron’s energy?

Hint: work in the Landau gauge where A = Bxŷ.

(b) (2 points) What is the ground state wavefunction (ignoring normalization)?

(c) (2 points) Show that the ground state degeneracy scales with the area of the system
and the magnetic field.

Now an electric field is added, E = E x̂. This corresponds to a new term in the Hamiltonian,
Helec = −eEx.

(d) (3 points) What are the stationary values of the electron’s energy now?

(e) (3 points) How does the electric field change the ground-state wavefunctions?

(f) (3 points) Derive an expression for the probability current density, 〈j(x, y)〉, evaluated
in these states.

(g) (2 points) Evaluate the current density of part (f) at the point (x, y) where the wave
function squared |ψ(x, y)|2 is maximal.

(h) (1 point) Give a physical interpretation of the last result.
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Solution

(a) In the Landau gauge Ay = Bx,

H =
1

2m

(
p2x + (py − eBx)2

)
. (1)

Since momentum along y is a good quantum number, we can adopt the ansatz for
eigenstates ψky ,n(x) = eikyyφn(x), where φn(x) satisfies:

1

2m

(
p2x + (~ky − eBx)2

)
φn(x) = Eky ,nφn(x) . (2)

It is useful to define
x0 ≡

~ky
eB

, (3)

so that Eq. (2) simplifies to:

1

2m

(
p2x + (eB)2(x− x0)2

)
φn(x) = Eky ,nφn(x) . (4)

This is exactly a a quantum harmonic oscillator. Its energies are given by:

Eky ,n = ~ω
(
n+

1

2

)
, ω ≡ eB

m
. (5)

(b) Utilizing Eq. (4), the ground state wavefunction is a shifted harmonic oscillator wave-
function:

ψky ,n(x) = eikyye−mω(x−x0)
2/(2~), (6)

where ω is defined in Eq. (5) and x0 is defined in Eq. (3).

(c) Assume periodic boundary conditions with dimensions Lx, Ly. The eigenvalues in
Eq. (5) are independent of ky. Thus, the ground state degeneracy is exactly equal to
the number of possible ky. The finite size in the y direction restricts ky to the quantized
values 2πm/Ly for integer m. Using the definition of x0 in Eq. (3), the spacing between
the states indexed by ky and ky + 2π/Ly is h/(eBLy). Thus, in a finite sample, there
will be eBLxLy/h states. This shows that the ground states degeneracy scales linearly
with both the area of the system (Lx · Ly) and the magnetic field.

(d) Now we consider an electric field. Since momentum along y remains a good quantum
number, we can maintain our ansatz for eigenstates, ψky ,n(x) = eikyyφn(x). With the
addition of Helec, φn(x) satisfies:

1

2m

(
p2x + (eB)2(x− x0)2 − 2meEx

)
φn(x) =

(
Eky ,n + ∆ky ,n

)
φn(x), (7)

where Eky ,n is defined in Eq. (5). Completing the square yields:

1

2m

(
p2x + (eB)2

(
(x− x0 − x1)2 − 2x0x1 − x21

))
φn(x) =

(
Eky ,n + ∆ky ,n

)
φn(x), (8)
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where we have defined
x1 ≡

E
Bω

. (9)

Eq. (8) is a harmonic oscillator equation with an energy offset. It has the same char-
acteristic frequency as before the electric field is turned on. Thus, it is evident that

∆ky ,n = −eE
(
x0 −

x1
2

)
, (10)

which depends on ky but not on n. The exact eigenspectrum is thus,

~ω
(
n+

1

2

)
− eE(x0 −

x1
2

) , (11)

where ω is the same as the case without an electric field (Eq. (5)) and x0 and x1 are
defined in Eqs. (3) and (9).

(e) The eigenstates are again a shifted harmonic oscillator wavefunction:

ψky ,n(x) = eikyye−mω(x−x0−x1)
2/(2~) . (12)

(f) In the presence of an electromagnetic potential, the probability current, j is given by:

j =
1

2m

(
−i~(ψ∗∇ψ − ψ∇ψ∗)− 2eA|ψ|2

)
. (13)

Evaluating this equation for the eigenstate ψky ,n in Eq. (12) yields:

jky ,n =
1

m
(~ky − eBx) ŷ . (14)

(g) When E = E x̂, the wavefunction ψky ,n is centered at x0 +x1 (from Eq. (12).) Plugging
into Eq. (14) yields:

jky ,n = −E
B
. (15)

(h) Physically, we interpret this result as the classical drift velocity.
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Quantum Mechanics 2 
 

Orbital and spin dynamics in magnetic field 

  

A. In this part of the problem, we consider a spinless particle with mass m and electric charge q, moving 
in an external magnetic field B = A. 

 

 A.1 (4 points). Prove that the expression   mq /ˆˆ Apv   is the legitimate operator of particle’s 

velocity in the sense that dtd /ˆˆ rv  , where r is its radius-vector. Derive the commutation relations 
between the Cartesian components of the vector-operator v̂ , in terms of the components of the vector B. 

 

 A.2 (4 points). Prove that  

2

ˆˆˆ vBBvv 
 q

dt

d
m . 

Discuss the relation between this equality and the classical expression for the Lorentz force. 

