
Comprehensive Examination
Department of Physics and Astronomy

Stony Brook University

Fall 2021 (in 4 separate parts: CM, EM, QM, SM)

General Instructions:

Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take approximately
one hour.

Use one exam book for each problem, and label it carefully with the problem topic and num-
ber and your ID number.

Write your ID number (not your name!) on each exam booklet.

You may use, one sheet (front and back side) of handwritten notes and, with the proc-
tor’s approval, a foreign-language dictionary. No other materials may be used.
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Classical Mechanics 1

Oscillations of a rotating system

Consider two point masses of mass m and a cylinder with moment of inertia I and mass
M connected with four massless hinges and massless connecting rods of fixed length ` lying
in a plane. The system is suspended in the earth’s gravitational field from a fixed point,
point A shown below. The cylinder is constrained to slide along the z-axis, and as it slides
its position z(t), and the corresponding angle θ(t), change in time. The whole system rotates
around the z-axis with angular velocity φ̇(t).
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ℓ

ℓ
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mm
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g
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(a) (8 points) Introduce suitable generalized coordinates and determine the Lagrangian of
the system.

(b) (5 points) Determine all integrals (or constants) of the motion. Interpret these con-
stants physically.

(c) (Not graded – see below) Consider the stable configurations with φ̇ = ω = const and
θ = 0, i.e. maximally extended. At time t=0 the cylinder is given an upward impulsive
upward kick performing work W over an infinitessimal displacement of the system.
Find an equation that determines the maximum deflection angle θmax

(d) (7 points) Consider the configurations with θ = 0 and φ̇ ≡ ω = const. Show that the
configuration becomes unstable for ω > ωc and determine ωc.
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Solution:

(a) The kinetic energy has a translational and a rotational component, T = Ttranslational +
Trotational. Taking Im = 2m`2 sin2 θ for the moment of inertia of the point masses, we may
write

Trot = 1
2
Iφ̇2 + 1

2
Imφ̇

2

= 1
2
Iφ̇2 +m`2 sin2 θφ̇2

Taking the +x-direction as to the right and the +y-direction as up and taking x and y as
the positions of the point masses and Y as the position of the cylinder, we may write the
translational kinetic energy as

Ttrans = 2 · 1
2
mẏ2 + 2 · 1

2
mẋ2 + 1

2
MẎ

With

y = ` cos θ x = ` sin θ

ẏ = −` sin θθ̇ ẋ = ` cos θθ̇

Looking at the cylinder, we have

Y = 2` cos θ

Ẏ = −2` sin θθ̇

and the translational kinetic energy is then

Ttrans = m
(
`2 cos2 θθ̇2 + `2 sin2 θθ̇2

)
+ 1

2
4M`2 sin2 θθ̇

= m`2θ̇2 (sin θ2 + cos θ2) + 2M`2 sin2 θθ̇

= m`2θ̇2 + 2M`2 sin2 θθ̇

Then
T = m`2θ̇2 + 2M`2 sin2 θθ̇2 +m`2 sin2 θφ̇2 +

1

2
Iφ̇2

Taking V = 0 at the suspension point A we get the potential energy

V = Vcylinder + Vpointmasses

= −Mg (2` cos θ)− 2mg (` cos θ)

= −2 (M +m) g` cos θ

And the Lagrangian is

L =
(
m`2 + 2M`2 sin2 θ

)
θ̇2 +m`2 sin2 θφ̇2 +

1

2
Iφ̇2 + 2 (M +m) g` cos θ (1)
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(b) A cyclic coordinate qi is one for which ∂L
∂qi

= 0. The momentum associated with coordi-
nate qi is

pi =
∂L

∂q̇i

and with this the Euler-Lagrange equation becomes

∂L

∂qi
=
dpi
dt

For a cyclic coordinate, ∂L
∂qi

= 0 so dpi
dt

= 0, which says that pi is constant in time. This is a
case of Noether’s theorem. For this system,

∂L

∂φ
= 0 −→

(
I + 2m`2 sin θ2

)
φ̇ = Lz

which we recognize is conservation of angular momentum about the z axis.

The other conserved quantity is the energy

E = T + V =
(
m`2 + 2M`2 sin2 θ

)
θ̇2 +m`2 sin2 θφ̇2 +

1

2
Iφ̇2 − 2 (M +m) g` cos θ (2)

It is useful to replace φ̇ with Lz and to write

E =
1

2
meff(θ)`2θ̇2 + Veff(θ) (3)

where
Veff(θ) =

1

2

L2
z

I + 2m`2 sin2(θ)
− 2(M +m)g` cos θ (4)

and
meff(θ) = 2m+ 4M sin2 θ (5)

(c) The problem was misstated. It was stated:

Consider the stable configurations with φ̇ = ω = const and θ = 0, i.e. maximally ex-
tended. At time t=0 the cylinder is given an upward impulsive upward kick imparting
momentum p0. Find an equation that determines the maximum deflection angle θmax (This
equation could be solved numerically for θmax.)

The problem with this is that if the cylinder gets momentum p0 in a short time, then the
velocity of the side masses infinite, i.e. we have done an infinite amount of work.

It should have been stated:

Consider the stable configurations with φ̇ = ω = const and θ = 0, i.e. maximally ex-
tended. At time t=0 the cylinder is given an upward impulsive upward kick performing
work W over a short period of time and infinitessimal displacement of the system. Find an
equation that determines the maximum deflection angle θmax (This equation could be solved
numerically for θmax.)
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We can use energy conservation to write down the required equation. The initial energy
just after the work is the kinetic energy the cylinder plus potential energy of the cylinder
and the two masses

E = W +
1

2
Iω2 − 2(M +m)g` . (6)

The work that is done goes into increasing the kinetic energy of the two side masses, i.e.
just after impulse the angle θ has scarcely changed, but the two side masses are moving with
constant velocity

W =
1

2
meff(θ)`θ̇2

∣∣∣∣
θ=0

(7)

The bottom mass initially has no vertical motion.

Comparing this initial energy in Eq. 6 with the final energy at angle θmax, Eq. 3, and
noting that at the maximum height we have θ̇max = 0, leads to an equation which must be
solved numerically

E =
1

2
Iω2

(
1

1 + (2m`2/I) sin2 θmax

)
− 2(M +m)g` cos θmax . (8)

(d) To study the dynamics at small θ we expand the Langrangian in Eq. 1 to quadratic
order in θ

L ' m`2θ̇2 +m`2θ2φ̇2 +
1

2
Iφ̇2 − (M +m) gθ2 + const , (9)

We have neglected terms of order θ2θ̇2 which are quartic order in θ. The Euler-Lagrange
equations of motion to linear order in θ are

∂t(Iφ̇) =0 , (10)

∂t(m`
2θ̇) =2m`2θφ̇2 − 2(M +m)gθ . (11)

Recognizing that Iω ≡ Lz is constant, the equation of motion for θ reads

∂t(m`
2θ̇) = −

[
2(M +m)g`− 2m`2

I2
L2
z

]
θ . (12)

Thus, θ = 0 is unstable whenever

Lz >

(
(M +m)g`I2

m`2

)1/2

. (13)
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Classical Mechanics 2

Energy loss in a classical collision

A particle at position r(t) = (x, y, 0) (the target) is constrained to move in the x, y plane
(transverse to the beam), and is bound to the origin in a harmonic potential, U = 1

2
mω2

0r
2.

The target is initially at rest at the origin.
A second particle at position rp(t) (the projectile) has high energy E, and scatters off the

first particle at an impact parameter b relative to the origin. The two particles interact via
the potential, V (|r−rp|) = U0e

−κ|r−rp|2 , during the projectile’s passage. Since the projectile
has high energy, you should assume that it moves with constant velocity throughout the
collision. You should also assume that the displacement of the target r(t) is always small
compared to b, |r| � b.

Target

Projectile

(a) (2 points) Compute the force F (t) on the target by the projectile as a function of time.

Within the approximations given above, you should find that the x component of the
force takes the form

Fx(t) = f e−κ(v0t)2 , (1)

where f and v0 are constant in time, and the projectile is at (b, 0, 0) at t = 0.

(b) (6 points) Determine the displacement and velocity of the target as a function of
time throughout the duration of the collision. You may leave any explicit integrals
unevaluated.

(c) (7 points) Determine the total energy absorbed by the oscillator after a collision at
impact parameter b. Some integrals are given below.

(d) (5 points) Now consider a dilute infinite medium consisting of n targets per volume,
randomly distributed in space. As above, the targets move in the x and y directions
only and are harmonically bound. What is the energy lost per length by the projectile?
Some integrals are given below.

Hint: First find the number of collisions per length with impact parameter between b
and b+ db.
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Possibly Useful Integrals:

Here n = 0, 1, 2, 3, . . . is a non-negative integer:∫ ∞
−∞

dx eikxe−ax
2

=

√
π

a
e−

k2

4a (2)∫ ∞
0

dx e−xxn =n! (3)
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Solution

(a) The trajectory of the projectile is is

rb = bx̂+ v0tẑ (4)

where v0 =
√

2mE. Then

Fx = −∂V
∂x

(5)

The force is clearly in the xz plane. Since

(r − rb)2 = (x− b)2 + (v0t)
2 + y2 , (6)

we find

Fx =U0e
−κ(x−b)2−κ(z−v0t)22κ(x− b) , (7)

Since the displacement is small x, z � b we find

Fx =− U0e
−κb2−κ(v0t)22κb. (8)

So the final result for the force is

Fx(t) =− fe−κ(v0t)2 (9)

where f = (2U0κb) e
−κb2 .

