
Comprehensive Examination
Department of Physics and Astronomy

Stony Brook University

Spring 2023 (in 4 separate parts: CM, EM, QM, SM)

General Instructions:

Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take approximately
one hour.

Use one exam book for each problem, and label it carefully with the problem topic and num-
ber and your ID number.

Write your ID number (not your name!) on each exam booklet.

You may use, one sheet (front and back side) of handwritten notes and, with the proc-
tor’s approval, a foreign-language dictionary. No other materials may be used.
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Classical Mechanics 1
Thin rod sliding

A thin uniform rod of length l and mass m is held upright against a wall. When it is
released, it begins to slide down the wall and across the floor, forming an angle θ with the
wall, as shown in Fig. 1. During this time, the rod moves horizontally while rotating about
its center of mass. Assume the wall and the floor are frictionless.

!

Figure 1: A thin rod sliding against a wall and the floor.

(a) (2pts) Explain in words what forces act on the rod to make it accelerate down and to
the right.

(b) (8pts) Compute the angle θ at the moment the rod stops touching the wall. Explain
why the horizontal center of mass velocity of the rod, vx, reaches a maximum at this
moment.

(c) (2pts) What is vx at the moment the rod stops touching the wall?

(d) (8pts) What is the rod’s center of mass velocity when it hits the floor? Give your
answer as a vector v = (vx, vy).
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Solution

A thin uniform rod of length l and mass m is held upright against a wall. When it is
released, it begins to slide down the wall and across the floor, forming an angle θ with the
wall, as shown in Fig. 1. During this time, the rod moves horizontally while rotating about
its center of mass.

Assume the wall and the floor are frictionless.

(a) [2pts] Explain in words what forces act on the rod to make it accelerate down and to
the right.

Gravity makes the rod accelerate down. The normal force from the wall causes it to
accelerate to the right.

(b) [8pts] Compute the angle θ at the moment the rod stops touching the wall. Explain
why the horizontal center of mass velocity of the rod reaches a maximum at this
moment.

The rod accelerates to the right because of the normal force. When it stops touching
the wall, there is no normal force and hence no acceleration to the right. Thus, the
center of mass velocity reaches a maximum at the moment the rod stops touching the
wall.

To find the angle θ at this moment, we will use energy conservation to solve for vx as
a function of θ; the rod stops touching the wall when vx has a maximum, as explained
above.

The potential energy is given by:

P.E. =
1

2
mgl cos θ, (1)

while the kinetic energy has both translational and rotational parts:

K.E. =
1

2
mv2 +

1

2
Iω2, (2)

where v = 1
2
lθ̇ is the center of mass velocity, I = 1

12
ml2 is the moment of inertia, and

ω = θ̇ is the rotational frequency, so that the kinetic energy can be rewritten in terms
of m, l and θ as:

K.E. =
1

8
ml2θ̇2 +

1

24
ml2θ̇2 =

1

6
ml2θ̇2 (3)

Conservation of energy implies:

1

2
mgl =

1

2
mgl cos θ +

1

6
ml2θ̇2 (4)

Since we are trying to solve for the maximum in vx, it is useful to solve for v = 1
2
lθ̇,

i.e.,
1

2
mgl(1− cos θ) =

2

3
mv2 ⇒ v =

√
3

4
gl (1− cos θ) (5)
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Thus,

vx = v cos θ =

√
3

4
gl (1− cos θ) cos θ (6)

The maximum in vx occurs when v̇x = 0; taking the derivative of (6) yields:

v̇x =

√
3gl

4

[
sin θ

2
√

1− cos θ
cos θ −

√
1− cos θ sin θ

]
(7)

Thus v̇x = 0 when the quantity in brackets vanishes, i.e., when cos θ =
2

3
.

(c) [2pts] What is vx at the moment the rod stops touching the wall?

From Eq. (6) and the result of part (b), at the moment the rod stops touching the wall,

vx =
1

3

√
gl (8)

(d) [8pts] What is the rod’s center of mass velocity when it hits the floor? Give your
answer as a vector v = (vx, vy).

Conservation of energy dictates

1

2
mgl(1− cos θ) =

1

2
m(v2

x + v2
y) +

1

24
ml2θ̇2, (9)

following Eqs. (1) and (2). Now consider the center-of-mass velocity components. After
the rod detaches from the wall, it no longer experiences a normal force from the wall.
Hence, vx continues to take the value in Eq. (8) after the rod detaches from the wall.
However, vy depends on θ by

vy = ẏ =
d

dt

[
l

2
cos θ

]
= − l

2
θ̇ sin θ (10)

Plugging the expressions for vx and vy from Eqs. (8) and (10) into Eq. (9) yields:

1

2
mgl(1− cos θ) =

1

18
mgl +

1

8
ml2θ̇2 sin2 θ +

1

24
ml2θ̇2 (11)

after the rod detaches from the wall.

At the moment the rod hits the ground, θ = π/2. Thus, Eq. (11) simplifies to:

1

2
mgl =

1

18
mgl +

1

6
ml2θ̇2, (12)

from which it follows:

θ̇ =

√
8g

3l
(13)

at the moment the rod hits the floor.
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Thus, from Eqs. (8) and (10), the center-of-mass velocity vector at the moment the
rod hits the floor is

v =

(
1

3

√
gl,−

√
2

3
gl

)
(14)

Discussion: We have assumed that the tip of the rod never leaves the floor. We
should check that this is the case by finding the normal force. Newton’s equation of
motion in the y direction reads

−mg + FN =may , (15)

=−m l

2

[
θ̈ sin θ + θ̇2 cos θ

]
, (16)

⇒−m l

2
θ̈ , (17)

where in the last step we assumed θ = π/2. The torque equation τ = Iα applied
around the center of mass gives

FN sin θ
l

2
=

1

12
ml2θ̈ . (18)

Using these equations we can solve for FN , eliminating θ̈. The result at θ → π/2 is

FN =
mg

4
(19)

Since this is positive, the tip of the rod never leaves the bottom of the floor.
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Classical Mechanics 2
Bead on a rotating wire

A bead of massm in the earths gravitational field slides without friction along a thin rod of
negligible mass inclined at an angle θ (see figure). The rod is forced to rotate with a constant
angular velocity Ω about the vertical axis. Below, `(t) notates the bead’s displacement along
the wire measured from the axis of rotation.

(a) (3 points) Using `(t) as a generalized coordinate, determine the Lagrangian of the
system and find the equation of motion for the bead.

(b) (4 points) From the equation of motion show that the bead is in equilibrium at a
constant position `(t) = `0 ≡ g cos θ/(Ω sin θ)2 and interpret `0 using Newton’s second
law, F = ma .

(c) (5 points) Discuss the stability of this equilibrium point against small displacements
along the wire by solving for the deviation η(t) ≡ `(t)− `0. Assume that at t = 0 the
bead has ˙̀(t) = 0 and initial deviation η0.

(d) (8 points) We will now consider a general solution `(t) and analyze the forces of con-
straint.

i. Find the external torque required to keep the rod rotating with angular velocity
Ω around the z axis in terms of `(t) and its derivatives.
Hint: ˙̀ and ῭parameterize the velocity and acceleration in the co-rotating frame.
What is the corresponding acceleration in the lab frame?

ii. Show how the required torque is determined by the inertial forces (such as the
centripetal force) in the co-rotating frame.
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Solution:

(a) Writing

x =`(t) sin θ cos(Ωt) , (1a)
y =`(t) sin θ sin(Ωt) , (1b)
z =`(t) cos θ , (1c)

we find
v2 = ˙̀2 + Ω2`2 sin2 θ . (2)

So the Lagrangian is

L =
1

2
m
(

˙̀2 + Ω2`2 sin2 θ
)
−mg` cos θ , (3)

=
1

2
m ˙̀2 − Veff(`) . (4)

where
Veff(`) = −1

2
mΩ2`2 sin2 θ +mg` cos θ .

(b) The potential takes the form

Veff

mΩ2 sin2 θ
= −1

2
`2 + ``0 , (5)

where `0 = g cos θ/Ω2 sin2 θ.

The potential is plotted in Fig. 1 and has a maximum at ` = `0. The equation of motion
is

m῭= mΩ2 sin2 θ (`− `0) , (6)

showing that the acceleration is zero at ` = `0. But since the potential is a maximum, and
not a minimum, this is an unstable equilibrium as we will analyze next.

In the Newtonian formalism, the “equilibrium" point happens when the acceleration of
gravity along the wire g cos θ exactly equals the component of the centripetal acceleration
along the wire. The centripetal acceleration is acent = Ω2r⊥ = Ω2` sin θ (see Fig. 2) and the
component along the wire is acent sin θ = Ω2` sin2 θ. Thus equating the two accelerations and
solving for `, we have condition ` = g cos θ/Ω2 sin2 θ.

(c) The equation of motion for eta takes the form

η̈ = Ω2 sin2 θη , (7)

with general solution
η = η0 cosh(Ω sin θt) + η̇0 sinh(Ω sin θt) . (8)

In the current case we have η̇0 = 0 and so

η(t) = η0 cosh(Ω sin θt) . (9)
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Figure 1: The effective potential given in Eq. (5)

(d) The first pick a co-rotating set of basis vectors e1, e2 (into the page) and e3, as
shown in Fig. 2. The position r, the velocity vr and acceleration ar in the rotating frame
are directed along the rod

r =`(t)r̂ , (10)

vr = ˙̀(t)r̂ , (11)

ar =῭(t)r̂ . (12)

The lab frame velocity and acceleration are

v(t) =vr + Ω× r , (13)
a(t) =ar + 2Ω× vr + Ω× (Ω× r) . (14)

The centripetal acceleration acent = Ω× (Ω× r) points toward the center (see figure), while
the Coriolis acceleration acor = 2Ω×vr is into the page (see figure). The forces on the bead
cause the acceleration

FN −mgẑ = ma = mar +macor +macent (15)

So the normal force is
FN = mar +macor +macent +mgẑ (16)

From the picture it is clear that the the only torque on the bead in the z direction is
from the normal force causing Coriolis acceleration. The relevant normal force is

macor = 2mΩ ˙̀ sin θ e2 (17)

The torque in the z-direction due to this normal force is

τ zẑ =r⊥ × (macor) , (18)

=` sin θ(2mΩ ˙̀ sin θ) ẑ , (19)

=2mΩ sin2 θ` ˙̀ . (20)
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Figure 2: The centripetal and Coriolis accelerations in the system. The basis vectors
e1, e2, e3 are corotating with the rod and are shown in the figure.