 
B. In this part of the problem, we ignore the orbital motion of the particle, but take into account its spin-
½, with a gyromagnetic ratio   0. 

 One of the key components of the currently developed quantum information technology is the 
so-called Hadamard gate – a system that acts on a qubit, i.e. of a two-level quantum system, performing 
the following transformation of its basis states - in this field, traditionally called 0 and 1: 

                  10
2

1
1ˆ,10

2

1
0ˆ  HH .   (1) 

 B.1 (8 points). Identifying the state 0 with the spin-½  fully polarized along the z-axis, and the 
state 1 with its opposite polarization, prove that the Hadamard transform may be implemented by 
applying to the particle a constant magnetic field B with the following Cartesian components: 

2
,0,

2

B
BB

B
B zyx  , 

for a certain time interval t, and calculate this interval. 

 B.2 (4 points). Calculate S(t) for the time evolution of the spin vector-operator Ŝ  in this field 
for the initial state 0. Give a geometric description of  this evolution, and mark the trajectories 
describing the particular transformations (1). 

 



Solution 

A. 1). The velocity operator is the time-derivative of the position operator �̂�, which can be 

calculated using Ehrenfest Theorem: 

𝑑

𝑑𝑡
�̂� = −

𝑖

ℏ
〈[�̂�, �̂�]〉 = −

𝑖

2𝑚ℏ
[�̂�, (�̂� − 𝑒𝑨)2] 

 = −
𝑖

2𝑚ℏ
{[�̂�, (�̂� − 𝑒𝑨)](�̂� − 𝑒𝑨) + (�̂� − 𝑒𝑨)[�̂�, (�̂� − 𝑒𝑨)]} 

 =
1

𝑚
(�̂� − 𝑒𝑨) 

 

The commutation relation of the components of the velocity operators is then: 

[𝑣�̂�, 𝑣�̂�] =
1

𝑚2
[(�̂�𝑖 − 𝑞𝐴𝑖), (�̂�𝑗 − 𝑞𝐴𝑗)] 

=
𝑒

𝑚2 ([�̂�𝑗 , 𝐴𝑖] − [�̂�𝑖 , 𝐴𝑗]) =
𝑖𝑞ℏ

𝑚2 (
𝜕𝐴𝑗

𝜕𝑟𝑖
−

𝜕𝐴𝑖

𝜕𝑟𝑗
) =

𝑖𝑞ℏ

𝑚2 ℇ𝑖,𝑗,𝑘𝐵𝑘 

 

2). We can calculate the time derivative of the velocity operator, again, using Ehrenfest Theorem. 

Here we express the Hamiltonian in terms of the velocity operator: �̂� =
(�̂�−𝑒𝑨)2

2𝑚
=

𝑚�̂�𝟐

2𝑚
. Then 

  

𝑚
𝑑

𝑑𝑡
�̂� = −

𝑖𝑚

ℏ
[�̂�, �̂�] = −

𝑖𝑚2

2ℏ
[�̂�, �̂� ∙ �̂�] 

= −
𝑖𝑚2

2ℏ
[∑ �̂�𝑖𝒆�̂�,

𝑖

∑ �̂�𝑖
2

𝑖

] = −
𝑖𝑚2

2ℏ
∑[�̂�𝑖 , �̂�𝑗

2]

𝑖,𝑗

𝒆�̂� 

 = −
𝑖𝑚2

2ℏ
∑ {�̂�𝑗[�̂�𝑖 , �̂�𝑗] + [�̂�𝑖 , �̂�𝑗]�̂�𝑗}𝑖,𝑗 𝒆�̂� 

Using result from 1), we get: 

𝑚
𝑑

𝑑𝑡
�̂� =

𝑞

2
∑{ℇ𝑖,𝑗,𝑘�̂�𝑗𝐵𝑘 + ℇ𝑖,𝑗,𝑘𝐵𝑘�̂�𝑗}

𝑖,𝑗

𝒆�̂� =
𝑞

2
(�̂� × 𝑩 − 𝑩 × �̂�) 

 

 

 

B.  1). The Hamiltonian of the spin in B field is: 

�̂� = −𝛾𝑩 ∙ 𝑺 = −𝛾
𝐵

√2
(

1 1
1 −1

) 



We can write down the Schrodinger equation: 

𝑖ℏ
𝑑

𝑑𝑡
(

𝜓1

𝜓2
) = −𝛾

𝐵

√2
(

1 1
1 −1

) (
𝜓1

𝜓2
) 

Which yields eigenvalues of ±𝛾𝐵/ℏ, and normalized eigenvectors of (1 ± √2, 1)/√4 ± 2√2 . 