(b) The displacement is the convolution of the retarded Green function of the harmonic oscillator

GR(t, t′) = θ(t, t′)
sin(ω0(t− t′))

mω0

, (10)

and the force Fx(t′)

x(t) =

∫ ∞
−∞

GR(t, t′)Fx(t
′) dt′ . (11)

Computing the displacement of the oscillator we have

x(t) =−
∫ t

−∞

f

mω0

sin(ω0(t− t′))e−κ(v0t′)2 . (12)

The velocity is given by differentiation and is displayed in Eq. 15

(c) The energy of the oscillator is best computed using by evaluating

ax(t) =vx(t) + iω0 x(t) (13)

The energy in the oscillator is

ε(b) =
1

2
m|ax|2 (14)
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At intermediate times

vx(t) =−
∫ t

−∞

f

m
cos(ω0(t− t′))e−κ(v0t′)2 (15)

iω0x(t) =−
∫ t

−∞

f

m
i sin(ω0(t− t′))e−κ(v0t′)2 (16)

So

ax = − f
m

∫ t

−∞
eiω(t−t′)e−κ(v0t′)2 (17)

At large times we define Ω2 = κv2
0

ax(t→∞) =eiωt
∫ ∞
−∞

dt′
f

m
e−iω0t′e−κ(v0t′)2 (18)

=
√
πeiωt

f

mΩ
e−ω

2
0/4Ω2

(19)

The point to remember is that the amplitude of the oscillator after being acted upon by a
force F (t) is the Fourier transform of the force.

Evaluating the energy we find

ε(b) =
πf 2

2mΩ2
e−ω

2
0/2Ω2

(20)

Restoring what is f = (2U0κ)be−κb
2 we find

ε(b) =
2πU2

0

mv2
0

[
κb2e−κb

2−ω2
0/2Ω2

]
. (21)

(d) From geometry the number of collisions between b and and b+ db per length dN , is

dN = n(2πb)db . (22)

were n = N/V is the number of targets per volume. The energy absorbed per length by
collisions between b and b+ db is

dE = n(2πb)ε(b)db (23)

Substituting ε(b) and integrating over b we find the total energy lost per length

E =

∫ ∞
0

n(2πb)
2πU2

0

mv2
0

[
κb2e−κb

2−ω2
0/2Ω2

]
db . (24)

The last integral is elementary. Switching to the dimensionless variable u ≡ κb2, and du =
2κbdb, we find

E = (2π)2 U
2
0

mv2
0

( n
2κ

)
e−ω

2
0/2Ω2

∫ ∞
0

ue−udu . (25)

The last integral is Γ(2) = 1!, and so

E = (2π)2 U
2
0

mv2
0

( n
2κ

)
e−ω

2
0/2Ω2

. (26)
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Classical Mechanics 3

Phase shifts and time delays from classical mechanics

(A) (5 points) Consider a free particle of massm in one spatial dimension, and a straight-line
path in spacetime connecting (t0, x0) to (t, x).

(i) Evaluate the action, S[x(t′)]=
∫ t
t0

dt′ 1
2
mẋ2, for this path. The result is called Sfree(t, x, t0, x0)

below.

(ii) Compute −∂Sfree(t, x, t0, x0)/∂t and ∂Sfree(t, x, t0, x0)/∂x and interpret them physi-
cally.

(iii) Determine Sfree(t, x, t0, x0) for t0 → −∞ with v0 ≡ x0/t0 held fixed. You should find
that the limiting action takes the form

Sfree(t, x, t0, x0)→ Sfree(t, x, E0, t0) = ∆Sfree(t, x, E0)− E0t0 ,

where E0 ≡= 1
2
mv2

0. Sketch lines of constant ∆Sfree(t, x, E0) in the (t, x) plane for a
given v0 > 0.

(B) (9 points) Now consider the same particle in a step potential

U(x) =

{
U0 x > 0,

0 x < 0.

Consider the spacetime path, shown below, that connects (t0, x0) to (t, x) via an arbitrary
intermediate point (t1, 0) on the interface. Take t0 to negative infinity as in part (A), and
assume that E0 > U0 in what follows.

(i) Evaluate the action for the illustrated path to find S(t, x, E0, t0; t1). Extremize this
action to find the relation between the velocities before and after the step, v0 and v,
and the relation between the angles, θ0 and θ (see figure).
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(ii) For the classical trajectory, evaluate the action S(t, x, E0, t0) for x both above and
below the interface.

(iii) For the classical trajectory, compute and interpret the differences:

∂S

∂t

∣∣∣∣
x=0+

− ∂S

∂t

∣∣∣∣
x=0−

, and
∂S

∂x

∣∣∣∣
x=0+

− ∂S

∂x

∣∣∣∣
x=0−

,

where x=0+ and x=0− are infinitesimally above and below the interface respectively.

(C) (6 points) Now replace the step function of part (B) by the localized potential barrier
U(x):

U(x) =


0 x < 0 ,

U0 0 < x < a ,

0 x > a .

Assume that E0 > U0 in what follows

(i) For the classical path and x > a, determine the extremized action S(t, x, E0, t0) as
defined in the previous parts. Compute the difference in action relative to the free
case:

δ ≡ S(t, x, E0, t0)− Sfree(t, x, E0, t0) .

(ii) Compute ∂δ/∂E0 and interpret the result.
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Solution

Throughout this problem it is useful to recognize that the action S is the phase of the
quantum mechanical wave function ψ ∼ AeiS/~.

A. The free particle:

(i) The action is

S(t, x, t0, x0) =
1

2
mv2(t− t0) =

1

2
m

(x− x0)2

(t− t0)
. (1)

Lines of constant S and the associated straight-line trajectories are shown in Fig. ??(a).

(ii) We have

∂S/∂x = m
(x− x0)

t− t0
, (2)

and
∂S/∂t = −1

2
m

(x− x0)2

(t− t0)2
. (3)

These are clearly interpreted as the momentum and (minus) the energy of the particle. The
momentum depends on the position and time

(iii) Expanding for large t0 and x0 = v0t0 to first order in (t, x) we have

S(t, x, t0, x0) ' mv0x−
1

2
mv2

0t+
1

2
mv2

0t0 . (4)

So
S(t, x, t0, x0)→ S(t, x, E0, t0) = (p0x− E0t) + E0t0 (5)

or
∆S(t, x, E0) = p0x− E0t (6)

where E0 = 1
2
mv2

0 and p0 =
√

2mE0. The constant E0t0 will be retained but is unimportant
in practice. Lines of constant p0x− E0t are plane waves.

B. The step potential:

(i) The action takes the form

S(t, x, E0, t1) = Sfree(t1, x, E0, t0)|x=0 +

∫ t

t1

dt′
[

1

2
m(ẋ(t′))2 − U0

]
. (7)

The first term represents the action from negative infinity to t1 and is evaluated on the
interface x = 0. The second term represents the propagation for t > t1 and is a straight line
path (the second leg). Evaluating the integral for the straight line path we find the result

S(t, x, E0, t0; t1) = −E0t1 +
1

2
m

x2

t− t1
− U0(t− t1) + E0t0 . (8)
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Differentiating with respect to t1 and setting the result to zero to extremize the action we
have

∂S

∂t1
= −E0 +

1

2
m

x2

(t− t1)2
+ U0 = 0 . (9)

The extremization condition fixes the slope or velocity for x > 0

v = tan θ =
x

(t− t1)
=

√
2

m
(E0 − U0) . (10)

For x < 0 the slope is

v0 = tan θ0 =
x0

t0
=

√
2

m
E0 , (11)

and so the relationship between the angles is

tan θ =
√

tan2 θ0 − (2U0/m) . (12)

(ii) First we will find the action for x > 0. From the extremization condition in Eq. 9 we
have

v ≡ x/(t− t1)
1

2
mv2 = (E0 − U0). (13)

Thus the value of the action at the extremal point is

S(t, x, E0, t0) =extrm
t1
{S(t, x, E0, t0; t1)} , (14)

=− E0t1 +
1

2
m

x2

(t− t1)2
(t− t1) + E0t0 (15)

Then, using the identities in Eq. 13 we find after minor rearrangements

S(t, x, E0, t0) = px− E0t+ E0t0 (16)

where p = mv =
√

2m(E0 − U0). For x < 0 the action is the free one. Thus the extremized
action (minus the constant E0t0) is

∆S(t, x, E0) =

{
p0x− E0t x < 0 ,

px− E0t x > 0
(17)

Lines of constant S are shown in Fig. 1(a) and (b). The classical trajectories comes from
differences in S shown in Fig. 1(c), and can found by setting ∂S(t, x, E0)/∂E0) = const.
(iii) The time derivatives is clearly continuous across the interface

∂S

∂t

∣∣∣∣
x=0+

− ∂S

∂t

∣∣∣∣
x=0−

= −E0 + E0 = 0 (18)

reflecting energy conservation. The spatial derivative is discontinuous

∂S

∂x

∣∣∣∣
x=0+

− ∂S

∂x

∣∣∣∣
x=0−

= p− p0 (19)

Which records the jump in momentum (impulse) that is expected as the particle crosses
x = 0.
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The lines of constant action are shown in Fig. 1(a) and (b) for E = 1 and E = 1.1. The
classical trajectores are when ∂S/∂E0 is constant as shown in Fig. 1(c). This is explored
graphically in the figure.

C. The barrier potential

(i) To evaluate the action for the classical path with energy E0 we switch to the Hamiltonian
formalism. The action associated with a path γ (or x′(t′)) is

Sγ =

∫
γ

pdx′ −Hdt′ (20)

The energy of the path is H(x, p) = E0 is constant. If particle arrives at the barrier x = 0
at time t1, the subsequent change in action, ∆Sγ, is found by integrating from (t1, 0) up to
(t, x) is

∆Sγ =− E0(t− t1) +

∫ a

0

pdx′ +

∫ x

a

p0dx
′ (21)

=− E0(t− t1) + pa+ p0(x− a) (22)

where p =
√

2m(E0 − U0) and p0 =
√

2mE0. In the last step we have separated the integral
into a regions with 0 < x′ < a and a < x′ < x. So, adding the free contribution (from t′ = t0
to t1), the extremized action from negative infinity to the point (t, x) is

S(t, x, E0) = Sfree(t1, x, E0)|x=0 + ∆Sγ . (23)

Using Sfree(t1, x, E0)|x=0 = −E0(t1 − t0) we find

S(t, x, E0, t0) = −E0(t− t0) + p0(x− a) + pa . (24)

The action difference relative to the free case is simply

δ = −p0a+ pa . (25)

(ii) Differentiating δ with respect to E0, and using that the velocity is quite generally v =
∂E/∂p:

∂p0

∂E0

=
1

v0

=

√
m

2E0

, (26)

∂p′

∂E0

=
1

v
=

√
m

2(E0 − U0)
, (27)

we see that
dδ

dE0

=
a

v
− a

v0

. (28)

This is the amount of time that the particle was delayed relative to the free propagation by
crossing the potential barrier.
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Figure 1: The classical trajectory are places where the phase difference is constant. The
first figure (a) shows contour lines of constant S(t, x, E0) for m = 1, E0 = 1 and U0 = 5/6.
The second figure shows lines of constant S for E0 = 1.1 (i.e. almost 1). The third figure
overlays the first two figures and illustrates a visual interference pattern. The patterns which
emerges from the interference are the lines of constant difference S(E0) − S(E + ∆E0) '
∆E0∂S/∂E0 = C are constant. This condition determine the classical trajectories. The thin
black line shows one such classical trajectory, where ∂S/∂E0 = 0.
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Electromagnetism 1

Capacitor with a hemisphere

Consider a large parallel plate capacitor with a hemispherical bulge of radius a on one of
plates as shown in Fig. A. The plate with the hemisphere is grounded and the other is at a
constant potential V0. The plates are separated by a distance b with b� a (Fig. A is not to
scale).