Alternate solution: Another way to proceed is to evaluate

dLz
dt

= m
d

dt
(xẏ − yẋ) = m

d

dt
(Ω`2 sin2 θ) = 2mΩ` ˙̀ sin2 θ (21)

with x and y given by Eq. 1. The interpretation in terms of the Coriolis force is given above.
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Classical Mechanics 3
A driven set of oscillators

A particle of mass m and is attached to a spring of spring constant k. At t = 0 an
external time-dependent force F (t) = F0e

−αt is applied and the particle is displaced in the
horizontal direction. Assume that the system is at rest before the force acts, and neglect
friction and gravity.
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(a) (6 points) Find the displacement, x(t), at late times, long after the force has decayed.

Now consider two masses, m1 = 2m and m2 = m, suspended in a uniform gravitational
field g by identical massless springs with spring constant k. Assume that only vertical
motion occurs, and let z1 and z2 denote the vertical displacement of the masses from their
equilibrium positions, increasing in the downward direction as shown. As in the previous
part, at t = 0 an external time-dependent force F (t) = F0 exp(−αt) is applied to the lower
mass, with F > 0 indicating a downward vertical force. Again assume that the system is
initially at rest in its equilibrium configuration before the force acts.

Physics 505 Problem Set #6 February 15, 2017
Due Tuesday, February 21, 2017

1. Hanging Masses Redux

z

z

1

2

k

k

2m

m

Two masses, m1 = 2m and m2 = m, are suspended in a uniform gravita-
tional field g by identical massless springs with spring constant k. Assume
that only vertical motion occurs, and let z1 and z2 denote the vertical dis-
placement of the masses from their equilibrium positions, increasing in the
downward direction as shown. An external time-dependent force F (t) is
applied to the lower mass (with F > 0 indicating a downward vertical
force). Assume that the external force vanishes as t ! ±1, with the
system initially at rest in its equilibrium configuration at time �1. Let
eF (!) denote the Fourier transform of F (t).

(a) Construct the Lagrangian for the system, including the external force,
and find the resulting equations of motion.

(b) Solve for the motion of both masses (expressed as an integral involving
the time-dependent force).

(c) Find the total work down on the system by the external force, �E =
E(+1) � E(�1). Show that it can be expressed in the form

�E =

Z 1

�1

d!

2⇡
e�(!) | eF (!)|2 ,

with e�(!) real and positive.

(d) Extra credit: If a small damping term is added to each equation of
motion, so mi z̈i ! mi z̈i + 1

2
� żi, how does this change the response

function e�(!)?

2. Select a problem from the archive of 1996–2011 qualifying exam problems, available at
https://sharepoint.washington.edu/phys/grad/Pages/Masters-Review.aspx , which
is related to the material we have covered to date in class and which you find both interesting
and reasonably challenging. Solve it and write it up clearly.

(b) (7 points) Construct the Lagrangian for the system without the force and find the
normal modes and frequencies.

(c) (7 points) Now include the external force and determine the oscillations of z1(t) and
z2(t) long after the force has decayed.
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Solution:

(a) The solution is expressed using the retarded green function

x(t) =

∫ t

0

dt′GR(t− t′)F0

m
e−αt

′
(1)

with GR(τ) = θ(τ) sin(ω0τ)/ω0. Writing out relevant factor, sin(ω0(t− t′)):

sin(ω0(t− t′)) = sin(ω0t) cos(ω0t
′)− cos(ω0t) sin(ω0t

′) , (2)

we find for t� α−1

x(t) =
F0

mω0

sin(ω0t)

∫ ∞

0

cos(ω0t
′)e−αt

′
dt′ − F0

mω0

cos(ω0t)

∫ ∞

0

sin(ω0t
′)e−αt

′
dt′ (3)

The two integrals in this expression, I1 and I2, are easily done

I = I1 + iI2 =

∫ ∞

0

dt′e(iω−α)t′ , (4)

=
1

α− iω , (5)

=
α + iω

ω2 + α2
, (6)

leading to

x(t) =
F0

mω0

[
α

ω2
0 + α2

sin(ω0t)−
ω0

ω2
0 + α2

cos(ω0t)

]
. (7)

(b) The Lagrangian of the system without the force is

L0 =
1

2
(2m)ż2

1 +
1

2
mż2

2 −
1

2
kz2

1 −
1

2
k(z2 − z1)2 , (8)

while the force term adds the following driving term

LF = F (t)z2 . (9)

Differentiation of L = L0 + LF yields the equations of motion
(

2m 0
0 m

)(
z̈1

z̈2

)
=

(
2k −k
−k k

)(
z1

z2

)
+

(
0

F (t)

)
. (10)

Let us look for the normal modes (z1, z2) = (u1, u2)e−iωt where (u1, u2) is a constant
eigenvector. We find the eigenvectors of satisfy the generalized eigenvalue problem

− ω2

(
2m 0
0 m

)

︸ ︷︷ ︸
≡M

(
u1

u2

)
=

(
2k −k
−k k

)

︸ ︷︷ ︸
≡K

(
u1

u2

)
. (11)
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The generalized eigenvalue problem is of the form (with λ = −ω2)

K ~E = λM ~E . (12)

with a positive definite mass matrixM acting as a weight. Setting the characteristic poly-
nomial det(K − λM) to zero

(2k − λ2m)(k − λm)− k2 = 0 , (13)

we solve for the eigen-frequencies

ω2
± =

k

2m
(2±

√
2) . (14)

The corresponding eigenmodes are

~E± =

(
±
√

2
2

)
. (15)

We note that the vectors are orthogonal with the mass matrixM acting as a weight:

~ET
+M ~E− = 0 . (16)

(c) The solution is expanded in terms of the eigen-basis basis
(
z1(t)
z2(t)

)
= z+(t) ~E+ + z−(t) ~E− . (17)

Substituting this form into the equations of motion we have

(
z̈+ + ω2

+z+

)
~E+ +

(
z̈− + ω2

−z−
)
~E− =M−1

(
0

F (t)

)
. (18)

The force is decomposed into eigen vectors

M−1

(
0

F (t)

)
=

(
0
F (t)
m

)
=
F (t)

4m
~E+ +

F (t)

4m
~E− , (19)

and the equations to be solved are

z̈+ + ω2
+z+ =

F (t)

4m
, (20a)

z̈− + ω2
−z− =

F (t)

4m
. (20b)

These equations are solved directly by comparison with part (a):

z±(t) =
F0

4mω±

[
α

ω2
± + α2

sin(ω±t)−
ω±

ω2
± + α2

cos(ω±t)

]
. (21)
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Electromagnetism 1
Waves in the Earth’s atmosphere

We consider the atmosphere of the Earth as a neutral and dilute plasma of uniform den-
sity, consisting of classical non-interacting dissociated electrons and stationary ions. The
atmosphere is permeated by the Earth’s static and uniform magnetic field in the z-direction,
BE = BE ẑ. We want to find out how radio waves propagate in the Earth’s atmosphere. For
this purpose, consider circularly polarized radio waves propagating in the z-direction:

E± = E0 (x̂± iŷ) e−iωt+ikz . (1)

The magnetic field of the wave is substantially weaker than the Earth’s magnetic field BE.

1. (6 points) For an electron of charge −e and mass m, write and solve the classical
evolution equations for the steady state oscillations δr±(t) of the electron around its
mean position r = (x, y, z), in the fields of the Earth and a radio wave of specified
circular polarization, ±. Assume that the electron is at rest on average. Express your
solution in terms of the Earth’s Larmor frequency1, ωB = eBE/mc.

Hint: Neglect the magnetic field of the wave in comparison to the Earth’s, and look
for a steady state displacement of the form δr(t) = r⊥ e−iωt+ikz where r⊥ lies in the
xy plane.

2. (6 points) For both polarizations of the radio waves, derive the frequency-dependent
dielectric constant ε± and the polarization P± of the plasma. Assume the electron
density is N per unit volume, with plasma frequency2 ω2

p = 4πNe2/m.

3. (6 points) When the frequency of the wave ω is much smaller than the ωB and ωp,
derive the phase and group velocities, v±p and v±g , for both polarizations of radio waves.
Do both polarizations propagate? Explain.

4. (2 points) In the Earth’s atmosphere ωB ≈ ωp ≈ 107 Hz. Consider two propagating
signals of frequency ω1 ' 105 Hz and ω2 ' 2×105 Hz, emitted simultaneously from New
York. Estimate the difference in their arrival times in Shanghai. Assume that New
York and Shanghai are on opposite sides of the Earth, and that the Earth’s curvature
guides the waves around the Earth in a circle of radius RE ≈ 6× 108 cm.

1We are using Gaussian units. In SI units, ωB = eB/m.
2We are using Gaussian units. In SI units, ω2

p = Ne2/mε0.
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Solution

a. The motion of the ionized electron is given by

mẍ = −e
c
ẋ×BE − eE0(x̂± iŷ)e−iωt+ikz . (2)

For a weak magnetic field, the steady state solution is driven by the polarized wave, so we
seek a solution of (2) of the form

x± = x + A±(x̂± iŷ)e−iωt+ikz , (3)

with A the amplitude, and x = (x, y, z) the average 3-position of the ionized electron.
Inserting (3) into (2) yields the amplitude

A± =
eE0

mω(ω ∓ ωB)
. (4)

b. The polarization carried by the displaced ionized electron in the plasma is

P± = −Ne(x± − x) = − Ne2

mω(ω ∓ ωB)
E = χ±EE , (5)

and the corresponding dielectric constant is

ε± = 1 + 4πχ±E = 1− ω2
p

ω(ω ∓ ωB)
. (6)

c. For radio waves with ω � ωB ≈ ωp

ε± ≈ ± ω2
p

ωωB
, (7)

which clearly shows that only the left-handed (+) radio wave propagates. The right-handed
one (−) does not. The phase velocity is

v+
ϕ =

ω

k
=
c

n
=

c√
ε+

=
c

ωp

√
ωωB , (8)

and
k(ω) =

ω

v+
ϕ (ω)

. (9)

The group velocity is

vg =
dω

dk
=

(
dk

dω

)−1

=
2c

ωp

√
ωωB = 2v+

ϕ , (10)
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after using k(ω) from (9). Higher frequencies travel faster.

d. For waves with ω ≈ 105 Hz and ωp ≈ ωB ≈ 107 Hz, v+
ϕ ≈ c/10. The time difference is

∆t =
πRE

vg1
− πRE

vg2
=
πRE

2c

ωp√
ωB

(
1√
ω1

− 1√
ω2

)
, (11)

=
πRE

2c

ωp√
ωBω1

(
1−

√
ω1

ω2

)
, (12)

with specifically

∆t ≈ π(6 · 108 cm)

2(3 · 1010cm/s)

107

√
107 × 105

(1− 1√
2

) ≈ 0.1 s . (13)
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Electromagnetism 2
Potential above a surface

Parts (a) and (b) Parts (c), (d), (e), (f)

The xy plane has no net charge, and is held at a specified electrostatic potential V (x, y),
as shown above.