Thus 

𝜓1 = 𝛼
1 + √2

√4 + 2√2
𝑒

−𝑖
𝐵𝛾
ℏ

𝑡
+ 𝛽

1 − √2

√4 − 2√2
𝑒

𝑖
𝐵𝛾
ℏ

𝑡
 

𝜓2 = 𝛼
1

√4 + 2√2
𝑒−𝑖

𝐵𝛾
ℏ

𝑡 + 𝛽
1

√4 − 2√2
𝑒𝑖

𝐵𝛾
ℏ

𝑡 

Applying initial condition 𝜓1(0) = 1 and 𝜓2(0) = 1, we get 

𝜓1 =
1 + √2

2√2
𝑒−𝑖

𝐵𝛾
ℏ 𝑡 −

1 − √2

2√2
𝑒𝑖

𝐵𝛾
ℏ 𝑡 

𝜓2 =
1

2√2
𝑒−𝑖

𝐵𝛾
ℏ 𝑡 −

1

2√2
𝑒𝑖

𝐵𝛾
ℏ 𝑡 

 

To realize Hadamard gating, we need 𝜓1 = 𝜓2. If we rewrite the wave functions as: 

𝜓1 = cos (
𝐵𝛾

ℏ
𝑡) −

𝑖

√2
sin (

𝐵𝛾

ℏ
𝑡) 

𝜓2 = −
𝑖

√2
sin (

𝐵𝛾

ℏ
𝑡) 

we see that at 𝑡 =
𝜋ℏ

2𝐵𝛾
, the cos term vanishes, and Ψ~

|0⟩+|1⟩

√2
 . This achieves the functionality of a 

Hadamard gate. 

 

2). Let 𝜔 ≡
𝐵𝛾

ℏ
. We can find out the expectation values of the x,y,z projections of the spin, as a 

function of time: 

𝑆𝑥(𝑡) =
ℏ

2
(𝜓1

∗, 𝜓2
∗) (

0 1
1 0

) (
𝜓1

𝜓2
) =

ℏ

2
sin2(𝜔𝑡) 

𝑆𝑦(𝑡) =
ℏ

2
(𝜓1

∗, 𝜓2
∗) (

0 −𝑖
𝑖 0

) (
𝜓1

𝜓2
) =

−ℏ

2
√2sin(𝜔𝑡)cos(𝜔𝑡)  

𝑆𝑧(𝑡) =
ℏ

2
(𝜓1

∗, 𝜓2
∗) (

1 0
0 −1

) (
𝜓1

𝜓2
) =

ℏ

2
cos2(𝜔𝑡) 

The rotation of the spin is depicted by the figure below. 



 

The Hadamard operation rotates the spin from pointing to the z-axis to point to the x-axis. Similarly, 

the Hadamard operation also rotates the spin from pointing to the negative z-axis to point to the 

negative x-axis. 



Quantum Mechanics 3

Dynamics of a driven 3-level atom

Consider a three-level atom with non-degenerate eigenstates |ψj〉 and energies Ej (j =
1, 2, 3) as shown in the figure (set E1 = 0). The system is subject to weak resonant couplings
Ĥ ′±(t) = ~Ω±(t) cosω±t between |ψ1〉 and |ψ2〉, and between |ψ3〉 and |ψ2〉, with ω+ = (E2−
E1)/~ and ω− = (E2 −E3)/~ respectively. The coupling amplitudes Ω±(t) are adiabatically
varying in time, and can be assumed to be real. Neglect any direct coupling between |ψ1〉
and |ψ3〉.

(a) Equation of motion [5pts]. Use time-dependent perturbation theory to find the
equations of motion for the amplitudes aj(t) in the evolution of |ψ(t)〉 =

∑3
j=1 aj(t)|ψj〉,

and write these equations out in matrix form.

(b) Rotating-wave Hamitonian [8pts]. (1) Re-write the equations of motion in terms
of new amplitudes b1 = a1, b2 = a2 exp (iω+t), b3 = a3 exp (i[ω+ − ω−]t), neglecting any
remaining oscillating terms. Why is this approximation justified? (2) Find the eigenen-
ergies of the resulting effective Hamiltonian, and show that one of its three eigenstates,
the so-called “dark state”, has amplitudes (cos θ, 0,− sin θ) in the new effective basis,
where tan θ = Ω+/Ω−. Why does the term “dark state” make sense?

(c) Sequential state transfer [3pts]. Suppose that you want to transfer the state of
the system from |ψ(0)〉 = |ψ1〉 to |ψ(∞)〉 = |ψ3〉. One way to do this is to first apply
Ω+ (with Ω−=0) in order to perform a state rotation |ψ1〉 → |ψ2〉, and to then apply
Ω− (with Ω+=0) for |ψ2〉 → |ψ3〉. Assuming that both Ω±(t) are square pulses with
amplitude Ω, solve the equation of motion for each state rotation and find the pulse
duration τ necessary for making the transfer complete.

(d) Adiabatic state transfer [4pts]. The existence of the dark state can be used to
smoothly transfer the state of the system from |ψ(0)〉 = |ψ1〉 to |ψ(∞)〉 = |ψ3〉 without
going through |ψ2〉. Explain why and how this can be done, and qualitatively describe
suitable pulse profiles Ω±(t). What can you say about the temporal ordering and
overlap of the two pulses? Which of the two methods is more robust in view of possible
fluctuations of the pulse parameters?
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Solution