(a) (6 points) Find the potential everywhere inside the capacitor.

(b) (4 points) Calculate the surface charge density on the flat portion of the grounded
plate. Sketch the result.

(c) (4 points) What is the total charge on the hemisphere?

(d) (6 points) Consider now Fig. B, where the second plate is removed and replaced by
a charge q located at distance d (see figure). Find the force on the charge q. Is it
attractive or repulsive?
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Solution

a. Let (r, θ) be the polar coordinate of an arbitrary point within the capacitor, with θ
measured with respect to the perpendicular to the plate. Using the image method, the
potential within the capacitor shown in Fig. A reads

V (r, θ) = −E0

(
r − a3

r2

)
cosθ (1)

with E0 = V0/b.

b. The surface density on the grounded plate is

σP (r) = − 1

4πr

(
∂V

∂θ

)
r=a

=
E0

4π

(
1− a3

r3

)
(2)

Thus the density approaches zero as r → a.

c. The surface charge density on the hemisphere is

σH(θ) = − 1

4π

(
∂V

∂r

)
r=a

=
3E0

4π
cosθ (3)

The total charge on the hemisphere is

QH =

∫ π/2

0

2πa2sinθ dθ σH(θ) =
3

4
E0a

2 (4)

d. Using the image methods (plane + sphere) we place three image charges on the x axis,
to compensate the charge q at x = d. Two image charge are of strength ∓aq/d and placed
at positions x = ±a2/d, and one of strength −q is placed at position x = −d. The force on
the charge q is attractive

F = − aq2/d

(d− a2/d)2
+

aq2/d

(d+ a2/d)2
− q2

(2d)2
(5)

The negative sign indicates an attractive force.
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Electromagnetism 2

A circular capacitor

A circular capacitor of radius R and separation a, with a� R, is charged with a slowly
varying sinusoidal current, i.e. the charge on the plates is Q(t) = Qo sin(ωt) as illustrated
below. Neglect any fringing of the fields.

(a) (4 points) Determine the electric and magnetic fields in between the plates. Draw a
picture to indicate the directions of the fields while the charge on the bottom plate is
negative and increasing, i.e. becoming less negative.

(b) (3 points) Using the fields from part (a), compute the energy stored in the capacitor
in the electric fields, UE, and the magnetic fields, UB. The total is U = UE + UB.

(c) (8 points)

(i) Using the fields from part (a), determine the energy flowing into the capacitor as
a function of time, by computing Poynting vector and evaluating Poynting flux.

(ii) The Poynting flux in (i) does not equal the change in energy per time dU/dt for
the energy computed in (b). Explain why clearly and precisely.

Hint: What is the relative size of UB/UE and what approximations were made in
part (a)?

(d) (5 points) (i) Determine the gauge potentials (φ,A) in the Coulomb gauge for the fields
of part (a). (ii) Write down the exact Maxwell equations in the capacitor for (φ,A) in
the Coulomb gauge. Show that the (φ,A) of (i) satisfy these equations to the required
accuracy.
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Possibly useful formulae:

The curl of vector a field V in cylindrical coordinates (ρ =
√
x2 + y2 and φ = tan−1(y/x))

is
∇×V =

(
1

ρ

∂Vz
∂φ
− ∂Vφ

∂z

)
ρ̂+

(
∂Vρ
∂z
− ∂Vz

∂ρ

)
φ̂+

1

ρ

(
∂(ρVφ)

∂ρ
− ∂Vρ

∂φ

)
ẑ .

The Laplacian of a scalar field u is

∆2u =
1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+

1

ρ2

∂2u

∂φ2
+
∂2u

∂z2
.
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Solution

(a) The electric field is

Ez =
Q(t)

A
ẑ = σ0 sin(ωt) ẑ, , (1)

with σ0 = Q0/A and A = πR2. The magnetic field is determined from Amperes law
with the displacement current

jD =
1

c

∂E

∂t
. (2)

So we find
Bφ(2πρ) =

1

c
πρ2∂tE

z , (3)

or finally
Bφ =

ρω

2c
σ0 cos(ωt) . (4)

(b) The electric energy is

UE =
1

2

∫
V

E2 = 1
2
Aaσ2

0 sin2(ωt) . (5)

The magnetic energy is

UB =
1

2
a

∫
2πρdρ(Bφ)2 =

1

16
Aaσ2

0

(
ωR

c

)2

cos2(ωt) . (6)

(c) The Poynting vector is

S =cE ×B (7)

=− 1

2

[
ωρσ2

0 cos(ωt) sin(ωt)
]
ρ̂ (8)

To find the energy flowing into the capacitor we evaluate the Poynting flux on the area
of rim, where the normal da = −ρ̂ to points into the capacitor

dU

dt
=

∫
A

S · da = Aaσ2
0 cos(ωt) sin(ωt). (9)

We see that this gives only the change in the change in the electric contribution per
time U̇E.

The “issue" is that we are computing the fields in an approximation scheme where the
frequency is small, ωR/c� 1

E = E(0) + E(2) + . . . (10)

and worked in a zeroth order approximation, i.e. the electric field in (a) is E(0). Note
that the magnetic field energy is smaller by a factor of (ωR/c)2, i.e.

UB ∼
(
ωR

c

)2

UE (11)
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In order capture the change in UB per time we would need to compute E and S to
quadratic order. E(2) comes from the time-dependent B field and is of order

E(2) ∼ R

c
∂tB (12)

(d) The two Maxwell equations with the charges and currents are

∇ ·E =ρ (13)

∇×B =
j

c
+

1

c
∂tE (14)

The remaining two Maxwell equations (the Bianchi identities) guarantee that E and
B can be expressed in terms of (φ,A)

E =− 1

c
∂tA−∇φ (15)

B =∇×A (16)

The charges and currents are zero inside the capacitor. Using the identity and the
Coulomb gauge condition ∇ ·A = 0

∇×∇×A = ∇(∇ ·A)−∇2A = −∇2A (17)

We have for the Maxwell equations to be solved

−∇2φ =0 (18)
1

c2
∂2
tA−∇2A =− 1

c
∂t(∇ · φ) (19)

Solving Laplace equation for the scalar potential gives

φ = −Ez(t)z (20)

ForA we have only a z component. We may drop ∂2
tA

z in a quasi-static approximation
as discussed in part (c)

1

c2
∂2
tA

z︸ ︷︷ ︸
discard

−1

ρ

∂

∂ρ

(
∂Az

∂ρ

)
= −1

c
∂t∂

zφ (21)

−1

ρ

∂

∂ρ

(
ρ
∂Az

∂ρ

)
=
ω

c
σ0 cos(ωt) (22)

Integrating this equation we find

Az = −σ0ω

4c
cos(ωt)ρ2 + C1 log ρ+ C2 (23)

Demanding regularity at the origin we set C1 = 0, and C2 is of no physical relevance,
yielding finally

Az = −σ0ω

4c
cos(ωt)ρ2 . (24)

A straight forward sanity check gives B = ∇×A

Bφ = − ∂

∂ρ
Az = σ0

ρω

2c
cosωt (25)
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Electromagnetism 3

Reflection from an imperfect dielectric

A linearly polarized plane wave in vacuum EI(t, z) = Re[Ae−iωt+ik0z] x̂ is normally incident
upon a semi-infinite slab of dielectric with real permittivity ε ≡ 1 + χ. The dielectric is
imperfect, and conducts current with a small conductivity σ. The dielectric fills the region
z > 0 shown below. Take µ = 1 everywhere1.

Vacuum, z<0

incident wave

Dielectric, z>0

(a) (5 points) Show that dielectric supports plane wave solutions of the form eik(ω)z−iωt

with E and B transverse. Determine the dispersion relation k(ω) and the relation
between E and B. You should find that k(ω) is complex valued.

(b) (8 points) Determine the electric and magnetic fields, E(t, z) and B(t, z), both for
z < 0 and z > 0.

(c) (3 points) What is the ratio of the reflected and incident power per unit area? Show
that the result is independent of σ to first order in σ when σ is small.

Note: for X small (with X any real number), |1 + iX|2 ' 1 up to corrections of order
X2.

(d) (4 points) Assume that σ is small but non-zero. Compute the time averaged energy
density in the dielectric at a distance z from the interface. Over what distance does
the energy density decrease to 50% of its initial value?

1In SI units take µ = µ0 everywhere.
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Solution

(a) We take solutions of the plane wave form

E(t, z) = Aeik(ω)z−iωt x̂ , (1)

with an analogous equations for B and J . These vectors are transverse to ẑ. Ampere’s Law
reads

∇×B = (4π/c)J +
1

c
∂tE ,

and the constitutive relation is

J =σE + χ∂tE (2)
=σE − iωχE (3)

We find

ik ×B =
4π

c
J − iωE

c
, (4)

=− iω

c

(
+i

4πσ

ω
+ ε

)
E , (5)

≡− iω

c
ε(ω)E . (6)

In passing to the second equation, we used the constitutive relation and defined ε = 1 + χ.

