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The neutrino-nucleon interaction cross section at the TeV to EeV energy range has been
calculated within the Standard Model using the parton distribution functions. Due to
the limited energy from ground-based accelerators, the cross section in this energy range
cannot be measured directly. The astrophysical neutrinos detected in the IceCube detec-
tor are a perfect candidate to perform this kind of measurement. IceCube is a 1 cubic
kilometer size neutrino detector located at the South Pole. It is capable of detecting all-
sky neutrinos of all flavors from GeV to EeV energies. After the detector completion, the
IceCube collaboration discovered and measured the flux of extraterrestrial neutrinos in
the TeV - PeV energy range, along with the flux of neutrinos from the known atmospheric
origin.

This dissertation presents a novel analysis method and the result of the neutrino inter-
action total cross section measurement as a function of neutrino energy in the 6.3 TeV -
10 PeV energy range with neutrino-induced electromagnetic and hadronic showers (cas-
cades) observed in five years of IceCube data. The final sample consists of 654 cascade
events mainly induced by astrophysical electron and tau neutrinos with energies from 6.3
TeV to 10 PeV and all-sky directions. The events are assigned in four energy bins and
two zenith bins (”down-going” from the southern hemisphere and ”up-going” from the

iii



northern hemisphere). When assuming an all-sky isotropic astrophysical neutrino flux,
the ratio of the down-going to the up-going events (which are absorbed by the Earth at
high energies) is sensitive to the magnitude of the interaction cross section but insensi-
tive to the large astrophysical neutrino flux uncertainties. The measured cross section is
the combination of the Standard Model neutrino-nucleon deep inelastic scattering cross
section and the Glashow Resonance cross section of electron antineutrino scattering o↵
atomic electrons, which depends on the neutrino generation process type (pp or p�) at
the astrophysical source.

The resulting cross section is consistent with the Standard Model expectation and with
the previous IceCube results. With the next generation of IceCube (Gen2 upgrade), the
measurement will potentially have the sensitivity to detect the Beyond Standard Model
e↵ects for neutrino energies above EeV if they exist.
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Chapter 1

Neutrinos and Interactions

The idea of neutrinos was first postulated by Wolfgang Pauli in 1930 in the attempt to
explain the energy and momentum conservation in beta decay:

n ! p
+ + e

� + ⌫̄e (1.1)

The existence of neutrinos was confirmed by the Cowan-Reines neutrino experiment [1]
in 1956, when a positron-electron annihilation coincided with the neutron capture. The
neutron and positron are products of the charged current interaction of an electron an-
tineutrino and a proton:

⌫̄e + p
+ ! n+ e

+ (1.2)

In 1962, the products of a charged pion decay were observed in an experiment conducted
at Brookhaven National Laboratory. With one of the products being a muon, the other
product: the neutrino was believed to be a di↵erent kind of neutrino from the product in
the beta decay [2]:

⇡
± ! µ

± + (⌫µ/⌫̄µ) (1.3)

It was expected, after the discovery of the tau lepton [3] in 1975, that each lepton has
a corresponding neutrino with the same flavor. However, the first observation of the
tau neutrino did not happen until 2000. In the experiment conducted by the DONUT
collaboration at Fermilab, the existence of tau neutrinos was confirmed when tau leptons
were observed as the only leptons produced at the interaction vertices of the ⌫⌧ charged-
current interactions [4]. After the discovery of the three flavors of the neutrinos, their
properties were studied extensively. In this chapter, we give an overview of the neutrino
properties, neutrino sources, and neutrino interactions.
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1.1 Neutrino Properties

1.1.1 The Standard Model

The Standard Model is the theory that describes known elementary particles and their
interactions. It has been proven e↵ective in explaining most of the data from the high-
energy experiments. In the Standard Model, all matter is built from fermions which are
elementary particles with half-integer spins. Bosons (elementary particles with integer
spins) are the mediators of the interactions among the fermions. There are four types
of interactions in the Standard Model: gravitational, electromagnetic, strong, and weak.
All known fermions and bosons of the Standard Model are shown in Table 1.1.

Fermions can be further classified as leptons and quarks, according to the charge they
carry or the type of interaction they engage in. There are three lepton flavors. Each
flavor contains a charged lepton with one negative charge and a neutral lepton with
zero charge that is also called a neutrino. As shown in Table 1.1, the three flavors are
electron and electron neutrino, muon and muon neutrino, tau and tau neutrino. The
mass of the charged lepton increases from the left to the right while the lifetime decreases
from the left to the right. In the Standard Model, neutrinos are massless. However, in
the later neutrino oscillation experiments, this assumption has proven to be incorrect.
Neutrino oscillation will be discussed later in this section. Due to their chargelessness,
neutrinos only interact weakly 1, and the interaction is mediated by W

± or Z bosons. The
charged lepton and its corresponding neutrino have the same lepton number while their
antiparticles have the opposite sign of the lepton number and charge. In the Standard
Model, the lepton number is conserved in weak interactions.

The other half of the fermions are quarks. There are six types of quarks: up, down, charm,
strange, top, and bottom. As shown in Table. 1.1, the quarks in the top row all carry +2

3

charge and the quarks in the second row all carry -1
3
charge. Similarly to the leptons, the

mass of the quarks increases from the left to the right while their stability decreases from
the left to the right. Quarks do not exist as free particles, instead, they are bound by the
strong force which is mediated by the gluon bosons. The quark composites are referred
to as hadrons. There are two kinds of common hadrons: baryons and mesons. Baryons
consist of three quarks while mesons consist of a quark and antiquark pair. Like leptons,
the quarks and antiquarks have the opposite sign in the flavor quantum number and the
charge. In a strong interaction, the flavor quantum number is conserved. However, it is
not the requirement in the weak interactions. For example, the following weak decay can
happen without the flavor quantum number being conserved:

⇤(uds)� > p
+(uud) + ⇡

�(dū). (1.4)

1Neutrinos are not actually massless, therefore they also interact via gravitational force. However,
in comparison with the weak interaction, the strength of the gravitational interaction is more than 20
orders of magnitude weaker.
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Fermions Bosons

Q
u
ar
ks u c t g H

d s b �

L
ep
to
n
s

e µ ⌧ Z

⌫e ⌫µ ⌫⌧ W

Table 1.1: The Elementary Particles of the Standard Model.