(a) Equation of motion [5pts]. Solution. First write the total Hamiltonian Ĥ = Ĥ0 +
Ĥ ′(t) with Ĥ0ψj = Ejψj. Solve Schrödinger’s equation i~|ψ〉 = Ĥ|ψ〉 for |ψ(t)〉 =∑3

j=1 aj(t)|ψj〉, and use orthogonality 〈ψj|ψk〉 = δjk to obtain

~
daj
dt

= Ejaj(t) +
∑
k

〈ψj|H ′(t)|ψk〉ak(t) , (1)

where the interaction matrix elements vanish except for the state pairs shown in the
figure. In matrix form

i~
d

dt

a1a2
a3

 =

 0 H+(t) 0
H+(t) E2 H−(t)

0 H−(t) E3

 ·
a1a2
a3

 . (2)

(b) Rotating-wave Hamitonian [8pts]. Solution. Using the transformations (“rotating-
wave transformation”), expressing cosω±t in exponential form, and neglecting oscilla-
tory time dependencies ∝ ei2ω±t (“rotating-wave approximation”) yields, after some
algebra,

i~ḃ2 + ~ω+b2 =
~Ω+

2

(
ei2ω+t + 1

)
+ E2b2 +

~Ω−
2

(
ei2ω−t + 1

)
, (3)

and structurally similar equations for b1 and b3. Neglecting oscillating terms, this can
be written as

i~
d

dt

b1b2
b3

 = −~
2

 0 Ω+ 0
Ω+ 0 Ω−
0 Ω− 0

 ·
b1b2
b3

 . (4)

The couplings Ω±, which determine the time evolution of the bj, are much smaller than
the splittings ω±, such that a cycle averaging is justified, and oscillatory terms can be
neglected.

Eigenvalues and dark eigenstate follow from simple linear algebra. Looking for the
partial solution of this system of three homogeneous linear differential equations in the
form exp (iEt/~) leads to eigenvalues

E0 = 0, E± = ±~
2

√
A2
− + A2

+ , (5)

and eigenvectors (
−Ω−

Ω+

, 0, 1

)
, . . . , . . . , (6)

the first of which has the suggested form after normalization. The term “dark state” is
motivated by the fact that the state has no contribution from the upper excited level
and is thus never subject to decay (and thus: the possibility of detection via scattered
light).
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(c) Sequential state transfer [3pts]. Solution. The equation of motion for the first
step can be reduced to

i~
d

dt

(
b1
b2

)
= −~

2

(
0 Ω
Ω 0

)
·
(
b1
b2

)
. (7)

Differentiation and substitution leads to b̈1 = −(Ω/2)2b1 and b̈2 = −(Ω/2)2b2, or
b1 = cos(Ωt/2) and b2 = sin(Ωt/2) with the proper initial conditions. Therefore
τ = π/Ω (“Rabi π-pulse condition”). The same for the second step.

(d) Adiabatic state transfer [4pts]. Solution. To transfer the population, note that
|ψ1〉 coincides with the dark state for θ = 0. This means that 0 = arctan θ = Ω+/Ω−,
which can be fulfilled for Ω+ ≡ 0 while Ω− 6= 0. Conversely, |ψ3〉 coincides with
the dark state for θ = π/2 or arctan θ = ∞, which means Ω− ≡ 0 while Ω+ 6= 0.
This suggests the following pulse sequence (“STIRAP” or“stimulated rapid adiabatic
passage”): Start with a pulse that couples the 2 → 3 transition (Ω−), and then add
a pulse that couples the 1 → 2 transition (Ω+), i.e. a sequence that is is OPPOSITE
(“counterintuituve”) to the Rabi pulse sequence. Note that the pulses need to partially
overlap, since once cannot have Ω− = 0 before Ω+ is already at a finite value. There is
no hard condition on the pulse area, duration, and exact timing; as long as one is able
to completely extinguish the couplings at the beginning and end of the sequence, the
transfer is complete.
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Statistical Mechanics 1

Brownian motion

The goal of this problem is to explore several aspects of the Brownian motion of a clas-
sical particle.

In this model, the particle is a hard sphere of a radius R and
mass M , which is hit by molecules of an ideal classical gas at
temperature T . The size r and mass m of the gas molecules are
negligible compared to those of the particle. Assume also that all
the molecular collisions with the particle are elastic and specular
(i.e. without any angular momentum transfer).

First, assume that the particle is initially at rest.

(A) [4pt] Calculate the hit rate, i.e., the number of collisions of the molecules with the
particle per unit time.

(B) [4pt] Calculate the average energy transferred to the particle in one collision.
Now, assume that the particle has initial velocity some V with respect to the gas,
which is much slower than the r.m.s. velocity of the molecules.

(C) [5pt] Calculate the drag coefficient η defined by the relation

〈F〉 = −ηV , (1)

where F is the effective force resulting from molecular hits.

Hint: For the calculation, you may want to consider how the Maxwell’s distribution is
modified in the reference frame of the particle.

(D) [4pt] Use the Langevin equation describing the molecular hits (but no other forces)

MV̇ = F = 〈F〉+ F̃ = −ηV + F̃ , where 〈F̃〉 = 〈(F− 〈F〉)〉 = 0 , (2)

and the results from (A,B,C) to calculate the time dependence of the average kinetic
energy of the particle and its equilibrium value. Compare the latter to the equipartition
theorem.