From Eq. (4), the effective dielectric constant is given by is ε(ω) = ε+ i4πσ/ω, leading
us to take

k2(ω) =
ω2

c2
ε(ω) . (7)

This reasoning is corroborated by crossing Eq. (4) with ik, using the Faraday relation ik ×
E = iω/cB and the transversity of B

ik × ik ×B = −k(k ·B) + k2B = k2B , (8)

to find [
k2(ω)− ω2

c2
ε(ω)

]
B = 0 . (9)

In vacuum k0 = ω/c and thus the dispersion curve is finally

k2 = k2
0ε(ω) . (10)

(b) The electric field of the incoming wave, reflected wave and transmitted wave are given
by

EI = Aeik0z−iωtx̂, ER = ARe
−ik0z−iωtx̂, ET = AT e

ikT z−iωtx̂. (11)

The corresponding magnetic fields are B = k ×E. At the interface the transverse compo-
nents ET and BT = k ×E are continuous. This gives the matching conditions

A+ AR = AT , A− AR =
√
ε(ω)AT . (12)
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We used that kT =
√
ε(ω)k0. They are solved by

AT =
2A

1 +
√
ε(ω)

, AR =
1−

√
ε(ω)

1 +
√
ε(ω

A. (13)

This gives the electric and magnetic fields everywhere.

(c) The power flow per unit area is given by c/(8π)ReEω × B∗ω. Since everything is per-
pendicular, we obtain for the energy flow of the reflected wave in units of the incoming
wave

R =

∣∣∣∣∣1−
√
ε(ω)

1 +
√
ε(ω)

∣∣∣∣∣
2

. (14)

For small σ we have √
ε(ω) =

√
ε

(
1 + i

4πσ/ε

2ω

)
≡ n+ inσ (15)

where we have defined n and nσ as the real and imaginary parts of the index of refraction.
We expand R for small nσ and find

AR
A

=

(
1− n
1 + n

)
· 1− inσ/(1− n)

1 + inσ/(1 + n)
. (16)

Since for small X (with X anything)

|1 + iX|2 ' 1 +O(X2) , (17)

we see that the reflection coefficient is independent of σ to first order and reads

R =

∣∣∣∣ARA
∣∣∣∣2 =

(
1− n
1 + n

)2

(18)

(d) The energy density stored in the wave

u(z) =
1

8π
Re(ε(ω))|E(z)|2 =

ε

8π
|AT eikT z|2 . (19)

The transmitted wave number is complex

kT =
√
ε(ω)k0 = k0(n+ inσ) . (20)

As in the previous part, the square of the transmission amplitude is independent of the σ to
first order

|AT |2 = |A|2 4n2

(1 + n)2
, (21)

and the energy density is

u(z) =
|A|2
8π

4n2

(1 + n)2
e−2nσk0z . (22)
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Unpacking the definitions of k0 and nσ, we find finally

u(z) =
|A|2
8π

4n2

(1 + n)2
e−n(4πσ/ε)/cz . (23)

From the form of this equation the decay length, L, is given by

1

2
= e−n(4πσ/ε)/cL . (24)

Thus
L = 0.7

c/n

4πσ/ε
, (25)

and is independent of frequency in this limit.
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Quantum Mechanics 1

Two particles and a potential

Consider two particles, both of mass m in a plane, but with one allowed to move only on
the full x axis (from −∞ to +∞), and the other constrained to the full y axis, (from −∞
to +∞). With x labeling the position of the first particle, and y the position of the second,
the potential energy of the system is taken as

V (x, y) =
k

2
(x+ y)2 . (1)

(Please note, this is not x2 + y2.) Also note that V = 0 at the origin, which is available to
both particles. Assume first that the particles are distinguishable, and can pass each other
without a collision.

(a) (2 pts) Write down the Hamiltonian, and the Schrödinger equation for stationary states
of this system.

(b) (6 pts) Find the eigenfunctions ψn(x, y) and corresponding energy eigenvalues En in
terms of those for one-dimensional harmonic oscillator and plane-wave systems. Nor-
malize the plane-wave assuming that the particles are confined to an interval of length
L, with periodic boundary conditions at the ends.

(c) (4 pts) Suppose the system is in one of its eigenfunctions, ψn(x, y), corresponding to a
state of energy En. Give an expression for the probability density for finding a particle
at point x, regardless of where the other particle is, −∞ < y < ∞, and if possible
evaluate it.

(d) (4 pts) From now on, assume that the two particles are indistinguishable and have
spin 1/2 each. Construct the wavefunctions of the stationary states with definite spin
symmetry in this case, using the wavefunctions from part (b).

(e) (4 pts) As the final step, assume now that in addition to the potential used above,
there is a contact potential U(x, y) = λδ(x− y). Describe as quantitatively as you can
how the wavefunctions in part (d) are modified by this potential.
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Solution

a) The stationary Schrödinger equation has the usual form:[
− ~2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+

k

2
(x+ y)2

]
ψn(x, y) = Enψn(x, y) . (2)

b) The point for the solution is to change variables to

u =
1√
2

(x+ y)

v =
1√
2

(x− y) (3)

and to use the fact that in these variables the Schrödinger equation separates in two, leading
to a harmonic oscillator equation for u and a free particle equation for v. The solutions are
then

ψI,q(u, v) ∝ φI(u) e±iqv , (4)

where φI are the wave functions of the harmonic oscillator stationary states. The total
energies are

EI,q =

(
I +

1

2

)
~ω +

(~q)2

2m
, (5)

where ω =
√

k
m

and q is a wave number. Imposing the periodic boundary condition on the
plane wave, we can write ψI,q(u, v) as

ψI,q(u, v) = φI(u)
1√
L
e±iqv , q =

2π

L
N , (6)

with integer N .

c) The probability density for x is given by the probability density in x and y, i.e., |ψI,q|2,
integrated over y:

p(x) =

∫ ∞
−∞

dy |ψI,q(u, v)|2

=
1

L

∫ ∞
−∞

dy |φI(x+ y)|2

=
1

L

∫ ∞
−∞

dz |φI(z)|2 =
1

L
. (7)

This is for any x or I, when the φIs are normalized to unity as necessary.
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d) Identical particles with spin 1/2 are fermions, implying that the total wavefunction of
the two-particle state should be antisymmetric with respect to permutation of the particle
coordinates. This means that in the case of antisymmetric spin part of the wavefunction,
the singlet state

χs =
1√
2

(|↑↓〉 − |↓↑〉) ,

the coordinate part should be symmetric with respect to the interchange of x and y. This
condition is satisfied if the wavefunctions (6) with the same energy (5) are combined to form
the function even in v. Therefore, the total wavefunction of the spin 1/2 fermions in the
singlet state with energy EI,q is:

ψ
(s)
I,q(u, v, σ1, σ2) = χs · φI(u)

√
2√
L

cos qv . (8)

If the spin part of the wavefunction is symmetric, i.e., the particles are in the triplet state
χt, which is an arbitrary superposition of the states

|↑↑〉 , |↓↓〉 , 1√
2

(|↑↓〉+ |↓↑〉) ,

the coordinate part of the wavefunction should be antisymmetric with respect to the inter-
change of x and y, and the total wavefunction then is:

ψ
(t)
I,q(u, v, σ1, σ2) = χt · φI(u)

√
2√
L

sin qv . (9)

e) Since the wavefunctions of the triplet states as obtained in part (d) vanish at x = y, the
delta-functional potential U(x, y) = λδ(x − y) does not have any effect on them. To find
the wavefunctions of the singlet states in the presence of this potential, we need to solve the
v-part of the Schrödinger equation[

− ~2

2m

∂2

∂v2
+ λδ(

√
2v)

]
ψq(v) =

(~q)2

2m
ψq(v) , (10)

for the wavefunction ψq(v) even in v. This means that one can look for a solution in the
form

ψq(v) =

√
2√
L

cos(q|v|+ φ) . (11)

The discontinuity

∂

∂v
|v| = θ(v) − θ(−v) (12)

in the derivative of |v| at v = 0 and the relation

∂

∂v
θ(v) = δ(v) (13)
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lead to the standard condition on the wavefunction imposed by the delta-functional potential,

ψ′q(+0)− ψ′q(−0) =

√
2λm

~2
ψq(0) . (14)

This relation can be used to determine the phase φ directly, and we find,

φ = arctan
( λm√

2q~2

)
. (15)

As one can see from this expression, the phase φ vanishes, as it should, with the magnitude
λ of the potential, and tends to π/2, for large λ.
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Quantum Mechanics 2

Entanglement in quantum mechanics

This problem discusses the concept of entanglement in quantum mechanics: correlated
states of distinct quantum system. In the most basic setup, entanglement is defined quan-
titatively through the reduced density matrix. If two quantum systems have a pure-state
density matrix ρ1+2 = |ψ〉〈ψ|, entanglement E is defined as the entropy of the reduced
density matrix E = −Tr{ρ1 ln ρ1}, where ρ1 = Tr2{ρ1+2}.

(a) (3 pts) Consider an arbitrary state of a quantum system composed of two distinct two-
state systems:

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉 .
Here α, β, γ, δ are the arbitrary complex coefficients that satisfy the appropriate normal-
ization condition, and in the state |ij〉, i denotes the state of the first, and j – the second
two-state system. Find the reduced density matrix ρ1.

(b) (5 pts) From ρ1, calculate the entanglement E in terms of the coefficients α, β, γ, δ.
[Hint: A convenient way to do this is to find directly the eigenvalues of the 2× 2 matrix ρ1.]
Repeat this calculation by reversing the roles of the two subsystems, i.e.:

E = −Tr{ρ2 ln ρ2} , ρ2 = Tr1{ρ1+2} ,

and show that the definition of entanglement used above satisfies the natural requirement
that E does not depend on which subsystem is taken to be the "first" and the "second".

(c) (4 pts) For the states ψ for which only two out of four coefficients α, β, γ, δ are nonva-
nishing, find all the states that have maximum entanglement E = ln2.

(d) (4 pts) Consider the states ψ for which all four coefficients α, β, γ, δ are nonvanishing.
For these states, characterize all the states that have vanishing entanglement E = 0. Write
these states explicitly as the product of the normalized states of the two subsystems.

(e) (4 pts) Entanglement can manifest itself as the correlations in the results of the measure-
ments done on the subsystems. Consider the two states, which are examples of the states in
parts (c) and (d):

|ψ1〉 =
1√
2

[|00〉+ i|11〉] , |ψ2〉 =
1

2
[|00〉+ i|01〉 − i|10〉+ |11〉] .