1.1.2 Neutrino Oscillation

The concept of neutrino oscillation was first brought up by Pontecorvo in 1958 [5]. He
proposed that the neutrinos could have masses and therefore the flavor eigenstates are a
combination of the mass eigenstates:

|⌫↵i =
X

i

U
⇤

↵i |⌫ii , (1.5)

where |⌫↵i are flavor eigenstates (electron, muon or tau) and |⌫ii are mass eigenstates (1,
2, or 3). U↵i is the neutrino mixing matrix [6]:

U =

2

4
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

U⌧1 U⌧2 U⌧3

3

5 (1.6)

The propagation of the mass eigenstates in time can be written as:

|⌫i(t)i = e
�iEit | ⌫i(0)i (1.7)

where Ei = p+ m2
i

2p is the energy of the mass eigenstate, and p is the fixed momentum for
all mass eigenstates. When setting c = 1, the time travelled can be substituted by the
distance propagated (L):

|⌫i(L)i = e
�ipt

e
�im2

iL/2p | ⌫i(0)i (1.8)

Eq. 1.8 shows that di↵erent mass eigenstates propagate with di↵erent frequencies due
to the di↵erence in mass. Therefore it creates the probability of a neutrino of flavor ↵

at time 0 (the time of generation) being observed as flavor � after the propagation of a
distance L. This probability can be calculated as [7]:
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P↵!� = |h⌫�(L)|⌫↵(0)i|2 =

�����
X

i

U
⇤

↵iU�ie
�im2

iL/2p

�����

2

(1.9)

In a simplified case where there are only two flavors, the mixing matrix can be written
as:

U =


cos ✓ sin ✓
� sin ✓ cos ✓

�
(1.10)

Then the probability of the neutrino changing flavor after an L distance propagation is:

P↵!�,↵ 6=� = sin2(2✓) sin2

✓
1.27

�m
2
L

E

[eV2] [km]

[GeV]

◆
(1.11)

Neutrino oscillation successfully serves as the explanation of the solar neutrino problem
[8]. By the standard solar model prediction, the neutrinos emitted from the Sun are
mostly the product of the proton-proton chain reaction, and can only be of electron
flavor. However, the solar neutrino problem arose when the first measurement of the solar
electron neutrino flux turned out to be approximately one-third of the total prediction [8].
This observation fits the prediction of the neutrino oscillation theory, where after a long
distance of propagation, the electron neutrinos changed into muon and tau neutrinos.
Since the three flavors can change into each other during the propagation, the flavor ratio
eventually becomes 1: 1: 1. Being able to set the flavor ratio as 1: 1: 1 is of great
importance for this analysis when building the unfolding matrices (c.f. Chapter 5) due
to the di↵erence in the interaction kinematics for neutrinos with di↵erent flavors.

1.2 Neutrino Sources

Unlike the artificial neutrino sources in accelerator experiments, the neutrinos observed in
the IceCube experiment are of cosmic and astrophysical origins. The cosmic rays interact
with the nuclei in the Earth’s atmosphere upon arrival. The hadrons produced in this
process will decay into neutrinos and other products. These neutrinos produced in the
Earth atmosphere are called atmospheric neutrinos. They are the predominant neutrinos
detected in IceCube in the neutrino energy range of up to tens of TeV. The neutrinos
that are generated and accelerated in the same cosmological processes in which the cosmic
rays are generated are called astrophysical neutrinos. They are the predominant neutrinos
detected in IceCube for the neutrino energy range of 100 TeV and above.

1.2.1 Cosmic Rays

The majority (⇠ 90%) of cosmic rays are protons, 9% are alpha particles (helium nuclei),
and 1% are heavier nuclei [7]. The fluxes of the primary nuclei are shown in Fig. 1.1.
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Figure 1.1: The flux of the individual primary nuclei in the cosmic rays vs. energy-
per-nucleus. The figure is from Ref. [9]

As shown in the figure, the cosmic ray composition is almost the same everywhere in the
plotted energy range. The di↵erential intensity of the primary nucleons in this energy
range can be described by:

IN(E) ⇡ 1.8⇥ 104(E/GeV)�↵ nucleons

m2 s srGeV
, (1.12)

where E is the energy-per-nucleon, and the ↵ = 2.7 is the spectral index of the flux of
the cosmic rays observed at the Earth [9].

The detection of the cosmic rays can be categorized as direct detections and indirect de-
tections. Direct detection requires placing the instrument in outer space or very high
up in the atmosphere to directly detect the cosmic nuclei before they interact with the
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atmosphere. Most of the data points in Fig. 1.1 are the result of direct detection ex-
periments: AMS (Alpha Magnetic Spectrometer) [10], [11] is mounted on the Interna-
tional Space Station; BESS (Balloon-borne Experiment with Superconducting Spectrom-
eter) [12], JACEE (Japanese-American Collaborative Emulsion Experiment) [13], and
TRACER (Transition Radiation Array for Cosmic Energetic Radiation) [14] are balloon-
borne experiments. Even though the direct detections deliver more accurate results, the
limited volume of a balloon, a satellite, or a space station limits the capability of such
experiments to probe cosmic rays at higher energies. For the energy range of hundreds
of TeV and above, indirect detections are needed.

Indirect detection is a ground-based method that detects cosmic-ray-induced extensive air
showers. Ground-based experiments can detect cosmic rays of energies several magnitudes
higher than the direct detection experiments. The flux of all the primary nuclei in the
cosmic rays in the energy range of 1013 eV to 1020 eV is shown in Fig. 1.2. Most of the
data points in Fig. 1.2 are the result of indirect detection experiments, such as: Kascade
(Karlsruhe Shower Core and Array Detector) [15], IceTop-IceCube[16], Telescope Array
[17] and Pierre Auger Observatory [18].

The spectrum in Fig. 1.2 shows a special structure. Below ⇠ 4.5 PeV, the spectral index
is 2.7; a spectrum softening happens at around ⇠ 4.5 PeV (the knee), and the spectral
index changes to 3.1. The spectral index has further softened to 3.3 at ⇠ 400 PeV (the
second knee); eventually, the spectrum hardens back to 2.7 at ⇠ 4 EeV (the ankle) [19].
Beyond ⇠ 1020 eV, a cuto↵ (the GZK limit) of the cosmic ray spectrum is expected,
if cosmic rays are protons [20], [21]. The GZK limit is a theoretical limit that when
exceeded, the protons in the cosmic rays start to lose energy from interactions with the
microwave background radiation, thus will not be detected.