(E) [3pt] Use your results to estimate the molecular hit rate and the energy relaxation time
for a 1-micron dust particle in air at room temperature.
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Solution

(A) In central collisions, the deflection angle of a molecule is determined by the impact
parameter

b = R sin β = R cos
α

2
(3)

The momentum transferred to the particle in a single collision is

∆p =
(
mv
(
1− cosα

)
,mv sinα

)
= 2mv sin

α

2

(
sin

α

2
, cos

α

2

)
(4)

and the squared momentum transfer is

(
∆p
)2

= 4m2v2 sin2 α

2
= 4m2v2

(
1− b2

R2

)
, (5)

In Part (B), we will also need the momentum transfer averaged over collisions with the same
|b| = b; it is parallel to the initial velocity v:

∆p = 2mv sin2 α

2
= 2mv

(
1− b2

R2

)
. (6)

The Maxwell’s distribution for the ideal gas at rest (normalized to one particle) is isotropic,

dn = nf0(v) d3v , f(v) = C exp
[
− mv2

2T

]
, C−1 =

∫
d3v e−

mv2

2T =
[2πT

m

]3/2
. (7)

where n = N/V is the average concentration (particle density), N is the total number of
particles, and V is the total volume.

The total number of collisions per second is given by the integral over the velocity dis-
tribution

dNcoll

dt
=

∫
d3v f0(v)n|v|

∫ R

0

2πb db , (8)

where n|v| is the particle flux and
∫ R
0

2πb db is the integral over the 2D impact space. Al-
though in this case the latter it is trivial and equal to πR2, we have written explicitly
because this representation will be useful later. Computing the integral with the Maxwell’s
distribution yields the rate of collisions

dNcoll

dt
= πR2nC

∫ ∞
0

dv 4π v3 e−
mv2

2T = 2nR2
[2πT

m

]1/2
. (9)

(B) Since all the collisions are independent, we can calculate the total squared momentum
(∆P)2 transferred to the particle in Ncoll collisions as〈(

∆Pcoll
)2〉

=
〈(∑

coll

∆p
)2〉

=
〈∑

coll

(
∆p
)2〉

= Ncoll
〈(

∆p
)2〉

. (10)
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In order to compute this quantity, we have to integrate the squared momentum transfer
(∆p)2 (5) over the impact parameter b (3). Otherwise similar to part A, the calculation of
the mean squared momentum transfer per unit time can be expressed as

d

dt
〈(∆Pcoll)

2〉 =

∫
d3v f0(v)n|v|

∫ R

0

2πb db · (∆p)2 , (11)

and computing the integrals yields

d

dt
〈(∆Pcoll)

2〉 = 4m2nC

∫
4π dv v5 e−

mv2

2T

∫ R

0

2π db b
(

1− b2

R2

)
=

8

π
m2nR2

[2πT

m

]3/2
. (12)

Thus, the mean squared momentum transfer in a single collision is

〈(∆p)2〉 =
d〈(∆Pcoll)

2〉/dt
dNcoll/dt

= 8mT . (13)

and the corresponding energy transfer is

〈∆εcoll〉 =
〈(∆p)2〉

2M
=

4m

M
T . (14)

(C) Computing the momentum transferred to the moving particle is similar to the calcula-
tions in Part (B). It is convenient to work in the reference frame of the particle, in which
the gas velocity distribution is shifted by (−V):

f(v′) = f0(v) = f0(v
′ + V) ≈ f0(v

′) +
df0
d|v|

d|v|
dV
·V = f0(v

′)
[
1− mv′ ·V

T

]
, (15)

where v′ is the molecule’s velosity relative to the particle. With the expression for the
transferred momentum (6), the total momentum transfer per second (aka force) can be
computed as

dPcoll

dt
=

∫
d3v′ f(v′)n|v′|

∫ R

0

2πb db · ∆p

=

∫
d3v′ f0(v

′)
[
− mv′ ·V

T

]
n|v′|

∫ R

0

2πb db · 2mv′
(

1− b2

R2

)
=
(
− 2m2nC

T

)∫
d3v′ |v′|e−mv

′2
2T (v′ ·V)v′

∫ R

0

2π db b
(

1− b2

R2

)
=
(
− 2m2nC

3T
V
)∫

4π dv′ v′5 e−
mv′2
2T

∫ R

0

2π db b
(

1− b2

R2

)
=

4

3π

m2nR2

T

[2πT

m

]3/2 (
−V

)
,

(16)

In the second line, the velocity-independent term was dropped and only the ∝ f0V term
was kept due to rotational symmetry, which implies that the net force is zero for a particle
at rest (V = 0). In the fourth line, the angular averaging 〈(v′ ·V)v′〉 = 1

3
〈v′2〉V was used.
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It is instructive to observe the relation between the drag force coefficient

η =
4

3π

m2nR2

T

[2πT

m

]3/2
. (17)

and the the mean squared momentum transfer to the particle per unit time,

d〈(∆Pcoll)
2〉/dt

η
= 6T (18)

which is a manifestation of the fluctuation-dissipation theorem (FDT).
(D) Rewriting the Langevin equation in terms of the particles’ momentum, we get

Ṗ = − η

M
P + F̃ (19)