(a) (4 points) Determine the electrostatic potential, φ(x, y, z), for z > 0 for the specific
case V (x, y) = V0 cos(κx).

(b) (4 points) Now consider a general boundary potential V (x, y). Determine φ(x, y, z) for
z > 0 in terms of the Fourier transform of V (x, y)

V̂ (q) ≡
∫
d2r e−iq·r V (r) . (1)

Here the boldface symbols r and q denote the two dimensional vectors, i.e. r = (x, y)
and q = (qx, qy), and the Fourier transform of a two dimensional function f(r) is
notated f̂(q).

Now consider an infinite surface Σ with no net charge dividing space into two pieces. Σ is a
small distortion of the xy plane, and is parameterized by z = H(x, y) as shown in the figure
above. The electrostatic scalar potential φ is specified to have the value V (x, y) at the point
(x, y,H(x, y)) on the surface.

(c) (2 points) By assuming that H(x, y) is small, show that φ(x, y, z) satisfies the effective
boundary condition on the surface z = 0

φ(x, y, 0) +
∂φ(x, y, z)

∂z

∣∣∣∣
z=0

H(x, y) = V (x, y) . (2)

(d) (6 points) Consider a specific case V (x, y) = V0 cos(κ1x) and H(x, y) = H0 cos(κ2x),
determine the effective boundary condition φ(x, y, 0) to first order in H, and then
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determine the potential φ(x, y, z) above the surface. What is the leading behavior at
large z when κ1 is nearly κ2? Explain.

Hint: You may find the trigonometric identities helpful here

cos(θ1) cos(θ2) =1
2

cos(θ1 + θ2) + 1
2

cos(θ1 − θ2) , (3)
sin(θ1) cos(θ2) =1

2
sin(θ1 + θ2) + 1

2
sin(θ1 − θ2) . (4)

(e) (4 points) Now consider a general V (r) and H(r). To first order in H, find the solution
for the electrostatic potential φ(x, y, z) for z > 0 in terms of integrals over the Fourier
transforms V̂ (q) and Ĥ(q).

Hint: You may use the convolution theorem without proof:
∫
d2r e−iq·r f(r) g(r) =

∫
d2k

(2π)2
f̂(k) ĝ(q − k) . (5)
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Solution:

Note: To simplify the notation when confusion can not arise, we indicate Fourier transform
of a function f(r) is by its argument, i.e. we write f(q) and f(k) instead of f̂(q) and f̂(k)
to indicate the Fourier transform.

(a) For the specific boundary condition V (r) = V0 cos(κx), we are to solve the Laplace
equation

−
(
∂2φ

∂z2
+
∂2φ

∂x2
+
∂2φ

∂y2

)
= 0 . (6)

The equation separates in Cartesian coordinates. Guessing a solution of the form Z(z)cos(κx)
we substitute and solve for Z(z)

Z(z) = Ae−κz +Be+κz.

Rejecting the growing exponential we set B = 0, and choosing A so that the boundary
condition Z(0) = V0 is reproduced, we have finally:

φ(r, z) = V0 cos(κx)e−κz . (7)

(b) We have the Laplace equation

−
(
∂2φ

∂z2
+
∂2φ

∂x2
+
∂2φ

∂y2

)
= 0 , (8)

and Fourier transform in the x and y directions yielding

− φ′′(z, q) + q2φ(z, q) = 0 . (9)

Here q2 = q2
x + q2

y = |q|2 the prime’s denote z derivatives. The solution is

φ(z, q) = A(q)e−qz +B(q)eqz . (10)

The growing exponential is discarded on physical grounds. In order to match the boundary
conditions at z = 0 we must have A(q) = V (q) leading to

φ(r, z) =

∫
d2q

(2π)2
eiq·r V (q)e−qz . (11)

(c) We have by Taylor series

φ(x, y,H(x, y)) = φ0(x, y) + φ′0(x, y)H(x, y) , (12)

where we use the abbreviations

φ0(x, y) ≡ φ(x, y, z)|z=0 , φ′0(x, y) ≡ ∂φ(x, y, z)

∂z

∣∣∣∣
z=0

. (13)

The boundary condition is φ(x, y,H(x, y)) = V (x, y) leading to the stated result

φ0(x, y) + φ′0(x, y)H(x, y) = V (x, y) . (14)
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(d) Since at leading order φ(x, y, z) ' V0 cos(κ1x)e−κ1x, we have φ′0(x, y) ' −κ1V0 cos(κ1x).
So the mixed term in the boundary conditions is approximately

φ′0(x, y)H0 cos(κ2x) '− V0κ1H0 cos(κ2x) cos(κ1x) , (15)
=− V0κ1H0

[
1
2

cos(κSx) + 1
2

cos(∆κx)
]
. (16)

Here for later use we have defined the sum and difference in the wavenumbers

κS ≡ κ1 + κ2 , ∆κ = κ1 − κ2 .

Thus the modified boundary condition is

φ0(x, y) = V0 cos(κ1x) + V0κ1H0

[
1
2

cos(κSx) + 1
2

cos(∆κx)
]
. (17)

Part (b) worked out the solution for a boundary condition ∝ cos(κx) for any κ. Using the
superposition principle, we can write the solution now as a sum of such solutions, since the
boundary condition is a sum of such cosines:

φ(x, y, z) = V0 cos(κ1x)e−κz + V0 (κ1H0)
[

1
2

cos(κSx)e−κSz + 1
2

cos(∆κx)e−|∆κ|z
]
. (18)

Thus we see that at large z and small |∆κ| we have

φ(x, y, z) ' 1
2
V0 (κ1H0) cos(∆κx)e−|∆κ|z . (19)

(e) Expressing Eq. 12 in Fourier space we have the boundary condition

φ0(q) +

∫
d2k

(2π)2
φ′0(k)H(q − k) = V (q) . (20)

The solution for φ(q, z) is the same as before

φ(q, z) =A(q)e−qz , (21)
φ′(q, z) =− qA(q)e−qz , (22)

but the boundary conditions have changed. Motivated by the zeroth order solution in part
(a), we write

A(q) = V (q) + δA(q) . (23)

Here δA(q) is of order H. Setting up an expansion scheme, we have the approximation we
have to first order in H

∫
d2k

(2π)2
φ′0(k)H(q − k) ' −

∫
d2k

(2π)2
kV (k)H(q − k) . (24)

Substituting Eq. 23 into the boundary conditions and using Eq. 24, we have

δA(q) '
∫

d2k

(2π)2
kV (k)H(q − k) , (25)
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leading to our final somewhat formal result:

φ(x, y, z) =

∫
d2q

(2π)2
eiq·r(V (q) + δA(q))e−qz . (26)

Discussion: To verify consistency with part (d) we not that the Fourier transforms of
V (r) and H(r) are

V (k) =
V0

2
(2π)2 [δ(k − κ1ex) + δ(k + κ1ex)] , (27)

H(q) =
V0

2
(2π)2 [δ(q − κ2ex) + δ(q + κ2ex)] . (28)

Then substituting these results into Eq. (25) we find

δA(q) =
1

4
V0 (κ1H0) (2π)2 [δ(q − κSex) + δ(q + κSex) + δ(q −∆κex) + δ(q + ∆κex)] .

(29)
Finally substituting δA(q) into Eq. (26) we find Eq. (18).
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Electromagnetism 3
A moving mirror

A mirror moves relativistically with velocity v in the lab frame with position z = vt. A
linearly polarized plane wave of light, with amplitude EI and wavenumber k, i.e.

EI(t, z) = EI cos(k(z − ct)) x̂ , (1)

is normally incident upon the mirror and is reflected. The goal of the problem is to analyze
the reflected light.

(a) (4 points) Determine the incident electric field in the frame of the mirror. Explicitly
show the dependence on the coordinates (t′, x′, y′, z′) in the transformed frame. What
is the frequency of the incident light in this frame?

(b) (7 points) Write down the reflected wave in the mirror frame, explicitly indicating the
dependence on the transformed coordinates (t′, x′, y′, z′). Then determine the ampli-
tude and frequency of reflected electric field in the lab frame.

(c) (5 points) Determine the time-averaged force per area on the mirror by the light.

(d) (4 points) Now work entirely in the lab frame and do not use Lorentz transformations.
The solution to the left of the mirror can be written3

E(t, z) = EIe
i(kz−ωt) x̂+ ERe

i(−kRz−ωRt) x̂ (2)

where ER, kR and ωR are the reflected amplitude, wavenumber, and frequency, respec-
tively. Determine the amplitude and frequency of the reflected light.

Hint: Impose the boundary condition that the Lorentz force, F ∝ E + v
c
×B, on the

surface of the moving mirror is zero for all times.

3The physical electric field is the real part of this complex expression.
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Solution

Notation: EI , ER are positive and denote the magnitude of the x component of the electric
field for the incident and reflected waves, respectively. Similarly, BI and BR are the mag-
nitude y components of the magnetic fields. The incident and reflected waves have ω = ck,
and the E and B fields have equal magnitude. ~E and ~B denote the vector amplitudes of the
sinusoidal waves:

EI(t, z) = ~EI cos(kz − ωt) = EI cos(kz − ωt)x̂ (3)

BI(t, z) = ~BI cos(kz − ωt) = EI cos(kz − ωt)ŷ . (4)

The reflected wave, which is left moving and involves cos(−kRz − ωRt), takes the form

ER(t, z) = ~ER cos(−kRz − ωRt) = −ER cos(−kRz − ωRt)x̂ , (5)

BR(t, z) = ~BR cos(−kRz − ωRt) = ER cos(−kRz − ωRt)ŷ , (6)

where we have anticipated that the reflected wave is inverted, ~ER = −ERx̂.