The acceleration source and mechanism of cosmic rays are also of great interest. To
achieve the cosmic ray energy density estimated from the observed cosmic ray flux: ⇢E ⇡
1 eV/cm3 [7], the required power to support the cosmic rays throughout the galaxy is:

LCR =
VD⇢E

⌧R
⇠ 5⇥ 1040

erg

sec
, (1.13)

where the VD is the volume of the galactic disk:

VD = ⇡R
2
d ⇠ ⇡(15kpc)2(200pc) ⇠ 4⇥ 1066cm3

, (1.14)

and ⌧R is the residence time of the cosmic rays in the volume where the sources are
presumably located: ⌧R ⇠ 6⇥ 106 years.

Such high power could be provided by supernova explosions. For example, the power
from a type II supernova ejecting 10 M� mass with u ⇠ 5 ⇥ 108 cm/s every 30 years is
approximately 3⇥ 1042 erg/sec.
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Figure 1.2: The flux of the combination of all primary nuclei in cosmic rays vs.
energy-per-nucleus. The flux is multiplied by E2.6, so that the structures of the knee
and the ankle are easier to observe. The figure is from Ref. [9]

The Fermi acceleration mechanism of the supernova shock wave predicts a power-law
spectrum of the particles being accelerated. The proportion of the particles of original
energy E0 being accelerated to energy above E is:

N(� E) / 1

Pesc
(
E

E0

)��
, (1.15)

where Pesc is the probability that the particle escapes the acceleration region during each
encounter. The flux shape of the particles accelerated by the Fermi mechanism matching
the flux shape of the observed cosmic rays further suggests that supernova explosions
could be one of the acceleration sources [7].

The maximum energy of particles that can be accelerated to via the supernova shock
wave is [7]:

Emax 
3

20

u

c
Z eB (uTA) (1.16)
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where u is the velocity of the matter being ejected in the shock wave, Z e is the charge of
the particle being accelerated, B is the magnetic field, and TA is the active time of the
particles being accelerated.

For a type II supernova ejecting 10 M� mass with u ⇠ 5⇥ 108 cm/s into the interstellar
medium (ISM), the acceleration will keep going until it has ejected all of its own mass.
Therefore, TA can be calculated as:

4

3
⇡ (uTA)

3
⇢ISM = Mejecta (1.17)

In this case TA ⇡ 1000 yrs. With the strength of the ISM magnetic field being BISM ⇠ 3µ
Gauss, the maximum energy from Eq. 1.16 is:

Emax  Z ⇥ 3 ⇥ 104GeV (1.18)

The result in Eq. 1.18 can only account for the acceleration of the cosmic rays up to a few
hundred TeV. However, the spectrum in Fig. 1.2 shows that the most energetic cosmic
rays observed can reach up to 1020 eV. Several scenarios have been proposed to provide
an explanation for ultra-high-energy cosmic rays.

Instead of a single supernova, the acceleration could be due to di↵usive sources. Ref.
[22] suggests that the shock wave from all the supernovae in the galaxy could form a
galactic wind that fills the intergalactic medium. For this di↵usive source, the velocity
of the wind is uW = 600 km/s. The strength of the magnetic field in the intergalactic
medium is B = 0.1 µ Gauss and the acceleration time is the same as the age of the galaxy:
TA = 1.5 ⇥ 1010 years. With the much longer acceleration time, even though the velocity
and the strength of the magnetic field are smaller than the single supernova scenario, the
maximum energy that could be achieved using Eq. 1.16 is Emax ⇠ Z ⇥ 3 ⇥ 108GeV
which is significantly higher than what’s predicted by the single supernova shock. The
magnetic field of the galactic wind is likely to be quasi-perpendicular to the propagation
direction of the shock which could further increase the upper limit of the accelerated
energy [23].

Point sources could also be responsible for the acceleration of the cosmic rays to very high
energies. Instead of the long acceleration time, point sources could instead provide very
high magnetic fields. A rotating neutron star residing inside the expanding shell of a type
II supernova remnant (SNR) could serve as an accelerator. The power of the acceleration
could be provided by the rotational energy from an oscillating dipole. However, the power
is not emitted as electromagnetic radiation, but as relativistic wind consisting of electrons
and positrons [24]. Due to the relativistic nature of the pulsar wind, Eq. 1.16 does not
apply. The maximum energy that the particles can be accelerated to under this scheme
can be calculated as [25]:
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Emax ⇠ eB⇤ R
3

⇤
⌦2

p
3 c2

(1.19)

where B⇤ is the magnetic field of the neutron star surface, R⇤ is the radius of the neutron
star, and ⌦ is the angular velocity of the rotation. A sample calculation done using a 10
ms pulsar with B⇤ = 1012 Gauss yields a Emax ⇠ 105 TeV.

Another way to provide power for the acceleration is by transferring the gravitational
potential energy from the accretion of matter falling back to the neutron star from the
shell. A neutron star in a binary system could also accrete matter from its counterpart in
the system. Ref. [26] shows that the maximum energy that a particle can be accelerated
to in an accretion shock is on the order of 107 GeV.

1.2.2 Atmospheric Neutrinos

When the nuclei in the cosmic rays arrive at the Earth atmosphere, they interact with
the nuclei in the atmosphere and produce mesons. The flux (Ni) of the produced type i

meson can be calculated as [7]:

dNi(Ei, X)

dX
= �Ni(Ei, X)

�i
� Ni(Ei, X)

di

+
JX

j=i

Z
1

E

Fji(Ei, Ej)

Ei

Nj(Ej, X)

�j
dEj,

(1.20)

where �i and di are the interaction length and the decay length in the air of particle i.
Fji(Ei, Ej) represents the particle yield of a type j particle of energy Ej colliding with
an air nucleus and producing a type i particle of energy Ei (Ei < Ej). X is the slant
depth (the distance between the entry point of the particle in the atmosphere and the
interaction point).

Mesons produced in the atmosphere will further decay into muons and neutrinos. The
most important decay channels are:

⇡
± ! µ

± + ⌫µ(⌫̄µ) (1.21)

K
± ! µ

± + ⌫µ(⌫̄µ) (1.22)

The decay channel of charged pions listed above has a ⇠ 100% branching ratio, and the
decay channel of the charged kaons listed above has a ⇠ 63.5% branching ratio. Muons
from the above decays will further decay and produce more neutrinos:
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µ
± ! e

± + ⌫e(⌫̄e) + ⌫̄µ(⌫µ) (1.23)

An illustration of the production of muons and neutrinos from the cosmic rays hitting
the Earth atmosphere is shown in Fig. 1.2.