The the first term on the r.h.s. is the damping of the particle’s momentum, while the second
term induces fluctuation of its momentum and kinetic energy due to molecular collisions.
The damping of the particle’s kinetic energy is then[ d

dt
〈E〉
]

damping
=

1

2M
· 2〈P · Ṗ〉 = −2η

M

1

2M
〈P2〉 = −2η

M
〈E〉 , (20)

while the effect of the second term in Eq. (19) has been computed in Part (B). The full
equation for 〈E〉 is

d

dt
〈E〉 = −2η

M
〈E〉+

1

2M

d〈(∆Pcoll)
2〉

dt
(21)

where the last term is the intermediated result (12) from Part (B). The stationary state is
reached when d〈E〉/dt = 0, and from the r.h.s. we find that the equilibrium value is

〈E〉eq =
1

4

d〈(∆Pcoll)
2/dt

η
=

3

2
T , (22)

which, of course, is consistent with the equipartition theorem. The relaxation time for the
energy is τ = M/(2η), and the equilibrium value is reached by the exponential law

〈E(t)〉 = 〈E〉eq +
(
E0 − 〈E〉eq

)
e−

2ηt
M , (23)

where E0 is the initial kinetic energy of the particle.
(E) The molecular mass of the air is

m ≈ µmp = 29 · 1.67 · 10−24 g ≈ 4.8 · 10−23g , (24)

where µ ≈ 29 is the molar mass of the air and mp ≈ 1.67 · 10−24g is the proton mass. The
concentration (number density) can be easily estimated as

n =
p

T
≈ 105Pa

1.38 · 10−23J/K · 300K
≈ 2.4 · 1025m−3 = 2.4 · 1019cm−3 (25)
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and the “thermal velocity”

vT =

√
2πT

m
≈
√

2 · 3.14 · 1.38 · e−16erg/K · 300K

4.8 · 10−23g
≈ 7.4 · 104cm/s (26)

For a particle with radius R = 0.5 · 10−4cm, the hit rate is

dNcoll

dt
= 2nR2vT ≈ 2 · 2.4 · 1019cm−3 · 0.25 · 10−8cm2 · 7.4 · 104cm/s ≈ 0.9 · 1016s−1 . (27)

The drag coefficient is computed in a similar fashion

η =
4

3π

m2nR2

T

[2πT

m

]3/2
=

8

3
mnR2vT ≈ 5.7 · 10−7 g/s , (28)

and, assuming that the density of the particle is ρ = 2 g/cm3, its mass is

M =
4π

3
R3ρ ≈ 4 · 3.14

3
· 0.125 · 10−12cm3 · 2g/cm3 ≈ 1.05 · 10−12 g , (29)

resulting in the energy relaxation rate

τ =
M

2η
≈ 1.05 · 10−12g

2 · 5.7 · 10−7 g/s
≈ 0.92 · 10−6s . (30)
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Statistical Mechanics 2 

 

2D and 3D gases in equilibrium 

 

 A closed volume V, with inner wall surface of area A, contains N >> 1 similar, non-relativistic 
particles of mass m each. Any of the particles may be either moving freely inside the volume, as a 
component of a 3D classical gas, with degeneracy gV of each orbital state, or condense on the inner walls, 
where it can also move freely as a component of a 2D gas – also classical, with a generally different 
degeneracy gA of each orbital state. The condensation of a particle releases energy . 

  

 A (3 points). Using any statistical approach you like, calculate the average number N3 of 
particles in the 3D gas, as a function of its chemical potential   and temperature T. 

 B (5 points). Perform a similar calculation of the average number N2 of particles condensed on 
the surface, taking into account the 2D character of their motion. 

 C (2 points). Assuming that N2, N3 >> 1, use the conditions of thermal and chemical equilibrium 
of the 3D and 2D phases, and the results obtained in tasks A and B, to derive a system of algebraic 
equations relating these numbers.  

 D (3 points). Solve the obtained system of equations to calculate the chemical potential  of the 
system, the number of particles in the 3D gas, and its pressure P, as explicit functions of N and T. 

 E (4 points). Analyze the results in detail. In particular, simplify them for very low and very high 
values of the ratio kBT/, and sketch the function P(T) at fixed N and , paying special attention to the 
temperature region where the ratio is of the order of 1.  

 F (3 points). Discuss the physics of your results. Does this model describe a phase transition 
between the 2D and 3D gases? (Justify your answer.) If not, suggest an example how the model may be 
modified to describe such a transition. (No quantitative analysis is required.)  

 

 Hint / reminder:   2/12exp  




d . 