(a) Using the Lorentz transformation rules

E⊥ =γE⊥ + γβ ×B⊥ , (7)
B⊥ =γB⊥ − γβ ×B⊥ , (8)

we can determine the electric and magnetic fields in the mirror frame. Using β × B ∝
EIβẑ × ŷ = −EIβx̂, we find

~EI = (EIγ − γβEI) x̂ , (9)

or

EI =

√
1− β
1 + β

EI . (10)

The coordinates also transform. The lightlike wave number four vector isKµ = (ω/c, k) =
(k, k), and the argument of the cosine, KµX

µ, is Lorentz invariant:

KµX
µ = KµX

µ . (11)

The transformation of Kµ reads4

Kν = Kµ(Λ−1)µν , (12)

so

(
−ω/c k

)
=
(
−k k

)( γ γβ
γβ γ

)
(13)

4The metric here is ηµν = diag(−1, 1, 1, 1).
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leading to

ω/c = k =

√
1− β
1 + β

k . (14)

This is the relativistic Doppler shift of the frequency.
The full wave is

EI =EI cos(kz − ωt)x̂ (15)

(b) In the mirror frame the incident wave is inverted under reflection, while the frequency
is the same:

~ER = −EIx̂ and ωR/c = kR = ω/c = k.

The magnetic field is not inverted ~BR = BI ŷ. Summarizing

ER = −EI cos(−kz − ωt)x̂ , (16)

where we note that the argument of the cosine involves −kz since the reflected wave is left
moving. Transforming back to the lab frame we repeat the analysis of part (a), but we have
several different signs:

β → −β k → −k E → −E. (17)

The wave number of the reflected wave is

(KR)µ = (−ωR/c,−kR) . (18)

Transforming (KR)µ to the lab frame we have

(
−ωR/c −kR

)
=(−k,−k) .

(
γ −γβ
−γβ γ

)
= −

√
1− β
1 + β

k
(
1 1

)
, (19)

i.e.
ωR =

1− β
1 + β

ck . (20)

For the electric field amplitude we make a boost with −β = −βẑ
ER =ER + γ(−β)×BR . (21)

So in terms of the amplitudes:
~ER = −ERx̂ =x̂ (−γER + γβER) , (22)

=− x̂
√

1− β
1 + β

ER , (23)

=− x̂1− β
1 + β

EI . (24)

The full solution is

ER = −x̂1− β
1 + β

EI cos(−kR(z + ct)) . (25)

where kR = ((1− β)/(1 + β))k.
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(c) It is simplest to use the photon picture. Here the incoming density of photons is

n =
1
2
E2
I

~ckI
(26)

The relative velocity of the light and the mirror is vrel = (c− v), and so the flux of photons
is

Φ ≡ 1

A

dNγ

dt
= nvrel =

1
2
E2
I

~kI
(1− β) (27)

Each photon strikes the mirror with momentum ~kI ẑ and departs with momentum −~kR ẑ;
the momentum transfer in the z direction is (using Eq. (20))

∆pz = ~kI
(

1 +
1− β
1 + β

)
=

2

1 + β
~kI (28)

So the force per area (i.e. the momentum transfer per area per time) is

F z

A
= Φ∆pz = 2

(
1− β
1 + β

)
1
2
E2
I (29)

Two alternate solutions are presented below. The first is simple, and involves working in the
rest frame. The second is completely classical and works entirely in the lab frame.

(d) We have for the incident wave

FI ∝ EI +
v

c
×BI = (1− β)EI cos(k(z − ct))x̂ . (30)

For the reflected wave

FR ∝ ER +
v

c
×BR = −(1 + β)ER cos(kR(z + ct))x̂ . (31)

Requiring that the force be zero at z = vt for all times:

FI + FR = 0 , (32)

yields

ER =
(1− β)

(1 + β)
EI kR =

(
v − c
v + c

)
k , (33)

in agreement with the previous parts.

Discussion: Two alternative solution to part (c) are given below.

Alternate Solution 1: One strategy is to work in the rest frame of the mirror where the
incoming light is simply reflected. In a (proper) time τ and surface area A, a volume of light
V = Acτ is reflected. The momentum per volume in the incoming light is

〈
g
I

〉
=

1

2c
~EI × ~BI =

1

2c

(
1− β
1 + β

)
E2
I (34)
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So the momentum transfer to the mirror

∆P z = 2V
〈
g
I

〉
= (Aτ) 2

(
1− β
1 + β

)(
1
2
E2
I

)
, (35)

The energy transfer in the mirror frame is zero, ∆P 0 = 0. Transforming ∆P µ to the lab
frame (

∆P 0

∆P z

)
=

(
γ γβ
γβ γ

)(
0

∆P z

)
, (36)

we find
∆P z = γ(Aτ) 2

(
1− β
1 + β

)
1
2
E2
I . (37)

Since γτ = t, the force per area (or the momentum per area per time) is:

F z

A
= 2

(
1− β
1 + β

)
1
2
E2
I , (38)

in agreement with part (c).

Alternate Solution 2: It is a rewarding exercise to work entirely in the lab frame and
with classical electrodynamics to reproduce part (c). The momentum entering the mirror is

∆P z =
1

c

∫
dΣµT

µz , (39)

where dΣµ is the spacetime surface of the mirror. The spacetime surface of the mirror is
spanned by three vectors

d`µ1 =dx (0, 1, 0, 0) (40)
d`ρ2 =dy (0, 0, 1, 0) (41)
d`σ3 =cdt (1, 0, 0, β) (42)

leading to the surface element (see figure)

dΣµ = εµνρσ d`
ν
1 d`

ρ
2 d`

σ
3 = dA cdt (−β, 0, 0, 1) , (43)

where we used ε3120 = −ε0123 = 1.
Integrating over the surface, we have

∆P z = At
〈
−βT 0z + T zz

〉
, (44)

where the angular brackets denote the time average over the sinusoidal fields. The compo-
nents of the energy momentum tensor are

T 0z =(E ×B)z , (45)
T zz =(−EzEz + 1

2
E2δzz) + (−BzBz + 1

2
B2δzz) . (46)
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mirror
world line

Figure 1: World line of mirror. We are indicating the t and z components only.

On the mirror’s surface the amplitude of the electric and magnetic fields are:

~E =

[
EI −

(
1− β
1 + β

)
EI

]
x̂ = β

(
2

1 + β

)
EI x̂, (47)

~B =

[
BI +

(
1− β
1 + β

)
BI

]
ŷ =

(
2

1 + β

)
EI ŷ . (48)

We note that E = βB on the surface of the mirror, reflecting the boundary condition
E + β ×B = 0. Performing the time averages we find

〈
−βT 0z

〉
= −β2 (1

2
B2) , 〈T zz〉 = 1

2
(β2 + 1) (1

2
B2) . (49)

Assembling the ingredients, we obtain finally

∆P z

At
=

1

2
(1− β2) (1

2
B2) = 2

(
1− β
1 + β

) (
1
2
E2
I

)
, (50)

in agreement with part (c).
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Quantum Mechanics 1
Diatomic molecule in an electric field

In the presence of a uniform and static external electric field ~E, a homonuclear diatomic
molecule (i.e., formed by two identical atoms) experiences an interaction described by the
Hamiltonian

Hα = −1

2
αE2 cos2 θ ,

where α is the average polarizability of the molecule, and θ is the angle between the external
field and the molecular axis, as shown in the Figure. Describe the molecule as a linear rigid

θ

E

Figure 1: Homonuclear molecule in an external electric field. The molecule is assumed to
behave as a linear rigid rotor, and θ is the angle between the external field and the molecular
axis.

rotor, and assume that the two atoms in the molecule are completely identical, with the
total electron spin and nuclear spin of each atom equal to zero.

(a) (2 pts) In the rotational motion, the molecule rotates around its center-of-mass O.
Treating the molecule as two point masses M distance d apart, express the Hamiltonian
Hrot of this motion in terms of the angular momentum L of the molecule and its moment of
inertia I (in the absence of the electric field).

(b) (4 pts) What are the energy eigenvalues of Hrot and rotational energy levels of the
molecule?

(c) (4 pts) Write down explicitly all of the wavefunctions of the lowest and first excited
energy levels as functions of the angles θ and φ of the spherical coordinate system with the
center O. (Helpful formulas are given below.)

(d) (4 pts) Calculate the first-order correction to the rotational energies of states in part
(c) due to the perturbation Hα.

(e) (4 pts) Calculate the second-order correction to the energy of the rotational ground
state due to Hα. [Hint: The relevant properties of the matrix elements can be deduced
directly from the properties of the spherical harmonics Y m

l (θ, φ), in particular, Y 0
2 (θ, φ).]

(f) (2 pts) TakingM = 16 amu, d = 0.12 nm, and α = 1.74×10−40 m2C/V, calculate the
electric field strength which would make the first-order correction to the energy difference
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between the ground and the first excited state of the molecule with m = 0 the same as the
difference between their zero-order rotational energies.

A possibly useful expression:

Y m
l (θ, φ) =

1

2ll!

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)! (1− x

2)|m|/2eimφ
dl+|m|

dxl+|m|
(x2 − 1)l

∣∣∣
x=cos θ

. (1)
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Solution

(a) As usual, the Hamiltonian can be derived using the classical mechanics. In the
coordinate system with the origin at the center of mass, the two point masses have opposite
linear velocities of the same magnitude v, and the molecule rotates around O. In terms of
v, kinetic energy of this motion is Erot = Mv2, while the angular momentum around O is
L = Mvd. In terms of the moment of inertia of the molecule relative to O, I = Md2/2, the
energy can be expressed through the angular momentum as Erot = L2/(2I). Thus,

Hrot =
L2

2I
.

(b) In quantum mechanics, the values of the orbital angular momentum are characterized
by an integer l, and the energy eigenvalues of Hrot follow directly from the known eigenvalues
of the L2 operator:

El =
~2l(l + 1)

2I
, l = 0, 1, 2, ... .

Not all of these eigenvalues, however, correspond to the actual rotational energies of the
diatomic molecule. Identical atoms with zero spin are bosons, and the wavefunctions of the
molecule should be symmetric with respect to the interchange of the two atoms. If one
characterizes orientation of the molecule with the unit vector r̂ pointing along the molecular
axis from O towards the first atom, interchange of the two atoms corresponds to the inversion:
r̂ → −r̂. It is knows that the momentum eigenstates are eigenstates of the inversion, with
eigenvalues (−1)l, i.e., states with even l are symmetric and states with odd l antisymmetric
under inversion. This means that only the energies El with even l,

l = 0, 2, 4, ... ,

give the actual rotational energy levels for the molecule in this problem.