When all the muons produced in the atmosphere decay, the ratio of (⌫µ + ⌫̄µ)/(⌫e + ⌫̄e)
is ⇠ 2. However, the muon decay length increases with muon energy. When Eµ > 2.5
GeV, the muon decay length grows larger than its production height (⇠ 15 km) [7], and
the ratio of muon neutrinos to electron neutrinos increases.

The flux of the atmospheric muon neutrinos produced from the charged pion and kaon
decay can be calculated as:

dN⌫

dE⌫
' N0(E⌫)

1� ZNN
{ A⇡⌫

1 + B⇡⌫ cos ✓E⌫/✏⇡

+ 0.635
AK⌫

1 + BK⌫ cos ✓E⌫/✏K
}

(1.24)

The N0(E⌫) in the nucleon flux of the atmosphere. The first term in the bracket is the
contribution from the pion decay (Eq. 1.21) with a 100% branching ratio, and the second
term is the contribution from the kaon decay (Eq. 1.22) with 63.5% branching ratio. ✏i

is the critical energy of particle i in the atmosphere. If the energy of particle i is greater
than ✏i, the interaction of particle i will take over and become dominant instead of the
decay of particle i. It is calculated as:

✏i =
mic

2
h0

c⌧i
, (1.25)

where mi is the mass of particle i and c⌧i is its mean life expressed in length. h0 is the
scale height which equals the pressure of the atmosphere divided by the product of the
density of the atmosphere with the gravitational constant (h0 =

P
⇢g ). In the place where

the production of the secondary particles of cosmic rays peaks, h0 ' 6.4 km. The values
of the mean life and the critical energy of some selected mesons in the Earth’s atmosphere
can be found in Table 1.2.

The A⇡⌫ and B⇡⌫ in Eq. 1.24 are defined as:

A⇡⌫ ⌘ ZN⇡
(1� r⇡)�+1

(1� r⇡)(� + 1)
(1.26)

and
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Figure 1.3: An illustration of the creation of the secondaries when the cosmic rays
enter the Earth’s atmosphere. The figure is from Ref. [27].
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B⇡⌫ ⌘ � + 2

� + 1

1

1� r⇡

⇤⇡ � ⇤N

⇤⇡ ln(⇤⇡/⇤N)
(1.27)

� is the spectral index of the cosmic ray spectrum ⇠ E
�(�+1). The Zij is the spectrum-

weighted moment of the inclusive cross section for particle j with air to particle i, namely
j + air ! i. ⇤i is the attenuation length for particle i in the air. ri ⌘ m

2

µ/m
2

i is defined
as the ratio of the muon mass squared to the particle i mass squared. ri reflects the decay
kinematics, which is di↵erent between the pion decay and the kaon decay(r⇡ ' 0.573 and
rK ' 0.046).

Atmospheric neutrinos generated from charged pion and kaon decays are called conven-
tional atmospheric neutrinos. This part of the atmospheric neutrinos is well understood,
and their flux is calculated and calibrated with the atmospheric muon data [28]. As shown
in Fig. 4.2, the flux of the conventional atmospheric neutrinos is zenith dependent. In
the horizontal direction, the e↵ective depth is larger compared to the vertical direction,
thus the higher number of pion and kaon decays.

Once the energy of the primary cosmic rays is much greater than ✏K (850 GeV) and
✏⇡ (115 GeV), the interactions of pion and kaon take over, and the flux of conventional
atmospheric neutrinos falls steeply. However, the critical energies of the heavier charmed
mesons (e.g. D

±, D0) are much higher. As shown in Table 1.2, the critical energy for
D

+ is 37 PeV and some of its decay channels yield neutrinos. Therefore in the energy
range of 1 TeV and above, the neutrinos from the decay of charmed mesons become an
important part of the atmospheric neutrinos. Due to the short mean life of these heavier
mesons, these neutrinos are called prompt atmospheric neutrinos. Since the charmed
mesons decay immediately after their generation, the e↵ective depth is irrelevant for
the prompt flux. As shown in Fig. 4.2, the prompt component of the atmospheric
neutrinos is isotropic. Unlike the well understood conventional counterpart, the flux of
the prompt atmospheric neutrinos is calculated with large uncertainties and has not yet
been observed. The calculation of the prompt flux involves the charm production from
the interaction between the cosmic rays with the air nuclei, and the hadronization of the
charm particles [29]. The uncertainties associated with the charm mass, factorization and
renormalization scales, and the parton distribution functions could all contribute to the
uncertainty in the prompt flux calculation.

1.2.3 Astrophysical Neutrinos

Neutrinos of extraterrestrial origins are called astrophysical neutrinos in contrast to at-
mospheric neutrinos. In the MeV region, the astrophysical neutrinos are mainly solar
neutrinos (neutrinos from the nuclear fusion process in the Sun) and the neutrinos from
the neutronisation process in the collapsing core of a supernova:

e
� + p ! ⌫e + n (1.28)
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Particle Constituent
quarks

Mass (MeV) Mean life ✏ (GeV) Decay
channels

Branching
ratio (%)

⇡
+

ud̄ 139.6 7.80 m 115 µ
+
⌫µ 99.99

µ
+
⌫µ� 0.02

e
+
⌫e 0.01

K
+

us̄ 493.7 3.71 m 850 µ
+
⌫µ 63.6

⇡
+
⇡
0 20.7

⇡
+
⇡
�
⇡
+ 5.59

⇡
0
e
+
⌫e 5.07

⇡
0
µ
+
⌫µ 3.35

⇡
+
⇡
0
⇡
0 1.76

D
+

cd̄ 1870 312 µm 3.7 ⇥107 K
0/K̄0... 61

µ
+
⌫µ... 17.6

e
+
⌫e... 16.1

Table 1.2: Properties and decay channels of selected mesons. The table contents are
from Ref. [7].

In the higher energy region (TeV and above), the astrophysical neutrinos are generated
from the charged pion decays. The pions are generated either in the collisions of high
energy protons and protons:

p+ p !

8
><

>:

⇡
+ + anything, 1/3 of all cases

⇡
� + anything, 1/3 of all cases

⇡
0 + anything, 1/3 of all cases

(1.29)

or from the collisions of high energy protons and gamma-rays:

p+ � ! �+ !
(
⇡
+ + n, branching ratio: 1/3

⇡
0 + p, branching ratio: 2/3

(1.30)

In the case of proton-proton collisions (pp process), the charged pion will decay into a
muon and a muon neutrino (Eq. 1.21). If the muon decays as in Eq. 1.23, the flavor ratio
of (⌫e : ⌫µ : ⌫⌧ ) at the generation point is (1: 2: 0) for both neutrinos and antineutrinos.
If the muon is of high energy and does not decay, this is called the ”damped muon mode”.
Then there will be no electron neutrino produced. The flavor ratio at the source becomes
(0:1:0) for both neutrinos and antineutrinos.