Solution 

 A (3 points). Perhaps the simplest way to calculate NV  at given T and  is to combine the well-
known expression for the density of quantum states in the 3D momentum space, 

               
 

pd
Vg

dN V 3
33

2 
 ,     (1) 

with the elementary formula for the energy of a free particle, 

           
m

p

2

2

 ,      (2) 

and the Boltzmann expression for the average occupancy of the state with energy , valid for both 
bosons and fermions in the classical limit n << 1: 

               






 


T

n


exp ,     (3) 

where temperature T is in energy units. Combining these formulas, we get 

           
  
















 pd

mT
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The last integral may be readily calculated in either spherical or Cartesian coordinates; in the latter 
approach, using the provided reminder, we get  

       ,2exp2
2

exp
2

exp 2/3

3

22/1

3
2

3
2

mTdmTdp
mT

p
pd

mT

p
x

x  





































  









 (5) 

so that for N3 we get the result that may be represented in the following convenient form:1 
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 B (5 points). For the classical, non-relativistic 2D gas on the wall surface, we still may use Eq. 
(3). However, if we want to keep for  and  the same reference as in Eq. (2) (equal to the energy of a 
particle at rest in the 3D gas), for the 2D gas we need to replace that expression with the formula 
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 ,      (7) 

which takes into account the particle condensation energy . Also Eq. (1) has to be replaced with the 
analogous 2D expression: 
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1 Such notation, making calculations less bulky, is very popular in semiconductor physics, where effective charge 
carriers (electrons and holes) may exist in several different “valleys” of the energy dispersion law. 



As the result, instead of Eq. (6) we get 
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 C (2 points). Conceptually, Eqs. (6) and (9) give the correct average numbers of N3 and N2 if the  
chemical potential  is externally fixed. However, if these numbers are very large, their fluctuations are 
(relatively) very small, so that we may use these formulas even if the (approximate, average) value of  
is determined by the given (exact) total number of particles N: 

       NNN  23 .     (10) 

Moreover, for the gases in the chemical and temperature equilibrium,  and T have to be equal. With 
this condition, Eqs. (6), (9) and (10) yield 
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This equation is sufficient to calculate all characteristics of the system. 

 D (3 points). Since by their definition, NV(T) and NA(T) do not depend on , Eq. (11) may be 
readily solved to give 
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so that the equilibrium number of particles in the 3D gas is 
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where 
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is a temperature-independent, dimensionless parameter of the system. Since the particles in the 3D phase 
obey the ideal-gas equation of state, their pressure is 
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 E (4 points). The last result is plotted in the Fig. below for several large values of the parameter 
. (Note that according to Eq. (14), since typically gV ~ gA ~ 1, this parameter is of the order of V/Arc() 
where rc(T)  /(mT)1/2 is the well-known temperature-dependent quantum correlation length of a free 
particle. For typical molecules and temperatures, this length is of the order of 10-11m, while the ratio V/A 



is of the order of the linear size of the container, so that in human-scale experiments with molecular 
gases,  is so large that even its logarithm is substantially larger than 1.) The plots show that the 
temperature dependence of P is very much different at temperatures below and above the value Tc that 
calculated from the transcendental equation 
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(Because of the extreme slowness of the logarithm function at very large values of its argument, Tc is 
somewhat lower than, but still of the order of .)  

 

 

 

 

 

 

 

 

 

 

 
 In particular, if temperature is well below Tc, virtually all particles are condensed at the surface: 
N3 << N2  N, and the pressure provided by the few particles remaining in the 3D phase is exponentially 
low: 
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approximately following the Arrhenius law exp{-/T} typical for all thermally-activated effects. 

 On the other hand, at temperatures well above Tc, the calculated pressure in the 3D particles 
approaches the equation of state of the usual ideal gas,  

           
V

NT
P  .      (18) 

Hence this simple model can describe the virtually full evaporation of the condensed phase (N2 << N3  
N) at sufficiently high temperatures. 

 F (3 points). Eqs. (13)-(15) and figure above show that in contrast to genuine phase transitions, at 
any finite  the crossover between the 3D and 2D phases, taking place at T ~ Tc, is smooth even at N  
. Such smooth crossovers are typical for models neglecting particle interaction. (The Bose-Einstein 
condensation, due to the implicit quantum interaction between the particles, is a very special exception.) 
Typically, any account of particle interaction, for example their mutual attraction, leads to a model 
describing a phase transition. 
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Statistical Mechanics 3

The 1D Potts model

In the so-called Potts model, a uniform 1D chain of N classical spins (in the absence of
an external magnetic field) is described by the following interaction Hamiltonian:

H = −J
∑
〈ij〉

δηi,ηj ,with J > 0 , (1)

where J is a positive coupling constant, ηi is a classical spin variable at the site i, describing
the spin state, which may take integer values in the set {1, ..., q}, δab is the Kronecker delta
symbol, and the summation is over all pairs of adjacent spins. Consider the model with
q = 3 in thermal equilibrium at temperature T .

Do parts parts (a), (b), and (c) for finite N , and then take the limit N → ∞ for parts
(d), (e), and (f). For parts (c), (d), (e), and (f), you should give an explicit closed-form
expression, not an abstract expression involving a summation.

(a) (1 pts.) Write the general expression for the statistical sum (partition function) Z of
the system.

(b) (2 pts.) Assuming periodic boundary conditions, express Z via the appropriate transfer
matrix.

(c) (4 pts.) Use this expression to calculate Z. (Check your result carefully as all subse-
quent parts depend on this result.)

Take N →∞ for the remainder of the problem:

(d) (3 pts.) Calculate the free energy per site, F , and the average energy per site, E.

(e) (3 pts.) Calculate the specific heat capacity per site, C, and the entropy per site, S.

(f) (5 pts.) Calculate the values of E, C, and S in the limits T → 0 and T → ∞.
Physically and quantitatively explain your results for E and S in both limits.