Assume that the projective measurement of the observable σx (σx is a Pauli matrix) is done
on the first two-state system. What are the outcomes of such a measurement, if the system
is in the state |ψ1〉 or |ψ2〉, and what will be the state of the second two-state system system
after the measurement depending on it outcome?
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Solution

(a) To find ρ1, one needs to sum the terms in the outer product |ψ〉〈ψ| that have the second
two-state system in the same state 0 and the same state 1. Doing this for the state |ψ〉 in
the problem, we get

ρ1 =

(
|α|2 + |β|2 αγ∗ + βδ∗

α∗γ + β∗δ |γ|2 + |δ|2
)
.

(b) To find the two eigenvalues p1 and p2 of ρ1, it is convenient to use the fact that their
sum is the trace, while the product is the determinant of ρ1:

p1 + p2 = |α|2 + |β|2 + |γ|2 + |δ|2 = 1 , p1p2 = (|α|2 + |β|2)(|γ|2 + |δ|2)− |αγ∗ + βδ∗|2

= |α|2|δ|2 + |β|2|γ|2 − 2Re[α∗δ∗βγ] ≡ D .

Solving the quadratic equation that follows from these two relations, we get

p1 =
1

2
+

√
1

4
−D , p2 =

1

2
−
√

1

4
−D .

In terms of these eigenvalues, the entanglement is:

E = −(p1 ln p1 + p2 ln p2) .

Finding ρ2 in the same way as ρ1, we get:

ρ2 =

(
|α|2 + |γ|2 αβ∗ + γδ∗

α∗β + γ∗δ |β|2 + |δ|2
)
.

This expression shows that while this matrix is different from ρ1, its trace and determinant,
and therefore the eigenvalues, are the same. Thus, it gives the same magnitude of the
entanglement, the condition that is essential for the entanglement to be the characteristics of
the correlations between the two subsystems, not the property of the subsystems themselves.

(c) From the expression for E obtained in part (b), we see that entaglement has the maximum
value of ln 2 if D = 1/4. Expression for D shows directly that if only two coefficients are
nonvanishing, condition D = 1/4 can be satisfied only if either

|α| = |δ| = 1√
2
, or |β| = |γ| = 1√

2
.

This means that all possible maximally-entangled states with the two non-vanishing coeffi-
cients are

1√
2

[|00〉+ eiφ|11〉] , and
1√
2

[|01〉+ eiχ|10〉] ,

where φ and χ are possible arbitrary phases.
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(d) Entanglement vanishes, if one of the eigenvalues of ρ1 is zero, i.e., if D = 0. If all four
coefficients are non-vanishing, this happens if

|α|2|δ|2 + |β|2|γ|2 = 2Re[αβγ∗δ∗] ⇒ |α||δ|
|β||γ| +

|β||γ|
|α||δ| = cos η ,

where η = arg[α∗δ∗βγ]. This equation is satisfied only if

|α||δ|
|β||γ| = 1 , η = 0 .

These two condition which can be summarized as one relation for the coefficients

αδ = βγ . (1)

This means that δ = βγ/α, and one can express the state |ψ〉 as the product state:

|ψ〉 = (α|0〉+ γ|1〉)1(|0〉+ (β/α)|1〉)2 .

As the last step, the subsystem states are transformed into the properly normalized states:

|ψ〉 =
|α|
α

1√
|α|2 + |γ|2

(α|0〉+ γ|1〉)1
1√

|α|2 + |β|2
(α|0〉+ β|1〉)2 ,

making use of the fact that the relation (1) between the coefficients implies that the normal-
ization condition for the total state |ψ〉 can be written as

(|α|2 + |β|2)(|α|2 + |γ|2) = |α|2 .
The overall phase factor |α|/α can be omitted if necessary.

(e) The eigenstates of the σx observable with eigenvalues ±1 are

1√
2

[|0〉 ± |1〉] .

Calculating the overlap of these states with the state |ψ1〉 we see that the outcomes ±1 of
the measurements of σx on the first subsystem are obtained with equal probabilities 1/2 and
the second subsystem is left in the state that depends on the outcome of the measurement
on the first subsystem:

1√
2

[|0〉+ i|1〉]2 for + 1 ,
1√
2

[|0〉 − i|1〉]2 for − 1 .

The state |ψ2〉 can be written as the product state:

|ψ2〉 =
1√
2

(|0〉 − i|1〉)1
1√
2

(|0〉+ i|1〉)2 .

This means that the state of the second subsystem will remain the same,
1√
2

(|0〉+ i|1〉)2 ,

regardless of the measurement, which will again produce the outcomes ±1 with probabilities
1/2, when done on the state |ψ2〉.
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Quantum Mechanics 3

Aharonov-Bohm effect with 1D scattering

A free quantum particle with coordinate x, mass m, and charge q moves along a ring
with circumference L: x ∈ [−L/2, L/2] threaded by a magnetic flux Φ. The effect of the flux
on the particle can be described by imposing on the wavefunction ψ(x) the quasipaeriodic
boundary conditions with the phase φ = qΦ/~ at the ends of the interval. The particle
undergoes potential scattering at x ' 0 characterized by the scattering matrix S that re-
lates the amplitudes A,B,C,D of the wavefunction components propagating in two different
directions along the ring (see Figure):(

C
D

)
= S

(
A
B

)
, S =

(
r t′

t r′

)
.

The particle is transmitted through/reflected from the x ' 0 region with probabilities T and
R, respectively, T + R = 1, and propagates freely, i.e., has the Hamiltonian H = p2/2m (in
the standard notations) everywhere else.

Figure 1: Diagram of a ring threaded by a magnetic flux Φ with potential scattering described
by the scattering matrix S.

(a) (4 pts) Write down all (different) relations among the scattering coefficients r, t, r′, t′ that
follow from the scattering matrix S being unitary.

(b) (3 pts) Write down the relations between the amplitudes A and D, and B and C, that
follow from the free propagation of the particle along the ring at energy E. Parameterize
the energy through the wavevector k: E = ~2k2/2m.

(c) (5 pts) Combine the relations from (b), the scattering conditions described by the scat-
tering matrix, and the relations among the scattering amplitudes from part (a), to derive
the equation that determines the wavevectors k (and thus the energies E) of the particle
stationary states:

cos
(
kL+

η + η′

2

)
=
√
T cos

(
φ− η − η′

2

)
.

Here η and η′ are the phases of the transmission amplitudes t and t′.
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(d) (5 pts) Solve this equation in the limit of small transmission probability, T � 1 (keeping
only the leading non-vanishing terms in T in all relevant expressions) to obtain the energies
En of the stationary states as functions of the flux Φ. Calculate the current In carried by
the particles in the the state |n〉.
(e) (3 pts) Derive the condition the scattering matrix S satisfies if the scattering has the
time-reversal symmetry. How this affects the result in part (d) for the currents In?
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Solution

(a) As for any unitary matrix, the fact that the scattering matrix is unitary means that the
matrix elements satisfy the following relations:

|r|2 + |t|2 = |t′|2 + |r′|2 = |r|2 + |t′|2 = |t|2 + |r′|2 = 1 , r∗t′ + t∗r′ = 0 .

The first set of the relations means that the magnitudes of the scattering amplitudes in the
two directions are the same:

|r| = |r′| =
√
R , |t| = |t′| =

√
T ,

while the second defines the phase of the reflection amplitude r′:

r′ = −r∗(t′/t∗) .

(b) Free propagation of particle in the positive or negative direction along the ring with the
wavevector k implies that the wavefunction is

ψ(x) ∝ e±ikx,

i.e.,the wavefunction amplitudes accumulates the phase kL in the direction of propagation,
when they move through the whole ring. The magnetic flux threading the ring means that
the amplitude acquires the phase φ when circling the ring in one direction, and the phase
−φ – in the opposite direction. Combining these two phases, we get the relations between
the amplitudes of the plane wave components of the wavefunction

A = ei(kL−φ)D , B = ei(kL+φ)C .

(c) The wavefunction amplitudes are also related by the potential scattering described by
the scattering matrix S:

C = rA+ t′B , D = tA+ r′B .

These relations, combined with those from the free propagation, give the system of two
equations that should be satisfied by the amplitudes A and B:

rA+ (t′ − e−i(kL+φ))B = 0 , (t− ei(φ−kL))A+ r′B = 0 .

Condition that the determinant of this homogeneous system vanishes so that it has a non-zero
solution, gives the equation for the wavevector k, and therefore, the energy of the stationary
state of the particle:

rr′ − tt′ − e−i2kL + e−ikL(te−iφ + t′eiφ) = 0 .

Introducing explicitly the phases of the transmission amplitudes: t =
√
Teiη, and t′ =

√
Teiη

′ ,
and using the unitarity relation between the scattering amplitudes, r′ = −r∗ei(η+η′) we
transform this equation simplifies to

e−i2kL −
√
Te−ikL(ei(η−φ) + ei(η

′+φ)) + ei(η+η′) = 0 .
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Introducing the phase δ = φ − (η − η′)/2 and variable z = e−i[kL+(η+η′)/2], we see that this
equation cab be cast as the following quadratic equation for z:

z2 − 2
√
Tz cos δ + 1 = 0 ,

with the solution
z =
√
T cos δ ± i

√
1− T cos2 δ .

Real and imaginary parts of this equation are consistent with each other, and therefore, only
one of them is sufficient, e.g.,

cos
(
kL+

η + η′

2

)
=
√
T cos δ . (1)

(d) For T = 0, Eq. (1) reduces to

cos
(
kL+

η + η′

2

)
= 0

and solutions for the wavevector k are

kn =
1

L

(
πn− π + η + η′

2

)
,

with integer n. As should be, kn is independent of the flux-induced phase φ, and corresponds
to the standing wave in what effectively is a potential well.

For small but non-vanishing T , we can solve Eq. (1) by iterations to find a small correction
δkn to kn induced by the non-vanishing right-hand-side of this equation. Using the fact that
the derivative of cos[kL+ (η + η′)/2] at k = kn is (−1)n, we get:

δkn =
(−1)n

L

√
T cos δ .

From this, the energies En are:

En =
~2

2m

(
kn + δkn

)2 ' ~2k2
n

2m
+

~2kn
m

δkn .