In the case of proton photon collisions (p� process), the only particles that will generate
neutrinos are ⇡+s. In the mode where muon decays, the flavor ratio of neutrinos is (1:1:0)

13



Flavor ratio at the source Flavor ratio at the Earth

(⌫e : ⌫µ : ⌫⌧ ) (⌫ 0

e : ⌫
0

µ : ⌫ 0

⌧ )

pp ! ⇡
± (1:2:0) (1:1:1)

w/ damped µ
± (0:1:0) (4:7:7)

⌫ ⌫̄ ⌫ ⌫̄

p� ! ⇡
+ (1:1:0) (0:1:0) (14:11:11) (4:7:7)

w/ damped µ
+ (0:1:0) (0:0:0) (4:7:7) (0:0:0)

Table 1.3: The neutrino flavor ratio at the source and at the Earth for di↵erent
generation processes. The numerical values are from Ref. [30].

while the flavor ratio for the antineutrinos is (0:1:0). In the damped muon mode, the only
neutrinos being generated are muon neutrinos, therefore the flavor ratio for neutrinos is
(0:1:0) and no antineutrinos are generated.

After neutrino propagation from the source to the Earth, the flavor ratio can be calculated
according to the oscillation theory. The flavor ratios for di↵erent modes are shown in Table
1.3. Di↵erent astrophysical neutrino generation models will result in di↵erent flavor ratio
predictions for neutrinos and antineutrinos at the Earth. This means that if the flavor
ratio at the Earth can be measured, the puzzle of neutrino generation process can be
solved.

In IceCube, the neutrino events are detected through their interactions in the ice. Over
most of the energy range, the dominant neutrino interaction is neutrino-nucleon deep
inelastic scattering. For neutral current interactions, the event signatures are indistin-
guishable among all the flavors. In the charged current interactions, the electron neutrino
events and tau neutrino events are also hard to separate below 1 PeV. IceCube also cannot
distinguish neutrinos from antineutrinos. Therefore, the flavor ratio cannot be directly
measured.

However, at 6.3 PeV, the electron antineutrino-electron scattering cross section has a
significant peak which is much higher than the DIS cross section at the same energy
range (c.f. Sec. 1.3.2). The analysis presented in this dissertation has the potential to
measure the proportion of the electron antineutrino in the total astrophysical neutrino
flux by measuring the total interaction cross section in that energy range (c.f. Sec. 7.4.1).
The ⌫̄e proportion can be used as an indicator of the neutrino generation process as shown
in Table 7.6.

The neutrino generation process is typically associated with the type of the sources.
Among the popular neutrino source candidates, Active Galactic Nucleus (AGN) jets and
Gamma-Ray Bursts (GRBs) are associated with the p� process, and starburst galaxies
are associated with the pp process.
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Figure 1.4: The schematic of the emission of particles from AGNs. The plot is from
Ref. [31].

Active Galactic Nucleus

An active galactic nucleus is the extremely luminous core of a galaxy [7]. Among all the
galaxies, only a few percents of them are the hosts to AGNs. The AGNs are powered by
the gravitational energy released from the accretion of matter into a black hole located in
the center of the galaxy. Near the center of the AGNs, the high energetic relativistic elec-
trons are accelerated by strong magnetic fields. These electrons will produce synchrotron
photons, and they can interact with the synchrotron photons through inverse-Compton
scattering to produce higher energy photons. The high-energy photons can interact with
the high-energy protons (Eq. 1.30) and produce neutrinos. The whole process will gen-
erate a stream of high-energy particles, which are emitted from the center of AGNs as
a jet perpendicular to the accretion disk of the central black hole. The schematic of the
particle emission is shown in Fig. 1.4.

The AGNs can be categorized as radio-loud AGNs and radio-quiet AGNs by the criterion
of whether or not a notable radio jet is detected. Approximately 15% of the AGNs are
radio-loud. When the direction of the jet from a radio-loud AGN points towards the
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Earth, it is called a blazar. The Fermi Large Area Telescope has published the second
catalog of AGNs [32] which is used by the IceCube collaboration to search for a potential
source of the observed astrophysical neutrinos. The analysis was performed on 3 years
(2009 - 2011) of IceCube muon neutrino sample 2, and no significant source from the
catalog was identified [33].

On September 22nd, 2017, IceCube detected a ⇠ 290 TeV muon neutrino which coincided
with the �-ray flare detected by the Fermi-LAT experiment of a blazar TXS 0506+056 in
space and time [34]. The flare has also been observed in radio, optical and x-ray signals.
Due to this discovery, IceCube investigated 9.5 years of astrophysical neutrino samples
and found the evidence for an excess of high-energy neutrino events in the time range
of September 2014 to March 2015 from the direction of TXS 0506+056 [35]. This was
the first observation suggesting that blazars are sources of astrophysical neutrinos and
accelerators for cosmic rays.

Gamma-Ray Bursts

Gamma-Ray Bursts (GRBs) are high-energy transient events with an energy emission of
1051 to 1054 erg/s [36]. The duration of GRBs ranges from ms to 1000 s with peaks at 2
s and 20 s [37]. They are proposed to be one of the sources of high-energy cosmic rays
[38]. GRBs can be categorized as long GRBs (t > 2s) and short GRBs (t < 2s). The long
GRBs are believed to be associated with the black hole generation from the collapsing
core of a massive star [39], while the short GRBs are likely to be the products of the
merger of a binary system: for example, two neutron stars (NS-NS) or a neutron star and
a black hole (NS-BH) [40], [41].

The spectrum of the GRB emission follows a double broken power law [42]:

N(E) /
(
E

�↵ exp(�E/E0) E < E0

E
��

E > E0

(1.31)

In Eq. 1.31, ↵ is smaller than � and E0 is burst specific. Typically, ↵ ⇡ 1 and � ⇡ 2 [43].

With the development of the GRB, the plasma of photons, electrons, and baryons in the
center of the GRB expand relativistically under the radiation pressure. The particles
inside the GRB are accelerated to relativistic velocities. In this process, the relativistic
protons interact with the high energy photons and produce pions which later will de-
cay into neutrinos. A large fraction of the burst energy is transferred to the produced
neutrinos so that the neutrino energy can reach up to 1014 eV [44].