(g) (2 pts.) Does this system have a symmetry-breaking phase transition at finite temper-
ature? Prove your answer.
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Solution

(a) (1 pt.) Write the general expression for the statistical sum (= partition function) Z
of the system. Ans. Let β = 1/(kBT ), where kB is the Boltzmann constant. In general, the
partition function of a statistical system in thermal equilibrium at temperature T is

Z =
∑
var.

e−βH , (2)

where the sum is over the values of all of the dynamical variables in the system. Let K = βJ .
Then here

Z =
∑
{ηr}

eK
∑
〈ij〉 δηi,ηj , (3)

where {ηr} denotes the set of all variables ηr with r denoting a site on the lattice. Each of
these variables ηr can take on values in the set {1, 2, 3}.

(b) (2 pts.) Assuming periodic boundary conditions, express Z via the appropriate
transfer matrix. Ans. Denote the transfer matrix as T , with matrix elements 〈ηi|T |ηj〉.
Given the periodic boundary conditions (BC),

Z = Tr(T N) . (4)

(c) (4 pts.) Use this expression to calculate Z. Ans. Let y = eK . Then in the basis of
states (1,2,3), the transfer matrix is  y 1 1

1 y 1
1 1 y

 . (5)

This is a real symmetric matrix, so it can be diagonalized by an orthogonal transformation
R (with RT = R−1):

RT R−1 = Td ≡

 λ1 0 0
0 λ2 0
0 0 λ3

 , (6)

where, as indicated, Td is a diagonal matrix, and λp, p = 1, 2, 3 are the eigenvalues of T .
Thus, T = R−1TdR. Solving the indicial equation, we find these to be λ1 = λ2 = y − 1 and
λ3 = y + 2. Using the cyclic property of the trace, Tr(AB) = Tr(BA), we have

Tr(T N) = Tr[(R−1TdR) · · · (R−1TdR)]

= Tr(T Nd ) = (λ1)
N + (λ2)

N + (λ3)
N

= 2(y − 1)N + (y + 2)N , (7)

(where the · · · in the first line indicate an N -fold product). Hence,

Z = 2(y − 1)N + (y + 2)N . (8)
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(d) (2 pts.) Calculate the Gibbs free energy per site, G, and the internal energy per site,
E. The Gibbs free energy per site is G = −kBTf , where the dimensionless function f is

f = lim
N→∞

1

N
lnZ

= ln(y + 2) , (9)

so
G = −kBT ln(y + 2) . (10)

Note that only the dominant eigenvalue λ3 contributes in this limit. The internal (configu-
rational) energy per site E is given by

E = −∂f
∂β

= −J ∂f
∂K

. (11)

Now ∂/∂K = (∂y/∂K)∂/∂y and (∂y/∂K) = y, so

E = −Jy∂f
∂y

= − Jy

y + 2
. (12)

(e) (3 pts.) Calculate the specific heat capacity per site, C, and the entropy per site, S.
Ans. The specific heat C = dU/dT here. Now dU/dT = −kB(K2/J)dU/dK, so

C = kBK
2y
∂

∂y

( y

y + 2

)
=

2kBK
2y

(y + 2)2
. (13)

The entropy S can be calculated from the relation G = E − TS, i.e., S = (E −G)/T =
kBβ(E −G). Subsituting our results for G and E, we have

S = kB

[
− Ky

y + 2
+ ln(y + 2)

]
. (14)

(f) (4 pts.) Calculate the values of E, C, and S in the low-temperature limit T → 0 and
the high-temperature limit T → ∞. Ans. The limit T → ∞ is β → 0, i.e., y → 1. In this
limit,

E = −J
3
, C = 0, S = kB ln 3 for β → 0 . (15)

The limit T → 0 with J > 0 is β →∞ and K →∞. In this limit

E = −J, C = 0, S = 0 for T → 0 . (16)

(g) (4 pts.) Does this system have a symmetry-breaking phase transition at finite temper-
ature? Prove your answer. Ans. No, this system does not have a symmetry-breaking phase
transition at finite temperature. The proof, using what is known as the Peierls argument,
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goes as follows. To simplify the proof, use the fact that the boundary conditions have no ef-
fect in the thermodynamic limit and hence use free boundary conditions. Assume that there
is an incipient ordering, with a nonzero order parameter, i.e., magnetization, 〈ηi〉 = 1 for all
i. Clearly, this would break the symmetry of the theory, under which any of the three values
of ηi is equally likely. We show that this incipient symmetry-breaking long-range order is not
stable under a change that minimizes the Gibbs free energy G = E−TS. We can destabilize
this incipient ordering by flipping the value of ηi to another value, say 2, for the interval
i ≥ `, where 1 ≤ ` ≤ N . The cost in energy is ∆E = J but since we can choose ` in any of
N ways, the gain in entropy is ∆S = kB lnN , so the total change in the Gibbs free energy
is ∆G = J − kBT lnN . Since T > 0, this is always negative as N → ∞. So an incipient
ordered state is not thermodynamically stable. Therefore, there is no symmetry-breaking
phase transition of this system at finite temperature. (There is, in fact, a symmetry-breaking
phase transition at zero temperature.)
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