(c) The eigenstates of the angular momentum, and therefore of Hrot, are the spherical
harmonics Y m

l (θ, φ). From the formula given in the problem (Eq. 1), one gets directly:

Y 0
0 (θ, φ) =

1√
4π

, Y 0
2 (θ, φ) =

√
5

16π

(
3 cos2 θ − 1

)
,

Y ±1
2 (θ, φ) =

√
15

8π
cos θ sin θ e±iφ, Y ±2

2 (θ, φ) =

√
15

32π
sin2 θ e±2iφ.

(d) Using the standard formula of the stationary perturbation theory, one sees that the
first-order correction to the rotational states Y m

l is given in general by the following integral:

δE
(1)
lm = −αE

2

2

∫ 2π

0

dφ

∫ π

0

dθ sin θ cos2 θ |Y m
l |2.

The formulas for spherical harmonics re-derived in (c) give then explicitly:

δE
(1)
00 = −αE

2

4

∫ 1

−1

dxx2 = −αE
2

6
, δE

(1)
20 = −5αE2

16

∫ 1

−1

dxx2(3x2 − 1)2 = −11αE2

42
,
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δE
(1)
21 = −15αE2

8

∫ 1

−1

dxx4(1−x2) = −3αE2

28
, δE

(1)
22 = −15αE2

32

∫ 1

−1

dxx2(1−x2)2 = −αE
2

28
.

and expressions for the negative values ofm are the same as for the corresponding positive
ms.

(e) Since the Hamiltonian Hα is independent of the angle φ, it has non-vanishing matrix
elements only between the states with the same m. Therefore, only the states with m = 0
contribute to the energy shift of the ground state l = 0, m = 0. From the general equation
of the perturbation theory, we have then:

δE
(2)
00 =

∞∑

j=1

|〈l = 0,m = 0|Hα|l = 2j,m = 0〉|2
E0 − E2j

.

Also, one can notice that the function cos2 θ that gives the θ-dependence of Hα can be
expressed as a combination of two spherical harmonics, Y 0

2 and Y 0
0 . The fact that Y 0

0 is a
constant and spherical harmonics are orthogonal, then means that only the matrix element
with l = 2 is non-vanishing in the sum for δE(2)

00 . Thus,

δE
(2)
00 = −|〈l = 0,m = 0|Hα|l = 2,m = 0〉|2

E2

= −I(αE2)2

12~2
H2 ,

H =

√
5

16

∫ 1

−1

dxx2(3x2 − 1) =

√
4

45
.

Finally, the second-order correction to the energy of the rotational ground state is:

δE
(2)
00 = −I(αE2)2

135~2
.

(f) The energy difference between the ground and the first excited rotational state of
the molecule with l = 2 is 3~2/I = 6~2/(Md2). For the given parameters, this is roughly
1.7× 10−22 J. On the other hand, as we have seen above, the electric field causes a shift of
each of the rotational states, and the energy difference between the ground state and the
l = 2, m = 0 is changed by In particular, the ground rotational state experiences a shift
given by

∆E = αE2(
11

42
− 1

6
) =

2

21
αE2.

This energy becomes equal to the rotational energy difference estimated above for an electric
field of 3.2× 109 V/m.
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Quantum Mechanics 2
3D spherical potential well

A quantum particle of mass m moves in a 3D attractive potential V (r) with the following
dependence on the distance r to the center O of a spherical coordinate system:

V (r) =

{
−U, r < a,
0, r > a.

The particle has vanishing angular momentum, l = 0, relative to O, and negative energy
−E, with E > 0.

(a) (3 pts) What is the dependence of the particle wavefunction ψ(~r) on the angular
coordinates θ and φ of the spherical coordinate system with the center O? Write down the
radial part of the stationary Schrödinger equation that governs the evolution of the radial
part ψ(r) of the particle wavefunction.

(b) (3 pts) Write down the general form of the wavefunction ψ(r) that satisfies the
Schrödinger equation inside and outside of the potential well, and satisfies the appropriate
boundary conditions at r = 0 and r → ∞. Next, write down the boundary condition this
wavefunction should satisfy at r = a.

(c) (4 pts) Transform the relations from part (b) to obtain the equation that determines
the energies of the bound states in the well. Analyze this equation to find the value of the
potential strength U at which the first bound state appears in the well.

Now, consider particles with positive energy E = ~2k2/(2m) incident from afar on the
same potential V (r) and scattered by it. Assume that the energy is small, E → 0.

(d) (2 pts) Argue qualitatively (in no more than one or two sentences) why the “s-wave”
scattering with l = 0 dominates the scattering process at small energies E. Write down an
explicit condition on E that ensures the validity of this “low-energy” approximation.

(e) (6 pts) What is the form of the l = 0 part of the wavefunction of the scattered particles
outside of the potential well, at r > a? Match this wavefunction with that inside the well to
calculate the s-wave scattering phase shift δ0 and the corresponding total scattering cross-
section σ0.

(f) (2 pts) At what values of the potential strength U the cross-section σ0 becomes
infinitely large? Provide a very brief physical reason for this behavior.
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Solution

(a) The states with vanishing angular momentum, l = 0, are spherically symmetric, and
the particle wavefunction ψ(~r) is independent of the angular coordinates θ and φ, i.e., reduces
to the function ψ(r) of the radial coordinate r only. The stationary Schrödinger equation
for this function has the standard form

− ~2

2m

1

r2

∂

∂r

(
r2∂ψ

∂r

)
+ V (r)ψ = −Eψ(r) .

Introducing an auxiliary function u(r) by the relation ψ(r) = u(r)/r, one reduces this
equation to the 1D Schrödinger equation:

− ~2

2m
u′′ + V (r)u = −Eu(r) .

(b) In a bound state, both ψ(r) and u(r) should vanish at r → ∞. To keep ψ(r)
sufficiently well-behaved at r = 0, the function u(r) should also vanish at r = 0. With these
boundary conditions, the usual solutions of the 1D Schrödinger equation for u(r) give for
ψ(r) inside and outside the well:

ψ(r) =
1

r

{
A sin(qr), r < a,
Be−κr, r > a.

Here A and B are some constants, and the wavevectors q and κ are determined by energies
U and E:

q2 =
2m(U − E)

~2
, κ2 =

2mE

~2
.

At r = a, both the wavefunction and its derivative should be continuous, i.e.:

A sin(qa) = Be−κa, qA cos(qa) = −κBe−κa.

(c) Dividing the last two equations from part (b) one by another, and taking into account
the relation between q and κ, one gets the condition that determines the energies of the
stationary bound states:

−q cot(qa) = κ =
√

(2mU/~2)− q2 .

As a function of q, for q > 0, the right-hand-side of this equation describes a quarter of a
circle of radius

√
2mU/~2 with the center at the origin. The left-hand-side reaches minimum

−1/a at q = 0 and increases with q, reaching value zero for the first time at q = π/2a. This
means that for small U ’s, solution of this equation starts being possible only if U is sufficiently
large, so that the two curves go through the same point on the q axis (so that κ = 0):

√
2mU/~2 = π/2a .
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Thus, to have a bound state in a 3D spherical potential well of radius a, the depth U of the
well should be sufficiently large:

U ≥ π2~2

8ma2
.

(d) At low energies E of the incident particles, the wavelength of the particle wavefunction
is very large in comparison to the size of the potential well, i.e., the scattering potential
looks like a point. This means that it scatters uniformly in all directions, the situation
that corresponds to particles having zero angular momentum relative to that point. More
quantitatively, this approximation can be expressed as a condition on the wavevector k:
ka� 1.

(e) For the l = 0 scattering, the Schrödinger equation and its solution inside the well are
the same as above. In the scattering problem, however, the particles move from and back
to infinity, and the solution of the Schrödinger equation outside of the well takes the form
different from that for a bound state: u(r) ∝ sin(kr + δ0) for r > a, where δ0 is the phase
shift of the s-wave scattering. Thus, the l = 0 part of the wavefunction of the scattered
particles is:

ψ(r) =
1

r

{
A sin(qr), r < a,
B sin(kr + δ0), r > a.

Imposing, as above, the conditions that ψ(r) and its derivative are continuous at r = a,
one gets the equation for δ0:

q cot qa = k cot(ka+ δ0) .

For E → 0, one can drop E from the definition of q, and also take into account that both
the phase shift δ0 and the product ka are small. Then it is legitimate to approximate cotx
as 1/x for small argument, and equation for δ0 immediately gives:

δ0 = k
tan qa− qa

q
, q = (2mU)1/2/~.

From the known relation between the small scattering phase δ0 and the cross-section σ0, one
gets finally

σ0 = 4π(δ0/k)2 = 4π
(tan qa− qa)2

q2
.

(f) We see that σ0 becomes infinitely large, when qa = π(n+ 1/2) with an integer n, i.e.
for the potential strength

Un =
π2~2

2ma2
(n+ 1/2)2 , n = 0, 1, 2, ....

These divergencies of the low-energy cross-section σ0 correspond to resonant scattering by the
bound states with vanishing energies that appear in the well at these values of the potential
strength U . One can check this explicitly by comparing the values Un to those that follow
from the equation for U obtained in part (c). As was shown there explicitly, U0 is the depth
of the potential well which has the first bound state with vanishing energy.
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Quantum Mechanics 3
Coherent states of a 1D harmonic oscillator

A particle of mass m moves in a 1D harmonic oscillator potential with frequency ω.
The raising a† and lowering a operators are

√
1/2~mω(mωx̂ ∓ ip̂), where x̂ and p̂ are the

operators of coordinate and momentum of the particle. As a reminder, the wavefunction of
the ground state of the oscillator is ψ0(x) = (mω/π~)1/4 exp{−(mωx2/2~)}, and the excited
states are ψn = (a†)nψ0/

√
n!.

(a) (2 points) Calculate the commutator [a, a†]. Show that the Hamiltonian H can be
written in terms of the operators a†, a.

(b) (2 points) Find the matrix elements 〈l|x̂|n〉 and 〈l|p̂|n〉 in the basis of the energy
eigenstates |n〉 of the oscillator: H|n〉 = En|n〉 .