After the detection of the gravitational wave emission from the merger of a binary neutron
star (GW170817) by the Advanced LIGO and Advanced Virgo observatories [45], the
ANTARES, IceCube, and Pierre Auger Observatories performed a search for possible

2The track-like event signature from the charged-current interaction of muon neutrinos provides a
good directional resolution which is essential to identify the direction of the source.
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GeV - EeV neutrinos associated with this GRB. No neutrino was found within the ±500
s time window of the event in the direction of the event [46].

IceCube has performed another more comprehensive search for potential neutrino emis-
sions from GRBs with 7 years of muon neutrino sample [47]. 1172 GRBs with information
acquired from Gamma-ray Coordinates Network (GCN) and the Fermi Gamma-ray Burst
Monitor (GBM) database [48], [49] have been studied, and no significant correlation is
found between the neutrinos and the GRB events.

Starburst Galaxies

Starburst galaxies (SBGs) or star-forming galaxies (SFGs) are galaxies with a much higher
star formation rate (SFR) than the average SFR of galaxies at a similar redshift [50]. The
disk density of SBGs (⌃g > 0.1 g/cm [51]) and the magnetic field of SBGs (B ⇠ 1 mG
[52]) are typically much higher than the normal galaxies (⌃g ⇡ 0.003 g/cm2, B ⇠ 5 µG
for the Milky Way).

The majority of the star formation activities at redshift z ⇠2 happens in transient star-
burst events which are usually triggered by galaxy mergers. In these activities, the rel-
ativistic protons are injected into the starburst interstellar medium and collide with the
interstellar nucleons. This hadronic process (pp) will lead to the production of charged
and neutral pions (Eq. 1.29) which will lead to a neutrino production.

When assuming the neutrinos are from the same sources that are also responsible for
the cosmic-ray production and the size of the sources is not much larger than the mean-
free-path of the pion production, an upper bound (Waxman-Bahcall upper bound) for
the neutrinos flux produced by the pion decay [53], [54] can be set by the cosmic-ray
observations:

E
2

⌫�⌫ < E
2

⌫�
WB
⌫ = 5⇥ 10�8GeVcm�2s�1sr�1 (1.32)

Ref. [55] shows that the radio observations of SBGs suggest a lower limit on the neutrino
flux which is in the order of �WB

⌫ for the energy range of a few GeV to ⇠ 300 TeV, and
this lower limit of neutrino flux could exceed the Waxman-Bahcall upper bound at higher
energies:

E
2

⌫�⌫ / E
�0.15±0.1
⌫ (1.33)

A study performed on 3 years of IceCube data [56], [57] placed a strong upper limit on
the spectral index (E��

⌫ ) of the hadronic sources, � < 2.1 - 2.2 [58].

The neutrino fluxes from di↵erent origins are shown in Fig. 1.5. Di↵erent sources pro-
duce neutrinos of di↵erent spectrums and in di↵erent energy ranges. The cosmological
neutrinos are the relic neutrinos generated during the Big Bang. Their energy is believed
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Figure 1.5: The neutrino flux of neutrinos from di↵erent origins. The plot is from
Ref. [31].

to be in the order of meV. The cross section of the relic neutrinos are very low, so they
are yet to be detected.

In this analysis, we use neutrinos in the energy range of 6 TeV to 10 PeV. The major
contribution of the neutrinos used in the cross section measurement is of astrophysical
origins.

1.3 Neutrino Interactions

1.3.1 Deep Inelastic Scattering

Deep Inelastic Scattering (DIS) is a process in which a high-energy lepton is scattered by
a hadron with part of the lepton’s energy transferred to the hadron. Due to the very high
energy, the wavelength of the lepton is smaller than the size of the hadron, thus allowing
for the ability to probe the hadron structure. In the final state, a scattered lepton and
hadrons are produced.

Figure 1.6 shows the kinematics of a DIS process. The 4-momentum of the injected
lepton is p with a relativistic energy E and 3-momentum �!

p . The 4-momentum of the
scattered lepton is p0 with a relativistic energy E 0 and 3-momentum�!

p
0. The 4-momentum

of the hadron is P . Since the target is fixed, the relativistic energy of the hadron is
its mass M and the 3-momentum is 0. The 4-momentum transferred to the hadron is
the 4-momentum q of a virtual exchange boson. q can be calculated using momentum
conservation at the top vertex of the interaction as:
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�Q
2 ⌘ q

2 = (p� p
0)2 = (E � E

0)2 � (�!p ��!
p

0)2 (1.34)

Q
2 is defined as �q

2 to be a positive variable since q
2 is negative:

Q
2 ⇡ 4EE

0 sin2
✓

2
(1.35)

Use momentum conservation at the bottom vertex of the interaction:

P · q = M(E � E
0) = Mv, (1.36)

the invariant mass W of the hadrons in the final state can be calculated as:

W
2 = (P + q)2 = M

2 + 2P · q + q
2 = M

2 + 2Mv �Q
2 (1.37)

The Bjorken x variable is defined as:

x =
�q

2

2P · q =
Q

2

2M · q =
Q

2

2Mv
(1.38)

In the case of elastic scattering, W = M ! 2Mv = Q
2 ! x = 1. In the case of inelastic

scattering, W > M ! 2Mv�Q
2
> 0 ! x < 1. Therefore the range of the Bjorken x is

from 0 to 1. In the Quark Parton Model infinite-momentum frame, it is the fraction of a
proton’s momentum carried by the parton the lepton scattered o↵.

Another important variable in a DIS process is defined as:

y =
E � E

0

E
=

v

E
(1.39)

It is the fraction of the energy of the injected lepton transferred to the nucleon.

The majority of the neutrino interactions in the IceCube detector are neutrino-nucleon
deep inelastic scatterings. There are two types of ⌫-N DIS: the charged-current interaction
and the neutral-current interaction. The charged-current interaction is mediated by a W

boson, and the interaction products are a charged lepton and a hadronic shower. The
neutral-current interaction is mediated by a Z boson, and the interaction products are a
neutrino and a hadronic shower. The Feynman diagrams of these two types of interactions
are shown in Fig. 1.7.

The di↵erential cross section of the charged-current interaction between a neutrino (an-
tineutrino) and an isoscalar nucleon (N ⌘ n+p

2
) can be written as [59]:
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Figure 1.6: Deep Inelastic Scattering Feynman Diagram.