As usual, the current in a stationary state |n〉 can be calculated from En:

In = −dEn
dΦ

= −~vn
dδkn
dΦ

= (−1)n
qvn
L

√
T sin δ = (−1)n

qvn
L

√
T sin

(
φ−η − η

′

2

)
, vn =

~kn
m

.

We see that the current In depends periodically on the flux Φ with the period 2π~/q = h/q
consistent with the Aharonov-Bohm effect.

(e) Time-reversal symmetry implies that complex conjugation of a scattering solution of the
Schrödinger equation produces a valid solution. Since onplex conjugation of the plane waves
interchanges the incoming and the outgoing state, this means that the scattering matrix of
the time-reversal scattering satisfies the condition

S∗ = S−1 .
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Combined with the unitarity condition, this means that the scattering matrix is symmetric,
ST = S, i.e.,

t = t′ , η = η′ .

As we can see from the definition of the phase δ, in this case, δ = φ, and the current In
vanishes for vanishing flux Φ: sin δ = sinφ = 0 for Φ = 0. Without time-reversal symmetry,
the current In can be non-vanishing even without the flux.
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Statistical Mechanics 1

Mean-field interactions

Consider a system of N distinguishable particles. Each particle has two energy levels:
the ground level has energy zero and is non-degenerate, while the excited level has energy ε
and consists of ge degenerate states.

(a) (3pt) Compute the partition function ZN(T ) of the N -particle system.

(b) (2pt) Find the temperature Tx at which the numbers of particles in the ground and
excited states are equal.

(c) (2pt) Derive an expression for the average particle energy, 〈ε〉, as a function of tem-
perature T . What is the average energy 〈ε〉 at the transition temperature Tx?

(d) (3pt) Write an expression for the heat capacity CV (T ) as a function of temperature.
Find the maximum value of the heat capacity CV (T ) and compare it to its value at
temperature Tx. How is the heat capacity related to the fluctuations of the energy?

(e) (3pt) Express the entropy as a function of temperature, S(T ).

(f) (7pt) Now consider an attractive interaction amongst only the excited particles adding
an interaction energy

Eint = −αN
2
e

N
,

to the energy of the non-interacting system. Here Ne � 1 is the number of excited
particles and 0 < α < ε/2 is the interaction strength. In a mean-field approximation,
particle states are independent from each other, and the effect of the interaction on
each individual particle can be approximated by a shift in its energy ∆ε created by all
other excited particles.

(i) The excitation energy of a particle is the energy required to raise one additional
partilce from the ground to the excited state for a given Ne. Find how the
excitation energy ε → ε′ = ε + ∆ε is modified due to the interaction for a mean
number of excited particles, N̄e.

(ii) Write a self-consistency equation for the average number of excitations, ne =
N̄e/N .

(iii) Sketch a graphical solution to the self-consistency equation. Use your sketch to
describe qualitatively the high temperature limit, the low temperature limit, and
possible transition points.
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Solutions

(a) For N independent two-level particles, the partition function is

Q = qN =
(
1 + gee

−βε)N =
(
1 + gee

−τ0/T
)N

. (1)

where q is the single-particle partition function and where we have made the temperature
explicit by expressing βε = ε/(kT ) = τ0/T . k is Boltzmann’s constant, T is temperature
and τ0 = ε/k is a constant that gives the liquid-state energy level in terms of a temperature
τ0.

(b) Find the point at which the population p∗s of the solid equals the population p∗` of the
liquid, where the ∗ indicates the populations specifically at this transition temperature.

p∗s =
1

q
=

1

1 + gex
, and p∗` =

gee
−βε

q
=

gex

1 + gex
. (2)

where x = exp(−τ0/T ) is a useful simplification for other steps below.

Now, setting p∗s = p∗` means that gex∗ = 1, which gives the transition temperature to be

Tx =
τo

ln ge
(3)

in terms of the known model quantities τ0 and ge. If ge = 1, note that there is no crossover
point because Tx = ∞. For larger ge, there is a finite temperature of the liquid to solid
transition in this model. Also, at this transition point, you find have p∗s = p∗` = 1/2.

(c) Sum the probability-weighted energies over the two states to get:

〈ε〉 =
∑

p∗jεj = 0 · p∗s(0) + ε · p∗` =
εgee

−τ0/T

1 + gee−τ0/T
=

εgex

1 + gex
. (4)

(or you can get this by taking the derivative 〈ε〉 = −q−1(∂q/∂β)). Substitute the transition
point condition, gex∗ = 1, into Eq 4 to get 〈ε∗〉 = ε/2.

(d) To compute the heat capacity, use the definition CV = (∂U/∂T ) from thermodynamics
and sum over the particles, to get:

CV = N

(
∂〈ε〉
∂T

)
V,N

= N

(
∂〈ε〉
∂β

)(
dβ

dT

)
= − N

kT 2

(
∂〈ε〉
∂β

)
, (5)

where the right-hand expressions convert from T to β to make the next step of the differen-
tiation simpler. Take derivative of the form d(u/v) = (vu′− uv′)/v2, where u = geεe

−βε and
v = 1 + gee

−βε, to get(
∂〈ε〉
∂β

)
=

(1 + gee
−βε)(−ε2gee

−βε)− εgee−βε(−geεe−βε)
(1 + gee−βε)2

=
−ε2gee

−βε

(1 + gee−βε)2
. (6)
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Substitute Equation (6) into the right-hand side of Equation (5) to find the heat capacity
CV in terms of the energy level spacing ε:

CV =
Nε2

kT 2

gee
−βε

(1 + gee−βε)2
=

Nkτ 2
0 gex

(1 + gex)2
. (7)

Substitute gex∗ = 1 into Eq 7 to get CV = Nkτ 2
0 /4 at the liquid-solid transition tem-

perature. And yes, the heat capacity reaches a peak at temperature Tx, as you can see by
taking the derivative and finding that it is zero at that point.

dCV
dx

=
d

dx

[
gex

(1 + gex)2

]
x∗

= 1− (gex
∗)2 = 0. (8)

(e) Entropy is defined as
S

Nk
= ln q +

〈ε〉
kT

(9)

So, for this model, we have:

S

Nk
= ln (1 + gex) +

( ε

kT

)( gex

1 + gex

)
. (10)

and gex→ 0 as T → 0, so S(0) = 0.

(f) The mean-field approximation treats all particles independently. Therefore, the addi-
tional excitation energy is due to the change of the total energy upon excitation of (any) one
particle:

∆ε = Eint(Ne + 1)− Eint(Ne) ≈ −2α
Ne

N
= −2αne (11)

Since all particles are independent, the number of excited ones can still be found using the
same Gibbs distribution as above but replacing ε → ε′ = ε − 2αne, which leads to the
following transcendental equation:

ne =
Ne

N
=

1

1 + 1
ge

exp
[
(ε− 2αne)/kT

] (12)

It is useful to resolve it for ε′,

ε′

kT
=
ε− 2αne

kT
= log ge + log(1− ne)− log ne (13)

This equation can be solved numerically. For qualitative analysis, it can be solved graph-
ically by plotting the curve y = log(1−ne)− log(ne) (the blue curve) and straight lines (the
red lines) passing through the point (ne0, y0) = ( ε

2α
,− log ge) with slope − 2α

kT
. The intersec-

tions points are the solutions to eq. 13. Note that ne0 (the x coordinate of the interesction
point) is greater than unity due to the constraint α < ε/2. Thus the intersection point could
be in the gray region shown in the figure.

40



In the high-temperature limit, the slope of the red line, −2α/kT , is small and the red
line is nearly horizontal. The only intersection in this case is at y = − log ge and ne = ge

1+ge
,

i.e., the system is completely random. In the zero-temperature limit the slope is a large and
negative, the only intersection is at y →∞ and ne → 0, so the entire system is in the ground
state. Abrupt changes of the energy with temperature are possible when the line can cross
the blue curve at more than one point, which is possible if the point (ne0, y0) is in the shaded
region, or

− 4ne0 + 2 > y0 ⇐⇒ α >
2ε

2 + log ge
, (14)

i.e., either at large enough interaction constant α or large enough excited-state degeneracy.
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Statistical Mechanics 2

Thermodynamics of a polymer molecule

Consider a 2-dimensional polymer chain molecule consisting of N �
1 links that can be oriented only along the square lattice and that
can intersect and overlap freely without any effect. Each link has
length a = 1 and has constant intrinsic heat capacity c (i.e., due to
excitations of its internal degrees of freedom). The kinetic energy of
the links is negligible. One end of the molecule is fixed in space, and
a vertical force f is applied to the other end, so that the energy of
the entire system is equal to

E(L) = −fL ,

where L is the length of the molecule in the vertical direction.

(a) (1pt) Each link orientation can be in four states: up (u), down (d), left (l), or right
(r). Consider the chain of five links in the configuration shown below with (d, l, u, l, d). The
configuration below has energy E = −f since the total vertical length is L = 1. How many
configurations are there with five links? Draw another five link configuration and find its
energy.

down

left

up
left

down

(b) (5pt) Find the partition function Z(T, f) as a function of the force f and temperature T .

Hint: it may be convenient to use coordinates (xi, yi) to represent each link as a vector with
i = 1 . . . N labelling the links, e.g. (1, 0) is a left link.

(c) (5pt) Compute the mean vertical length L, the entropy S, and the heat capacity of the
polymer chain at constant tension f as functions of f and T .

(d) (4pt) Find the fluctuation 〈(∆L)2〉 and 〈(∆X)2〉 of the end of the molecule stretched
to mean length L in the vertical direction. (X is the transvese displacement of the end as
shown in the figure above.)

(e) (3pt) If the molecule stretched approximately to half of its maximal length L = N/2 in
the vertical direction, how much work can be extracted from it if the temperature is main-
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tained constant?

(f) (2pt) Compute the isothermic elasticity
(
∂L
∂f

)
T
in the vertical direction. How does the

answer change if the system (e.g., a macroscopic sample of such molecules) is thermally
insulated?
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Solution

(a) [2pt] For a link directed up or down, its contribution to the energy is ±f , respectively.
For a horizontal link, the energy contribution is zero.

(b) [4pt] For each link i, let’s introduce its coordinates xi, yi describing its orientation such
that

xi = ±1, yi = 0 or xi = 0, yi = ±1 .