(c) (4 points) An eigenstate of the lowering operator: a|ψα〉 = α|ψα〉 is called a “coherent
state of the oscillator”. It is a state of minimum uncertainty of x and p. Since the operator
a is not hermitian, the eigenvalues α are, in general, complex: α = reiφ, where r and φ are
real. Find the coherent state wavefunction ψα(x) in the coordinate representation. (No need
to normalize it.)

(d) (4 points) Like any other state, a coherent state can be expanded in the complete
basis of the energy eigenstates {|n〉} as |ψα〉 =

∑
n cn|n〉. Find the coefficients cn such that

|ψα〉 is normalized.

(e) (4 points) Derive the time evolution of the state |ψα〉 obtained in part (d) due to the
free evolution of the harmonic oscillator driven by the Hamiltonian H, to obtain the time-
dependent state |ψα〉(t). Show that |ψα〉(t) is a coherent state, and find the time-dependent
eigenvalue α(t).

(f) (4 point) Calculate the time-dependent expectation value 〈ψα|x̂|ψα〉(t) of the particle
coordinate and momentum 〈ψα|p̂|ψα〉(t) in a coherent state. Next, calculate 〈ψα|x̂2|ψα〉(t)
and 〈ψα|p̂2|ψα〉(t), and show that |ψα〉(t) is a minimum uncertainty state.
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Solution

(a) From the expressions for the creation/annihilation operators a†, a and canonical com-
mutation relations for x̂ and p̂, one has directly:

a†a =
1

2~mω
(mωx̂− ip̂)(mωx̂+ ip̂) =

1

~ω

(
p̂2

2m
+

1

2
mω2x̂2

)
− 1

2
,

aa† =
1

2~mω
(mωx̂+ ip̂)(mωx̂− ip̂) =

1

~ω

(
p̂2

2m
+

1

2
mω2x̂2

)
+

1

2
.

From these relations, we obtain, first, the commutation relation for a, a†:

[a, a†] = 1 ,

and, secondly, expression for the Hamiltonian in terms of these operators:

H =
p̂2

2m
+

1

2
mω2x̂2 = ~ω

(
a†a+

1

2

)
.

(b) Inverting the expressions for a†, a, we get

x̂ =

√
~

2mω
(a+ a†) , p̂ = −i

√
~mω

2
(a− a†) ,

and from known action of the creation/annihilation operators on the oscillator energy eigen-
states:

a†|n〉 =
√
n+ 1|n+ 1〉 , a|n〉 =

√
n|n− 1〉 ,

we get the matrix elements of the coordinate and momentum operators in the basis of energy
eigenstates:

〈l|x̂|n〉 =

√
~

2mω
〈l|a+ a†|n〉 =

√
~

2mω
(
√
nδl,n−1 +

√
n+ 1δl,n+1) .

Similarly,

〈l|p̂|n〉 = −i
√

~mω
2
〈l|a− a†|n〉 = −i

√
~mω

2
(
√
nδl,n−1 −

√
n+ 1δl,n+1) .

(c) In coordinate representation, equation for ψα(x) takes the form:
√

1

2~mω

(
~
d

dx
+mωx

)
ψα(x) = αψα(x) ,

i.e.
dψα(x)

dx
=

(√
2mω

~
α− mω

~
x

)
ψα(x) .
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Integrating this equation directly, one gets:

ψα(x) = C exp{−mω
2~

x2 +

√
2mω

~
αx} .

For completeness, we mention that the simplest way to normalize this Gaussian wave-
function is to notice that the term linear in x shifts the position of the Gaussian peak by
some distance x̄, as one can see by rewriting this expression for ψα(x) as follows

ψα(x) = C ′ exp{−mω
2~

(x− x̄)2 + i

√
2mω

~
=(α)x} , x̄ =

√
2~
mω
<(α) =

√
2~
mω

r cosφ .

In this form, it is immediate that the normalization constant C ′ is the same as of the unshifted
Gaussian, which is the ground state ψ0(x) of the oscillator. Normalization of ψ0(x) is given
in the problem, and we have for the properly normalized ψα(x)

ψα(x) =
(mω
π~

)1/4

exp{−mω
2~

(x− x̄)2 + i

√
2mω

~
=(α)x} .

(d) Expansion coefficients cn of |ψα〉 in the basis {|n〉} of the energy eigenstates are given,
as usual, as 〈n|ψα〉. This expression can be evaluated directly using equation for |n〉 given
in the problem, |n〉 = (a†)n|0〉/

√
n! and the fact that follows directly from the definitions for

the creation/annihilation operators: (a†)† = a. With these relations, one has:

cn = 〈n|ψα〉 =
1√
n!
〈0|an|ψα〉 =

αn√
n!
〈0|ψα〉 .

Unknown constant in this equation, 〈0|ψα〉, can be determined from the normalization con-
dition of the coefficients cn:

∞∑

n=0

|cn|2 =
∞∑

n=0

|α|2n
n!
|〈0|ψα〉|2 = |〈0|ψα〉|2e|α|

2

= 1 .

This means that
|〈0|ψα〉| = e−|α|

2/2 ,

and up to inessential overall phase factor,

cn =
αn√
n!
e−|α|

2/2 .

(e) As known for an arbitrary system with the time-independent Hamiltonian H charac-
terized by the energy eigenstates |n〉 and the corresponding energy eigenvalues En, the time
dependence of the state |n〉 is given by the time-dependent phase factor exp(−iEnt/~). This
means that an arbitrary state |ψ〉 =

∑
n cn|n〉 evolves in time as |ψ〉(t) =

∑
n cn|n〉 exp(−iEnt/~),

i.e., the state |ψ〉(t) is the solution of the time-dependent Schrödinger equation with the
Hamiltonian H and initial condition |ψ〉(t = 0) = |ψ〉.
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For the coherent state |ψα〉 of a Harmonic oscillator, this mean that the time evolution
of |ψα〉 is

|ψα〉(t) =
∑

n

cn|n〉 exp(−iEnt/~) ,

with the coefficients cn obtained in part (d). Accounting for the energy eigenvalues En of
the harmonic oscillator, the time-dependent state |ψα〉(t) is expressed as

|ψα〉(t) =
∞∑

n=0

cn|n〉e−iω(n+1/2)t = e−iωt/2
∞∑

n=0

(αe−iωt)n√
n!

e−|α|
2/2.

One sees directly that up to an irrelevant overall phase factor e−iωt/2 this is a coherent state,
the same as |ψα〉 but with the time-dependent eigenvalue

α(t) = αe−iωt.

(f) Coordinate and momentum expectation values in a coherent state are calculated
directly:

〈ψα|x̂|ψα〉(t) =

√
~

2mω
〈ψα|a+ a†)|ψα〉(t) =

√
~

2mω
(α(t) + [α(t)]∗) =

√
2~
mω

r cos(ωt− φ) ,

〈ψα|p̂|ψα〉(t) = i

√
~mω

2
([α(t)]∗ − α(t)) = −

√
2~mω r sin(ωt− φ) .

For the squares, we have:

x̂2 =
~

2mω
[a2 + aa† + a†a+ (a†)2] =

~
2mω

[a2 + 2a†a+ (a†)2 + 1] .

p̂2 =
~mω

2
[aa† + a†a− a2 − (a†)2] =

~mω
2

[2a†a+ 1− a2 − (a†)2] .

From these expressions:

〈ψα|x̂2|ψα〉(t) =
~

2mω
[(α(t))2+2|α(t)|2+([α(t)]∗)2+1] =

~
2mω

[1+α2e−i2ωt+[α∗]2ei2ωt+2|α|2]

=
~

2mω
[1 + 4r2 cos2(ωt− φ)] .

〈ψα|p̂2|ψα〉(t) =
~mω

2
[2|α(t)|2+1−([α(t)]∗)2−(α(t))2] =

~mω
2

[1+[α∗]2−ei2ωt+2|α|2−α2e−i2ωt]

=
~mω

2
[1 + 4r2 sin2(ωt− φ)] .

Finally, the standard deviations are:

σ2
x = 〈ψα|x̂2|ψα〉(t)− [〈ψα|x̂|ψα〉(t)]2 =

~
2mω

,

σ2
p = 〈ψα|p̂2|ψα〉(t)− [〈ψα|p̂|ψα〉(t)]2 =

~mω
2

,

and we see that a coherent state is indeed a minimum uncertainty state:

σxσp =
~
2
.
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Statistical Mechanics 1
The first molecule

Approximately 300,000 years after the Big Bang, the first atoms and molecules were
formed in the so-called “recombination era”. HeH+ is a singly ionized molecule consisting of
helium and hydrogen atoms and is widely believed to be the first molecule ever formed. We
will explore the formation of the first molecule using equilibrium statistical mechanics.

Consider the plasma in the recombination era to be a neutral gas at temperature T
consisting of free electrons, protons, and fully ionized helium5 He2+, and their bound states:
H, He, and He+. The components of the plasma are at low densities and high temperatures,
and may be treated as classical ideal gasses; you may neglect the electrostatic interactions
between the components. The total proton density (H and H+) is n0, with n0 = 104 cm−3

numerically. The total helium density (He++, He+ and He) is n1, with n1 ' n0/12. To
approximate the partition functions of the bound-states and their chemical potentials, only
include the ground state electronic configuration in the sum over states. The table below
gives the binding energies of these configurations and their degeneracies, which arise from
the spins of the electrons and nuclei.

State Degeneracy Binding energy
H 4 εH ≡ −13.6 eV

He+ 2 εHe+ ≡ −54.4 eV
He 1 εHe ≡ −81.0 eV

(a) (2 points) Compute the chemical potentials of free electrons µe and protons µp as a
function of the temperature and the corresponding densities ne and np

(b) (2 points) Compute the chemical potentials of H, He+, and He as a function of the
temperature, and the corresponding densities nH , nHe+ , and nHe and binding energies.

(c) (2 points) Determine the equilibrium constants K1, K2 and K3 (defined below) as a
function of temperature for the following reactions:

K1(T ) ≡ nH

ne np
p+ e− ⇐⇒ H

K2(T ) ≡ nHe+

ne nHe2+

He2+ + e− ⇐⇒ He+

K3(T ) ≡ nHe

n2
e nHe2+

He2+ + 2e− ⇐⇒ He

Is Ki(T ) a function of the chemical potentials of parts (a) and (b)? Explain.

(d) (6 points)
5The He2+ nucleus is also known as an alpha particle. It has zero spin, consists of two protons and two

neutrons, and has a mass of mHe2+ ≈ 4mH ≈ 4mp where mp is the proton mass.
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(i) Find a set equations for the density of the electrons, protons, and ionized helium
(He2+) as function of temperature and n0 and n1.