Figure 1.7: The Feynman diagram of neutrino-nucleon charged-current (left) and
neutral-current (right) interaction.
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d
2
�(⌫lN ! l

�
X)

dxdy
=

2G2

FME

⇡
(

M
2

W

Q2 +M
2

W

)2[xq(x,Q2) + xq̄(x,Q2)(1� y)2], (1.40)

d
2
�(⌫̄lN ! l

+
X)

dxdy
=

2G2

FME

⇡
(

M
2

W

Q2 +M
2

W

)2[xq(x,Q2)(1� y)2 + xq̄(x,Q2)], (1.41)

where GF = 1.16632⇥ 10�5 GeV�2 is the Fermi constant [59], MW is the mass of the W

boson = 80.379 GeV, and q(x,Q2), q̄(x,Q2) are parton distribution functions:

q(x,Q2) =
uv(x,Q2) + dv(x,Q2)

2
+

us(x,Q2) + ds(x,Q2)

2
+ ss(x,Q

2) + bs(x,Q
2)

(1.42)

q̄(x,Q2) =
us(x,Q2) + ds(x,Q2)

2
+ cs(x,Q

2) + ts(x,Q
2), (1.43)

where the subscripts v and s represent valence quarks (determine the hadron’s quantum
numbers) and sea quarks (virtual quark-antiquark pairs), and u, d, s, b, c, t are the quark
distribution for the quark of the marked flavor [59].

The di↵erential cross section of the neutral-current interaction between a neutrino (an-
tineutrino) and an isoscalar nucleon can be written as [59]:

d
2
�(⌫̄lN ! ⌫̄lX)

dxdy
=

2G2

FME

⇡
(

M
2

Z

Q2 +M
2

Z

)2[xq0(x,Q2)(1� y)2 + xq̄
0(x,Q2)], (1.44)

d
2
�(⌫lN ! ⌫lX)

dxdy
=

2G2

FME

⇡
(

M
2

Z

Q2 +M
2

Z

)2[xq0(x,Q2) + xq̄
0(x,Q2)(1� y)2], (1.45)

where MZ is the mass of the Z boson, and the parton distribution functions are:

q
0(x,Q2) = [

uv(x,Q2) + dv(x,Q2)

2
+

us(x,Q2) + ds(x,Q2)

2
](L2

u + L
2

d)

+ [
us(x,Q2) + ds(x,Q2)

2
](R2

u +R
2

d)+

[ss(x,Q
2) + bs(x,Q

2)](L2

d +R
2

d) + [cs(x,Q
2) + ts(x,Q

2)](L2

u +R
2

u)

(1.46)
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q̄
0(x,Q2) = [

uv(x,Q2) + dv(x,Q2)

2
+

us(x,Q2) + ds(x,Q2)

2
](R2

u +R
2

d)

+ [
us(x,Q2) + ds(x,Q2)

2
](L2

u + L
2

d)+

[ss(x,Q
2) + bs(x,Q

2)](L2

d +R
2

d) + [cs(x,Q
2) + ts(x,Q

2)](L2

u +R
2

u),

(1.47)

where

Lu = 1� 4

3
xW Ld = �1 +

2

3
Xw (1.48)

Ru = �4

3
xw Rd =

2

3
xW (1.49)

are the chiral couplings and xW = sin2
✓W = 0.2312 [9] is the weak mixing parameter .

According to the neutrino DIS cross section equations listed above, the neutrino-nucleon
cross sections have a linear relationship with the neutrino energy in the energy range
of a few hundred GeV and below (as shown in Fig. 1.8). This is verified by the direct
measurements of the ⌫N cross section in the fixed target experiments. The results of
these measurements are shown in Fig. 1.8.

As shown in Fig. 1.8, the direct measurements of neutrino-nucleon cross section performed
in the fixed-target experiments can only reach to E⌫ ⇠ 350 GeV due to the limited
ability to generate high-energy neutrinos. However, with the parton distribution functions
(PDFs) at small x, the neutrino-nucleon cross section at high energies can be calculated
using Eq. 1.40, 1.41, 1.44, 1.45.

The PDFs are process-independent. Hadron-Elektron-Ringanlage (HERA) was a particle
accelerator based in the Deutsches Elektronen-Synchrotron (DESY). During its operation
time, it collected valuable data to fit the PDFs at very small x using ep scattering. The
PDFs calculated using HERA data are shown in Fig. 1.9.

HERAPDF1.5 enabled the calculation of the neutrino-nucleon DIS interaction cross sec-
tion up to 1012 GeV in Ref. [62] (CSMS). The calculated result is shown in Fig. 1.10.
In this dissertation, a direct measurement of the neutrino interaction cross section using
high-energy astrophysical neutrinos will be presented. The result of this measurement will
be compared with multiple cross section calculations including CSMS (c.f. Sec. 7.4.2).

1.3.2 Glashow Resonance

The neutrino-electron interaction cross sections is typically much smaller than the neutrino-
nucleon interaction cross section due to the much smaller mass of the electrons compared
to the nucleons. An exception is at around 6.3 PeV, the resonant formation of the W� bo-
son from electron antineutrino-electron scattering [64]. At this energy, the resonance cross
section is much larger than the neutrino-nucleon cross section. The Feynman diagram of
this interaction is shown in Fig. 1.11.
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Figure 1.8: Measurements of the neutrino and antineutrino charged-current in-
teraction cross section divided by the neutrino energy as a function of the neu-
trino energy in the energy range of a few hundred GeV. The dashed lines indi-
cated the averaged cross section to the neutrino energy ratio for neutrino interac-
tions and antineutrino interactions: �⌫/E⌫ = (0.677 ± 0.014) ⇥ 10�38cm2/GeV and
�⌫̄/E⌫ = (0.334± 0.008)⇥ 10�38cm2/GeV [60]. The plot is from Ref. [61].

Figure 1.9: The parton distribution functions fit to HERA I+II data (HERAPDF1.5)
and HERA I data (HERAPDF1.0). The plot is from Ref. [63].
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Figure 1.10: The calculated neutrino interaction cross section. The DIS interaction is
calculated using HERAPDF1.5 by Ref. [62] and the Glashow Resonance cross section
calculation is from Ref. [64].

Figure 1.11: The Feynman diagram of an electron antineutrino scattering o↵ an
electron. Only the leptonic decay channels of the W� boson is shown in the plot.
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Reaction Channel � [cm2]

⌫̄ee ! ⌫̄ee 5.38 ⇥10�32

⌫̄ee ! ⌫̄µµ 5.38 ⇥10�32

⌫̄ee ! ⌫̄⌧⌧ 5.38 ⇥10�32

⌫̄ee ! hadrons 3.41 ⇥10�31

⌫̄ee ! anything 5.02 ⇥10�31

Table 1.4: The integrated neutrino-electron scattering cross sections at 6.3 PeV. The
numbers in the table are from Ref. [59].