With the static force f applied to the end of the molecule, the energy function depends on
the position of the molecule’s end

∑
i yi = L,

E = −fL = −f
∑
i

yi . (1)

For each link, there are four possible states : yi = ±1 or xi = ±1. Since the energy of the
molecule is linear in L =

∑
i yi, the partition function can be factorized into sums over states

of individual links,

Z(T, f) =
∑

{yi=±1 or xi=±1}

e
f
T

∑
i yi =

∏
i

(
ef/T + 2 + e−f/T

)
=

(
4 cosh2 f

2T

)N
. (2)

(c) [5pt] Since the partition function above is a function of temperature and external force,
it is appropriate to define the Gibbs potential as

G(T, f) = −T logZ(T, f) = −2NT log
(

2 cosh
f

2T

)
(3)

from which one can compute the molecule’s mean elongation

L =
T

Z

(
∂Z

∂f

)
T

= −
(
∂G

∂f

)
T

= N tanh
f

2T
(4)

and the molecule’s entropy

S = −
(
∂G

∂T

)
f

= 2N log

(
2 cosh

f

2T

)
− Nf

T
tanh

f

2T
. (5)

Now, the additional heat capacity due to the entropy of the molecule is easy to determine
as

(∆C)f = T

(
∂S

∂T

)
f

= N
f 2

2T 2

1

cosh2 f
2T

= N
f 2

2T 2

[
1−

(
L

N

)2
]
, (6)

so that the total heat capacity is Cf = Nc+ (∆C)f .

(d) [4pt] Fluctuation of the molecule’s length can be found as the second derivative of the
Gibbs potential,

(δL)2 = 〈L2〉 − 〈L〉2 = −T
(
∂2G

∂f 2

)
T

= T

(
∂L

∂f

)
T

(7)
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Evaluating the derivative yields

(δL)2 = T

(
∂

∂f

)
T

(
N tanh

f

2T

)
= N

1

2 cosh2 f
2T

=
N

2

[
1−

(
L

N

)2
]

(8)

Since all the links can be in xi = ±1 state independently of each other, one can calculate
the mean-square transverse displacement as

(δX)2 = 〈X2〉 = N〈x2
i 〉 = N

2

ef/T + 2 + e−f/T
=

N

2 cosh2 f
2T

= (δL)2 , (9)

i.e. the fluctuations in both directions are equal to each other independent of the applied
tension. In case of maximal elongation L = N , the molecule has no freedom to fluctuate in
either direction.

(e) [2pt] The question about the maximal possible work is equivalent to the question about
free energy. The free energy of the molecule can be calculated by Legendre transformation
G(T, f)→ F (T, L)

F (T, L) = G− f
(
∂G

∂f

)
T

≡ G+ fL = −TS (10)

(the latter identity follows from the results of part (b)). In order to determine the change
of entropy, one has to find the tension f1/T corresponding to length L1 = N/2:

L1 = N tanh
f1

2T
= N/2 ⇔ tanh

f1

2T
=

1

2
⇔ f1 = T log 3 . (11)

The maximal work is achieved when the tension is reduced to zero, i.e. f2 = 0, L2 = 0 and
S2 = 2N log 2 = log(4N), which corresponds to the maximally disordered state. The work is
equal to decrease in the free energy, thus

W = F1−F2 = T (S2−S1) = NT log 4−NT log

(
4 cosh2 f1

2T

)
+Nf1 tanh

f1

2T
= NT log

3
√

3

4
.

(12)

(f) [3pt] The isothermal elasticity is easily computed by taking the derivative

κT =

(
∂L

∂f

)
T

=
N

2 cosh2 f
2T

=
N

2

[
1−

(
L

N

)2
]

(13)

If the molecule is thermally insulated, then the elasticity is “adiabatic” with S = const, so

κS =

(
∂L

∂f

)
S

=
∂(L, S)

∂(f, S)
=
∂(L, T )

∂(f, T )
· ∂(L, S)

∂(L, T )
· ∂(f, T )

∂(f, S)
= κT

CL
Cf

(14)

The heat capacity at constant tension Cf = Nc + ∆C was computed in part (b). If the
elongation of the molecule is kept constant, its heat capacity is given only by the intrinsic
heat capacity of the links, therefore CL = Nc. Thus, the adiabatic elasticity is

κS =
κT

1 + ∆C/(Nc)
=
N

2

1− L2/N2

1 + f2

2cT 2

(
1− L2/N2

) ≤ κT . (15)
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Statistical Mechanics 3

Unexpected explosion

A tube is separated into two equal 76-cm parts by a mobile
weightless disc. The tube and the disc have negligible heat ca-
pacity. The lower part contains diatomic ideal gas with initial
volume V0. The upper part contains mercury and is open to air
at the atmospheric pressure P0. (Recall that the weight per area
of 76cm of mercury is equivalent to atmospheric pressure P0, so
the gas is initially at pressure 2P0). Initially, the gas has temper-
ature T0 and is insulated from the environment and the mercury,
and the whole system is in equilibrium. The gas is then gradually
heated, so the disc rises and the mercury is slowly spilled out.

76cm
<latexit sha1_base64="2FXyGwj54Zmf8edgYZP78Q3CWTM=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKWI9FLx4r2A9ol5JNs21okl2SrFCW/gUvHhTx6h/y5r8x2+5Bqw8GHu/NMDMvTAQ31vO+UGltfWNzq7xd2dnd2z+oHh51TJxqyto0FrHuhcQwwRVrW24F6yWaERkK1g2nt7nffWTa8Fg92FnCAknGikecEptLjSsqh9WaV/cWwH+JX5AaFGgNq5+DUUxTyZSlghjT973EBhnRllPB5pVBalhC6JSMWd9RRSQzQba4dY7PnDLCUaxdKYsX6s+JjEhjZjJ0nZLYiVn1cvE/r5/a6DrIuEpSyxRdLopSgW2M88fxiGtGrZg5Qqjm7lZMJ0QTal08FReCv/ryX9K5qPte3b+/rDVvijjKcAKncA4+NKAJd9CCNlCYwBO8wCuS6Bm9ofdlawkVM8fwC+jjG4ERjd8=</latexit><latexit sha1_base64="2FXyGwj54Zmf8edgYZP78Q3CWTM=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKWI9FLx4r2A9ol5JNs21okl2SrFCW/gUvHhTx6h/y5r8x2+5Bqw8GHu/NMDMvTAQ31vO+UGltfWNzq7xd2dnd2z+oHh51TJxqyto0FrHuhcQwwRVrW24F6yWaERkK1g2nt7nffWTa8Fg92FnCAknGikecEptLjSsqh9WaV/cWwH+JX5AaFGgNq5+DUUxTyZSlghjT973EBhnRllPB5pVBalhC6JSMWd9RRSQzQba4dY7PnDLCUaxdKYsX6s+JjEhjZjJ0nZLYiVn1cvE/r5/a6DrIuEpSyxRdLopSgW2M88fxiGtGrZg5Qqjm7lZMJ0QTal08FReCv/ryX9K5qPte3b+/rDVvijjKcAKncA4+NKAJd9CCNlCYwBO8wCuS6Bm9ofdlawkVM8fwC+jjG4ERjd8=</latexit><latexit sha1_base64="2FXyGwj54Zmf8edgYZP78Q3CWTM=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKWI9FLx4r2A9ol5JNs21okl2SrFCW/gUvHhTx6h/y5r8x2+5Bqw8GHu/NMDMvTAQ31vO+UGltfWNzq7xd2dnd2z+oHh51TJxqyto0FrHuhcQwwRVrW24F6yWaERkK1g2nt7nffWTa8Fg92FnCAknGikecEptLjSsqh9WaV/cWwH+JX5AaFGgNq5+DUUxTyZSlghjT973EBhnRllPB5pVBalhC6JSMWd9RRSQzQba4dY7PnDLCUaxdKYsX6s+JjEhjZjJ0nZLYiVn1cvE/r5/a6DrIuEpSyxRdLopSgW2M88fxiGtGrZg5Qqjm7lZMJ0QTal08FReCv/ryX9K5qPte3b+/rDVvijjKcAKncA4+NKAJd9CCNlCYwBO8wCuS6Bm9ofdlawkVM8fwC+jjG4ERjd8=</latexit><latexit sha1_base64="2FXyGwj54Zmf8edgYZP78Q3CWTM=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKWI9FLx4r2A9ol5JNs21okl2SrFCW/gUvHhTx6h/y5r8x2+5Bqw8GHu/NMDMvTAQ31vO+UGltfWNzq7xd2dnd2z+oHh51TJxqyto0FrHuhcQwwRVrW24F6yWaERkK1g2nt7nffWTa8Fg92FnCAknGikecEptLjSsqh9WaV/cWwH+JX5AaFGgNq5+DUUxTyZSlghjT973EBhnRllPB5pVBalhC6JSMWd9RRSQzQba4dY7PnDLCUaxdKYsX6s+JjEhjZjJ0nZLYiVn1cvE/r5/a6DrIuEpSyxRdLopSgW2M88fxiGtGrZg5Qqjm7lZMJ0QTal08FReCv/ryX9K5qPte3b+/rDVvijjKcAKncA4+NKAJd9CCNlCYwBO8wCuS6Bm9ofdlawkVM8fwC+jjG4ERjd8=</latexit>