(ii) In the limit where the ionized helium concentration is negligible, solve these equa-
tions for the fraction of unbound protons xp ≡ np/n0 as a function of temperature
and n0.

(iii) The equilibrium constants (normalized by n0) found in part (b) are given in the
table below to the nearest factor of 10:

Temperature n0K1 n0K2 n2
0K3

3000 K 106 1075 10102

With the same approximations as (ii), determine the ratios of abundances at
T = 3000 K by filling in the table below to within a factor of ten:

Temperature np/n0 nH/n0 nHe/n1 nHe+/n1 nHe++/n1

3000 K ? ? ? ? ?

(e) (5 points) Compute the chemical potential of the He+H molecule in terms of its den-
sity nHe+H and its binding energy ∆εHe+H, where ∆εHe+H is measured relative to the
unbound He+ and H states. Treat the molecule as a classical rigid rotor with bond
length a and neglect radial vibrations.

(f) (3 points) Find the equilibrium constant for the following reaction

K4(T ) ≡ nHe+H

nH nHe+

He+ + H⇐⇒ He+H .

When the binding energy is ∆εHe+H = −2.0 eV, and the bond length a = 8×10−11m, the
equilibrium constant is nHK4 = nHe+H/nHe+ ' 10−17 at a temperature of T = 3000 K,
and the formation of the first molecule is strongly disfavored. Explain why this is
the case physically, although the Boltzmann factor exp(−∆εHe+H/kBT ) ' 2000 would
suggest that this ratio should be almost unity.

You may find the following numbers useful:

me ≈ 9.11 · 10−31 kg ≈ 5.11 · 105 eV/c2 ,

mp ≈ 1.67 · 10−27 kg ≈ 9.38 · 108 eV/c2 ,

1 eV/kB ≈ 1.15 · 104 K .
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Solution

(a) Using grand-canonical ensemble for ideal gas,

µ = T log
λ3n

g
, (1)

where λ =
√

2π~2

mT
is the thermal wavelength and g is the internal degeneracy (e.g., spin

degeneracy gS = 2S + 1). For fermions e− and p+, g = gS = 2. Below we will write this
result in the folllowing convenient form

n =
g

λ3
eµ/T . (2)

(b) If the chemical potentials are essentially energies and can be deined with respect to
arbitrary “energy baselines”. It may be convenient to use the same “baseline” for different
gases, so that the chemical (binding) energies are included automatically in the equilibrium
equations. In this case, the chemical potentials are

µe = T log

(
1

2
neλ

3
e

)
,

µp = µH+ = T log

(
1

2
npλ

3
p

)
,

µH = T log

(
1

4
nHλ

3
p

)
+ εH ,

µHe = T log
(
nHeλ

3
He

)
+ εHe ,

µHe+ = T log

(
1

2
nHe+λ3

He

)
+ εHe+ ,

µHe2+ = T log
(
nHe2+λ3

He

)
+ εHe2+ .

Discussion: The He atom has no internal degeneracy (g = 1): the nucleus (α-particle)
has no spin, and the electron spins add up to zero. Similarly, the He2+ ion has g = 1.
However, He+ ion has g = 2 due to the single electron spin. The degeneracy of the proton
H+ is g = 2 and of the hydrogen H g = 4 due to spins of the proton and the electron (we
neglect the hyperfine splitting between ortho- and para-hydrogen).

(c) Using the equilibrium condition
∑

i∈in µi =
∑

j∈out µj (the binding energies are al-
ready taken into account above)

K1 =
nH

ne np
= λ3

ee
−∆εH/T ,

K2 =
nHe+

ne nHe2+

= λ3
ee
−∆εHe

2 /T ,

K3 =
nHe

n2
e nHe2+

=
1

4
λ6
ee
−∆εHe

1+2/T .
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The equilibrium constants are just a function of temperature.

Discussion: Evaluting these three constants numerically at the temperatures T =
3000 K and T = 10000 K to the nearest power of 10 we find

Temperature n0K1 n0K2 n2
0K3

3000 K 106 1074 10101

The wide range of chemical constants is due to the exponents such as exp(−εHe/T ), nd the
enormous phase space, n0λ

3
e.

(d)

(i) The equations to be solved are: charged neutrality

− ne + np + nHe+ + 2nHe2+ = 0 ; (3)

conservation of proton number
nH+ + nH = n0 (4)

and conservation of helium number

nHe2+ + nHe+ + nHe = n1 (5)

(ii) When the ionized helium fraction is negligble we have

ne ' np (6)

Writing nH = nenpK1 ' n2
pK1 and diving through by n0 we have

xp + x2
pn0K1 = 1 , (7)

where xp = np/n0. Solving the quadratic equation we have

xp =
1

2n0K1

[
−1 +

√
1 + 4n0K1

]
. (8)

When n0K1 � 1, dynamics strongly favors the bound state, and we have

xp '
1√
n0K1

. (9)

In the opposite limit n0K1 � 1, the dynamics disfavors the bound states, and we have

xp ' 1− n0K1 . (10)

(iii) For large n0K1

xp =
1√
n0K1

' 10−3 (11)

The hydrogen fraction is xH = nH/n0 = 1− xp ' 1.

41



Let y, y+, and y2+ denote the fraction of un-ionized, singly ionized, and double ionized
helium. For the helium budget we have

y2+ + y+ + y = 1 . (12)

Using the equilbrium constants we have

y2+ + y2+xp(n0K2) + y2+(x2
pn

2
0K3) = 1 (13)

In the low temperature case the last term dominates

y2+ '
1

x2
pn

2
0K3

' 10−95 (14)

and
y+ = y2+xp(n0K2) ' 10−24 (15)

and finally
y ' 1 (16)

Summarizing in tabular form, the ratios are

Temperature np/n0 nH/n0 nHe/n1 nHe+/n1 nHe++/n1

3000 K 10−3 1 1 10−24 10−95

(e) The total masss is mHe+H = 5mp, and the center of mass at a distance a/5 from the
He nucleus. The moment of inertia around the helium nucleus is mpa

2, while around the
center of mass is

I = mpa
2 − 5mp(a/5)2 =

4

5
mpa

2 . (17)

To simplify the notation in the rest of this item we will drop the He+H label. The
rotational partition function

Zrot =
∑

`

(2`+ 1) exp(−~2`(`+ 1)/2IT ) '
∫ ∞

0

d` 2` e−~
2`2/2IT =

2IT

~2
(18)

The full partition function is

Z =
1

N !
ZN

transZ
N
rot (19)

So the free energy has

F =− T logZ (20)
=NT log(nλ3/e)−NT log

(
2IT/~2

)
+Nε0 (21)

Here the ε0 takes into account the binding energy. It is only important when comparing the
bound state to other states. Differentiation gives

µ =
∂F

∂N
= T log(nλ3)− T log

(
2IT/~2

)
+ ε0 . (22)

In the next item we will express this equation in the following form

n =
1

λ3
e−ε0/T+µ/T

(
2IT

~2

)
. (23)
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(f) Using

nH =
gH

λ3
H
e(µH−εH)T , (24)

nHe+ =
gHe+

λ3
He+

e(µHe+−εHe+ )/T , (25)

the equilibrium constant reads

nHe+H

nHe+nH
=

1

gHe+gH

λ3
Hλ

3
He+

λ3
He+H

(
2IT

~2

)
e−∆εHe+H/T , (26)

where ∆εHe+H = −ε0 + εH + εHe+ . Grouping the terms

n0K4 =

(
n0λ

3
H

gH

)
1

gHe+

(
5

4

)3/2

e−∆εHe+H/T

(
2IT

~2

)
(27)

∼
(
n0λ

3
H

gH

)
e−∆εHe+H/T

(
2IT

~2

)
, (28)

Evaluating it numerically we have

n0K4 ' 8× 10−18 . (29)

Qualitatively this means that only a very small fraction of ionized helium is bound up
as a molecule. The reason for this is phase space or entropy, or more precisely free energy.
Heuristically, each hydrogen occupies a volume v0 ' 1/n0. The increase in entropy associated
with producing a hydrogen by breaking up the He+H molecule is

eStrans ∼ v0

λ3
H

. (30)

The phase space lost by breaking up the diatomic molecule is the rotational phase space of
the diatomic:

eSrot ∼ 2IT

~2
. (31)

The prefactor in the equlibrium constant reflects the difference

eSrot−Strans ∼ n0λ
3 2IT

~2
, (32)

and competes with the Boltzmann factor.
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Statistical Mechanics 2
Weakly doped semiconductor

Consider a semiconductor with a valence and a conduction bands,
in which the energy depends on the momentum as

εV (p) = − p2

2mV

, εC(p) =
p2

2mC

+ ∆

where ∆ is the band gap. Interactions between electrons can be
neglected. At T > 0, some electrons in the valence band may be
excited and “jump” into the conductance band leaving behind a
“hole” in the otherwise filled band. Such a hole can be treated as
particle with the energy εh = −εe, where εe is the unfilled energy
level.

(a) [2pt] Write the Fermi-Dirac distribution for holes fh(εh) if they are in equilibrium with
electrons that have chemical potential µe.

(b) [2pt] Under what conditions can one treat electrons in the conductance band and holes
in the valence band as Boltzmann gases?

(c) [5pt] Use the condition in (b) to compute the densities of electrons ne and holes nh.

The semiconductor is slightly doped, so that at zero temperature the valence band is
completely filled and the conductance band contains a small density of electrons n0. However,
at normal (“room”) temperature the densities of holes and electrons are much larger ne,h �
(ne − nh) = n0.

(d) [5pt] Calculate the density of holes and electrons and find the electron chemical poten-
tial µe as a function of “room” temperature T .

(e) [6pt] Compute the thermoelectric coefficient of the semiconductor, i.e. the e.m.f. in-
duced by a temperature gradient ET = S∆T . It is sufficient to compute the result to
the first order in O(n0/ne,h)� 1.

Hint: a difference in temperature leads to a difference in electron chemical poten-
tial. The latter would induce diffusion current unless electric potential is applied to
compensate the difference ∆ϕ = ∆µe ≈ dµe

dT
∆T .
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Solution: Weakly doped semiconductor

(a) Since the hole is defined as absense of an electron, the probability to find a particular
state filled by a hole is complementary to that of an electron, so

fh(εh) =
(
1− fe(εe)

)
εe=−εh = 1− 1

e(−εh−µe)/T + 1
=

1

e(+εh+µe)/T + 1
, (1)

so that the chemical potential of holes µh = −µe is opposite to that of electrons; however,
we will only use µe below to avoid confiusion.

(b) In the Boltzmann-gas approximation, one neglects quantum statistics effects by drop-
ping the “+1” in the denominator of the Fermi-Dirac distribution. In order for this to be
valid, the exponential must be much larger than 1 and thus

(εe − µe) ≥ (∆− µe)� T , fe(εe) ≈ e
µe−εe
T = e

µe−εC (pe)

T = exp

[
1

T

(
µe −∆− p2

e

2mC

)]

(2)

(εh + µe) ≥ µe � T , fh(εh) ≈ e
−µe−εh

T = e
−µe+εV (ph)

T = exp

[
1

T

(
−µe −

p2
h

2mV

)]

(3)

for electrons and holes, respectively. In the equation above, we used εe = εC(pe) and εh =

−εV (ph) = +
p2
h

2mV
.

(c) To find the energy distribution of the electron/hole density, one needs to complement
the Fermi-Dirac statistics with the density of energy levels, which is determined by the phase
space ∝ (d3xd3p) and the spin degeneracy gS = 2,

dΓ = gS
d3xd3p

(2π~)3
. (4)

In uniform space one can replace d3x = dV and find the spatial density as

n = gS

∫
d3p

(2π~)3
f(ε(p)) (5)

The integration over momenta must be performed so that the energies ε(p) correspond to
the appropriate bands. For the electrons,

ne = gS

∫
d3p

(2π~)3
exp

[µe −∆− p2/(2mC)

T

]
= gSλ

−3
C e(µe−∆)/T (6)

where λC =
√

2π~2

mCT
is the thermal wavelength in the conductance band. Analogously, for

the holes,

nh = gS

∫
d3p

(2π~)3
exp

[−µe − p2/(2mV )

T

]
= gSλ

−3
V e−µe/T (7)

where λV =
√

2π~2

mV T
is the thermal wavelength in the valence band.
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(d) Both densities are determined by the electron chemical potential µe in equilibrium.
It is easy to see that these densities are constrained by

nenh = g2
S(λCλV )−3e−∆/T = n2

X(T ) (8)

because the chemical potential cancels in the product above. Together with the equation
for the total carrier density ne − nh = n0, we have two equations to determine ne and nh.
Solving the quadratic equation following from

ne −
n2
X(T )

ne
= n0 (9)

we obtain

ne =
1

2

(√
4n2

X(T ) + n2
0 + n2

0

)
, (10)

nh = ne − n0 =
1

2

(√
4n2

X(T ) + n2
0 − n0

)
. (11)

The chemical potential is easily found from one of the expressions above, e.g.,

µe(T ) = −T log
nhλ

3
V

gS
= −T log

λ3
V (
√

4n2
X(T ) + n2

0 − n0)

2gS
. (12)

The condition ne � n0 can be satisfied only if nX � n0, which one can use to simplify the
expression for the chemical potential. Keeping the leading n0/nX terms only, one obtains

µe(T ) ≈ −T log
λ3
V

(
nX(T )− n0/2

)

gS

≈ −T log

(
λV
λC

)3

+
∆

2
− T n0

2nX(T )

=
3

2
T log

mV

mC

+
∆

2
− T n0

2nX(T )

(13)

(e) The thermoelectric coefficient is

S =
dµe
dT
≈ 3

2
log

mV

mC

− n0

2nX
+ T

n0

2n2
X

dnX(T )

dT
(14)

Using the expression for nX(T ), one can find

dnX(T )

dT
=

d

dT

[
gS

(mVmC

4π2~2

)3/4

T 3/2e−
∆
2T

]
=

(
3

2T
+

∆

2T 2

)
nX (15)

and finally

S =
3

2
log

mV

mC

+
n0

2nX

(
1

2
+

∆

2T

)
(16)
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Statistical Mechanics 3
Gas in a vessel with attractive walls

Consider a classical ideal gas in a cubic vessel L×L×L.
Each wall attracts gas molecules with a narrow “poten-
tial well” d� L (see the figure). This attraction creates
a spectrum of wall-bound states: for example, the en-
ergy states each of the walls perpendicular to the x̂ axis
are

EB(x) = −ε+
p2
y + p2

z

2m
, (1)

where ε is the binding energy, and py,z is the momentum of motion tangential to the wall,
which is not affected by the interaction. The interaction has negligible effect on unbound
molecules, and they can move freely within the rest of the vessel volume.

(a) [5pt] Calculate the chemical potentials of the gas molecules bound to the walls and free
molecules in the box volume from their surface nb and volume nf densities, respectively.
Show that the chemical potential of the bound molecules depends only on the total
area of the vessel walls.

(b) [5pt] Assuming that the total number of molecules is N = Nb +Nf , find the numbers
of bound and free molecules as functions of temperature.

(c) [2pt] Now consider an elastic balloon of radius R filled with N molecules of ideal gas.
The balloon walls have constant surface tension σ. Neglecting the wall attraction for
now, find the radius of the balloon in vacuum.
Hint: the surface tension creates pressure p = 2σ/R inside the balloon.

(d) [4pt] How will the wall-bound molecules affect the surface tension of the balloon walls?
Calculate contribution ∆σb = σ′ − σ resulting from their kinetic motion.

(e) [4pt] Imagine that the wall attractive potential can be “switched” on and off. How will
the balloon radius change, all else being equal? Assume that the change in the radius
is small and the temperature is constant.
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Solution

(a) The bound and unbound molecules can be considered separate gases for the purpose
of computing their partition functions:

ZN(T, V, A) = Zf
Nf

(T, V ) ·
∑

Nb(1)+...+Nb(6)=Nb

∏

i

Zb
Nb(i)

(T, Ai) (2)

where V = L3 is the vessel volume and Ai = L2 are the areas of the vessel walls. The bound
molecules can be distributed in any way between the six walls as long as their total number
is equal to Nb. Let’s first compute the partition function of the free molecules Zf , which
describes the ordinary ideal gas,

ZNf =
1

Nf !
Z

(3D)
1p , Z

(3D)
1p =

∫
d3xd3p

(2π~)3
e−

~p2

2mT =
V

λ3
T

(3)

where the 1/Nf ! is the Boltzmann factor and λT =
√

2π~2

mT
is the thermal wavelength. For

molecules bound to one wall, the calculation is very similar except that one integrates over
two dimensions tangent to the wall and the molecular energy is shifted by (−ε):

ZNb(i) =
1

Nb(i)!
Z

(2D)
1p , Z

(2D)
1p =

∫
d2xd2p

(2π~)2
e−

1
T

(
~p2

2m
−ε
)

=
Ai
λ2
T

eε/T (4)

with the same thermal wavelength. The Boltzmann factors 1/Nb(i) are particularly important
to show that it is the total area that defines Zb

Nb
:

Zb
Nb

=
∑

Nb(1)+...+Nb(6)=Nb

∏ 1

Nb(1)! · · ·Nb(6)!
A
Nb(1)

1 · · ·ANb(6)

6 =
1

Nb!
(A1 + . . .+ A6)Nb =

1

Nb!
ANb

(5)
which results from the multinomial (generalization of Newton’s binomial) formula.

(b) One way to find the equilibrium between the bound and unbound portions of the
gas is to use the minimum of the total Gibbs potential. An equivalent way is to equate
their chemical potentials. To find the chemical potential, let’s compute the grand canonical
partition function of the free molecules, and deduce the chemical potential corresponding to
their density Nf/V :

Zf
G(T, V, µf ) =

∑

Nf

e
µfNf
T Zf

Nf
=
∑

Nf

e
µfNf
T · 1

Nf !

(
V λ−3

T

)Nf = exp
[
eµf/TV λ−3

T

]
, (6)

Ωf (T, V, µf ) = −T logZf
G(T, V, µf ) = −Teµf/TV λ−3

T , (7)

Nf = −
(
∂Zf

G

∂µf

)

T,V

= eµf/TV λ−3
T ⇔ µf = T log

Nfλ
3
T

V
. (8)
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In complete analogy, the grand canonical partition function, the density, and the number
chemical potential of the bound molecules are

Zb
B(T, A) = =

∑

Nb

e
µbNb
T Zb

Nb
=
∑

Nb

e
µbNb
T · 1

Nb!

(
Aλ−2

T eε/T
)Nb

= exp
[
e(µb+ε)/TAλ−2

T

]
, (9)

Ωb(T, A, µb) = −T logZb
G(T, V, µb) = −Teµb/TAλ−2

T , (10)

Nf = −
(
∂Zb

G

∂µb

)

T,A

= eµb/TAλ−2
T ⇔ µb = T log

Nbλ
2
T

A
− ε . (11)

The equlibrium between the bound and the unbound portions of the gas implies that their
chemical potentials are the same,

µf = µb =⇒ Nf

Nb

=
V

AλT
e−ε/T (12)

and at T → 0 all the molecules will be bound.

(c) For a regular gas (free from walls), the pressure is p = NT
V
, so the equilibrium requires

that
2σ

R
=

NT

(4π/3)R3
=⇒ R0 =

√
3NT

8πσ
(13)

(d) Now, if some portion of the gas is bound, it results in less pressure pushing against
the balloon walls,

p =
Nf

V
T (14)

Where Nf is the number of free molecules. In addition, the surface tension is reduced by
“surface pressure” of the bound gas6,

∆σb = −NbT

A
. (15)

(e) The mechanical equilibrium implies

2
(
σ + ∆σb

)

R
=

2
(
σ −NbT/(4πR

2)
)

R
= pf =

NfT

(4π/3)R3

⇔2σ

R
=

3T

4πR3

(
Nf +

2

3
Nb

)
=

3NT

4πR3

(
1− Nb

3N

)

⇔R =

√
3NT

8πσ

(
1− Nb

3N

)
≈ R0

(
1− Nb

6N

)
(16)

so the radius will decrease. For the radius change to be small, the total number of molecules
must be N ≈ Nf � Nb; using also R ≈ R0, we get

Nb

N
≈ Nb

Nf

= AλT/V e
ε/T ≈ 3λT

R0

eε/T (17)

6Both formulas (14,15) can be deduced from their grand potentials Ωf = −pV and Ωb = ∆σbA.
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and finally

R ≈ R0 −
1

6
R0 ·

3λT
R0

eε/T = R0 −
1

2
λT e

ε/T . (18)
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