76cm
<latexit sha1_base64="2FXyGwj54Zmf8edgYZP78Q3CWTM=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKWI9FLx4r2A9ol5JNs21okl2SrFCW/gUvHhTx6h/y5r8x2+5Bqw8GHu/NMDMvTAQ31vO+UGltfWNzq7xd2dnd2z+oHh51TJxqyto0FrHuhcQwwRVrW24F6yWaERkK1g2nt7nffWTa8Fg92FnCAknGikecEptLjSsqh9WaV/cWwH+JX5AaFGgNq5+DUUxTyZSlghjT973EBhnRllPB5pVBalhC6JSMWd9RRSQzQba4dY7PnDLCUaxdKYsX6s+JjEhjZjJ0nZLYiVn1cvE/r5/a6DrIuEpSyxRdLopSgW2M88fxiGtGrZg5Qqjm7lZMJ0QTal08FReCv/ryX9K5qPte3b+/rDVvijjKcAKncA4+NKAJd9CCNlCYwBO8wCuS6Bm9ofdlawkVM8fwC+jjG4ERjd8=</latexit><latexit sha1_base64="2FXyGwj54Zmf8edgYZP78Q3CWTM=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKWI9FLx4r2A9ol5JNs21okl2SrFCW/gUvHhTx6h/y5r8x2+5Bqw8GHu/NMDMvTAQ31vO+UGltfWNzq7xd2dnd2z+oHh51TJxqyto0FrHuhcQwwRVrW24F6yWaERkK1g2nt7nffWTa8Fg92FnCAknGikecEptLjSsqh9WaV/cWwH+JX5AaFGgNq5+DUUxTyZSlghjT973EBhnRllPB5pVBalhC6JSMWd9RRSQzQba4dY7PnDLCUaxdKYsX6s+JjEhjZjJ0nZLYiVn1cvE/r5/a6DrIuEpSyxRdLopSgW2M88fxiGtGrZg5Qqjm7lZMJ0QTal08FReCv/ryX9K5qPte3b+/rDVvijjKcAKncA4+NKAJd9CCNlCYwBO8wCuS6Bm9ofdlawkVM8fwC+jjG4ERjd8=</latexit><latexit sha1_base64="2FXyGwj54Zmf8edgYZP78Q3CWTM=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKWI9FLx4r2A9ol5JNs21okl2SrFCW/gUvHhTx6h/y5r8x2+5Bqw8GHu/NMDMvTAQ31vO+UGltfWNzq7xd2dnd2z+oHh51TJxqyto0FrHuhcQwwRVrW24F6yWaERkK1g2nt7nffWTa8Fg92FnCAknGikecEptLjSsqh9WaV/cWwH+JX5AaFGgNq5+DUUxTyZSlghjT973EBhnRllPB5pVBalhC6JSMWd9RRSQzQba4dY7PnDLCUaxdKYsX6s+JjEhjZjJ0nZLYiVn1cvE/r5/a6DrIuEpSyxRdLopSgW2M88fxiGtGrZg5Qqjm7lZMJ0QTal08FReCv/ryX9K5qPte3b+/rDVvijjKcAKncA4+NKAJd9CCNlCYwBO8wCuS6Bm9ofdlawkVM8fwC+jjG4ERjd8=</latexit><latexit sha1_base64="2FXyGwj54Zmf8edgYZP78Q3CWTM=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKWI9FLx4r2A9ol5JNs21okl2SrFCW/gUvHhTx6h/y5r8x2+5Bqw8GHu/NMDMvTAQ31vO+UGltfWNzq7xd2dnd2z+oHh51TJxqyto0FrHuhcQwwRVrW24F6yWaERkK1g2nt7nffWTa8Fg92FnCAknGikecEptLjSsqh9WaV/cWwH+JX5AaFGgNq5+DUUxTyZSlghjT973EBhnRllPB5pVBalhC6JSMWd9RRSQzQba4dY7PnDLCUaxdKYsX6s+JjEhjZjJ0nZLYiVn1cvE/r5/a6DrIuEpSyxRdLopSgW2M88fxiGtGrZg5Qqjm7lZMJ0QTal08FReCv/ryX9K5qPte3b+/rDVvijjKcAKncA4+NKAJd9CCNlCYwBO8wCuS6Bm9ofdlawkVM8fwC+jjG4ERjd8=</latexit>

Mercury

Ideal Gas

(A) (2 pt) If after a time period the volume of the gas increases from V0 to V ≡ xV0,
determine its temperature and pressure assuming equilibrium at all times; sketch P (V )
and T (V ) versus x.

(B) (4 pt) Suppose an infinitesimal amount of heat δQ is supplied to the gas by a candle.
Find the effective heat capacity

C(V ) =
dQ

dT
,

as a function of the volume of the gas in the tube and sketch C(V ) versus x.

(C) (3 pt) Determine the points x = V/V0 where the heat capacity C(V ) becomes infinite
and zero, and the range of x where C(V ) is negative. When C(V ) is negative, how
does the temperature of the gas change upon heating? Give a qualitative explanation
for this behavior.

(D) (4 pt) Assume that the system is slowly heated. Write down the condition for mechan-
ical stability of the system. Show that the system becomes unstable when C(V ) = 0.

(E) (3 pt) Compute the amount of heat required to reach the point of instability, after
which all the mercury is pushed out of the tube. Compare it to the mechanical energy
of lifting the disc all the way up until the mercury is pushed out and explain the
difference (if any).

(F) (4 pt) Now the candle is removed, and assume that the tube conducts heat perfectly.
The gas is heated by increasing the temperature of the environment (i.e. the air around
the bottom of the tube), but the external pressure P0 (at the top of the tube) remains
constant. Find the fluctuation of the gas temperature as a function of x = V/V0. At
which point does the system become unstable under these conditions?
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Solution

(A) [2pt] The external pressure is determined by the height of the mercury column, which
depends linearly on the volume of the gas; thus, the pressure changes linearly between
P (V0) = 2P0 and P (2V0) = P0,

P (V ) = P0

(
3− V

V0

)
= P0(3− x) , (1)

where it is convenient to introduce x = V/V0, V0 is the initial gas volume, and V0 ≤ V ≤ 2V0

is the current volume of the gas (thus 1 ≤ x ≤ 2). The ideal gas equation of state yields

PV = NT =
2P0V0

T0

T , (2)

from which the temperature is

T =
1

2
x(3− x)T0 . (3)

Note that the maximum temperature is achieved at x = 3
2
: T (x = 3

2
) = 9

8
T0, and tempera-

ture is the same at the beginning and the end of the gas expansion: T (V0) = T (2V0) = T0.

(B) [4pt] First, relate dV and dT of the gas with the pressure given by Eq. (1)

dP = −P0
dV

V0

, (4)

NdT = PdV + V dP = P0

(
3− 2

V

V0

)
dV = P0V0(3− 2x)dx , (5)

dT =
1

2
T0(3− 2x)dx . (6)

(Can also be obtained directly from Eq. (3)). Assuming that the V = const heat capacity
of the gas CV = Nc,

dQ = Nc dT + P dV = N
[
c+

3− x
3− 2x

]
dT (7)

and the heat capacity of the gas under the mercury column is

C = N
[
c+

3− x
3− 2x

]
(8)

(C) [3pt] The heat capacity (8) reaches infinite value at x = 3
2
and zero at

x0 = 3
1 + c

1 + 2c
>

3

2
(9)

At 3
2
< x < x0, the heat capacity is negative, C(x) < 0. In this interval, the gas continues

to expand while it is heated, and its temperature decreases, because the pressure decreases
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simultaneously and the gas performs work in part at the expense of its internal energy.
When the heat capacity reaches zero, C(x = x0) = 0, no more heat is required by the gas to
continue expansion. The system becomes unstable and the gas expands spontaneously until
all the mercury is pushed out of the tube (“explosion”).

(D) [4pt] The previous point can be illustrated by examining mechanical stability of the
gas upon adiabatic expansion or contraction. If the external pressure (mercury column)
decreases faster than the internal pressure of the gas upon adiabatic expansion (δQ = 0,
dV > 0), the system is unstable:∣∣∣∣dPextdV

∣∣∣∣ > ∣∣∣∣(∂Pgas∂V

)
S

∣∣∣∣ ⇐⇒ dPext
dV

<

(
∂Pgas
∂V

)
S

< 0 . (10)

It is crucial to use adiabatic (S = 0) compressibility, since the system is insulated up to very
slow heating. We have also used the general stability requirement

(
∂P
∂V

)
S
< 0. To compute

the left side of the inequality, one should use Eq. (1),

dPext
dV

= −P0

V0

, (11)

and to compute the right side of the inequality, one should use the equation state of the gas
directly, without the constraint (1), since the system may no longer be at the equilibrium
with the mercury column,

0 = TdS = NcdT + pdV = (1 + c)PdV + cV dP ⇐⇒
(
∂P

∂V

)
S

= −1 + c

c
· P
V
. (12)

Up to the point the equilibrium is lost, it is assumed that P = Pext, therefore(
∂P

∂V

)
S

= −1 + c

c
· 3− x

x
· P0

V0

(13)

Solving inequality (10), one obtains

x > 3
1 + c

2 + c
= x0 , (14)

i.e., the same as the C(x) = 0 condition.

(E) [3pt] One has to integrate the heat capacity from x = 1 to x0, after which the expansion
is self-driven. Using Eqs. (6,8),

Qtot =

∫
CdT

=

∫ x0

1

N
[
c+

3− x
3− 2x

]
· 1

2
T0(3− 2x)dx = P0V0

(2 + c)2

2(1 + 2c)
.

(15)

To obtain the mechanical energy required to push all the mercury out of the tube, one
can integrate the pressure between x = 1 and x = 2:

W =

∫ 2V0

V0

P (V )dV = P0V0

∫ 2

1

(3− x)dx =
3

2
P0V0 . (16)
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Note that this work is equivalent to expansion ∆V = 2V0 − V0 = V0 against the constant
pressure P0 plus lifting the center of mass of the mercury column to the top of the tube,

Wext = P0V0 +
1

2
P0V0 =

3

2
P0V0 . (17)

The difference is
Q−Wext = P0V0

(c− 1)2

2(1 + 2c)
≥ 0 . (18)

The excess energy will be transferred to the kinetic energy of the mercury since the expansion
of the gas will not be a slow, near-equilibrium process.

(F) [4pt] In a canonical ensemble, temperature fluctuation is determined by the heat capacity,

〈(∆T )2〉 = C(V )T 2 . (19)

In the region where C(V ) < 0, the fluctuation appears to have imaginary value. While this
would be nonsense physics-wise, mathematically it means that there is no stable equilibrium
for the temperature if it is allowed to vary.

Taking into account the temperature of the gas as a function of volume (part A), the
system can no longer be in equilibrium with a heat bath at the temperature above the
maximum temperature of the gas Tmax = T (x = 3

2
) = 9

8
T0. Temperature does not exceed

9
8
T0 for x < 3

2
, and for x > 3

2
the heat capacity is negative. It means that any heat transferred

to the gas from the heat bath with temperature at or above Tmax will result in expansion
of the gas and decrease of its temperature, leading to further “runaway” heat transfer and
uncontrolled expansion.

49