The products of ⌫̄ee scattering can be leptonic and hadronic. The energy of the recoiling
lepton is E 0 = yE. The di↵erential cross section of the ⌫̄ee scattering with the leptonic
decay of the mediating W

� boson can be calculated as [59]:

d
2
�(⌫̄ee ! ⌫̄ee)

dy
=

G
2

FmE

2⇡
[

R
2

e

(1 + 2mEy/M
2

Z)
2
+

| Le

1 + 2mEy/M
2

Z

+
2

1� 2mE/M
2

W + i�W/MW
|2(1� y)2]

(1.50)

d
2
�(⌫̄ee ! ⌫̄µµ)

dy
=

G
2

FmE

2⇡

4(1� y)2[1� (µ2 �m
2)/2mE]2

(1� 2mE/M
2

W )2 + �2

W/M
2

W

(1.51)

The di↵erential cross section of the ⌫̄ee scattering with the hadronic decay of the mediating
W

� boson can be calculated as [59]:

d
2
�(⌫̄ee ! hadrons)

dy
=

d
2
�(⌫̄ee ! ⌫̄µµ)

dy
· �(W ! hadrons)

�(W ! µ⌫̄µ)
(1.52)

In the equations above, m is the mass of the target electron m = 0.51 MeV/c2 and µ

is the muon mass µ = 105.66 MeV/c2. Le and Re are the left-handed and right-handed
chiral couplings of the Z

0 to e: Le = 2 sin2
✓W � 1 and Re = 2 sin2

✓W , and �W is the W

decay width: �W ⇡ 2.08 GeV.

The branching ratio of the products of the electron antineutrino-electron scattering de-
pends on the branching ratio of W

� boson decay. The cross section of the di↵erent
reaction channels of the neutrino-electron scattering at 6.3 PeV is shown in Table 1.4.
Each leptonic decay channel has the same branching ratio of ⇠ 10.7% and the hadronic
channel has the branching ratio of ⇠ 67.9%.

The total electron antineutrino-electron scattering cross section (⌫̄ee ! anything) as a
function of neutrino energy is shown in Fig. 1.10. A peak of the Glashow Resonance
manifests at around 6.3 PeV. In the energy range of below 1 PeV and above 10 PeV the
neutrino-electron interaction cross section is negligible compared to the neutrino-nucleon
interaction cross section. In this thesis, we will measure for the first time, a combined ⌫N
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and ⌫̄ee cross section. The fraction of ⌫̄ee events is sensitive to the astrophysical neutrino
generation process (pp or p�) as discussed in Sec. 1.2.3.
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Chapter 2

The IceCube Detector

As discussed in the previous chapter there is evidence that neutrinos of extraterrestrial
origins are generated in association with the high-energy cosmic rays. Due to their charge-
free and weakly interacting nature, neutrinos can travel through the space from their
sources to the Earth without being deflected or absorbed. Thus they are the ideal mes-
senger pointing back to their sources.

In order to detect astrophysical neutrinos, at least one-cubic-kilometer size in detection
volume is required. In this chapter, we will discuss the principle of the neutrino detection,
and their detection in the IceCube detector. The chapter will cover the instrumentation of
the detector, the data acquisition and processing, the neutrino interaction event signature
and reconstruction, and Monte Carlo simulations.

2.1 Neutrino Detection

Neutrino detection in the IceCube detector is realized by the detection of the Cherenkov
radiation of the charged secondary particles from neutrino interactions. When a charged
particle passes through a dielectric media with a velocity that is greater than the phase
velocity of the light in that media, an electromagnetic radiation is emitted. This radiation
is called the Cherenkov radiation.

An illustration of the Cherenkov radiation forming is shown in Fig. 2.1. When the velocity
of the charged particle is greater than the phase velocity of the light in the media, the
light can not overpass the particle, therefore a wavefront is formed. The propagation
direction of the radiation is indicated by the up-right-pointing arrow in the right plot of
Fig. 2.1. The emission angle can be calculated as:

cos ✓c =
ct/n

vt
=

c

vn
=

1

n�
, (2.1)
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Figure 2.1: An illustration of the Cherenkov radiation e↵ect. In the left plot: v < c/n,
the condition for the Cherenkov radiation is not fulfilled. In the right plot: v > c/n,
the condition for the Cherenkov radiation is fulfilled. The plot is reproduced from Fig.
2.1 in Ref. [65].

where n is the refractive index of the material 1 and � is the relative velocity compared
to the speed of light in vacuum: � = v

c .

The number of photons emitted per unit length per unit energy of a particle with charge
ze is [60]:

d2
N

dEdx
=

↵z
2

~c sin2
✓c =

↵z
2

~c (1� 1

�2n2(E)
), (2.2)

where ↵ is the fine structure constant and ~ is the Dirac constant.

By substituting E with 2⇡c~
� (dE becomes 2⇡c~

�2 d�), the above equation can be written as:

d2
N

d�dx
=

2⇡↵z2

�2
(1� 1

�2n2(�)
) (2.3)

1The refractive indices for water and ice are 1.333 and 1.309 respectively (evaluated at sodium D line:
598.2 nm).
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Figure 2.2: The instrumentation of the IceCube Neutrino Observatory. Image credit:
the IceCube Collaboration.

The total number of photoelectron (Np.e.) observed by a certain device with the photon
detection e�ciency (✏(�)) in the wavelength range ([�min,�max]), after the charged particle
traveled the length (L), can be calculated as:

Np.e. = L2⇡↵z2
Z �max

�min

✏(�) sin2
✓c(�)

�2
d� (2.4)

The photomultiplier tubes (PMTs) used in IceCube are sensitive to the wavelength range
of 300 nm - 700 nm [66]. The photon detection e�ciency is ⇠ 25% [67].

2.2 IceCube Instrumentation

The IceCube Neutrino Observatory is a one-cubic-kilometer size detector located in the
ice of the geographic South Pole. It is capable of detecting neutrinos over a broad energy
range from GeV to EeV. IceCube detector consists of two sections: the in-ice array and
Ice Top. The collected data is processed in the IceCube laboratory (ICL) located at the
surface on the ice. The instrumentation of the detector is shown in Fig. 2.2.
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In-Ice Array

The IceCube in-ice array consists of 5160 digital optical modules (DOMs) for the detection
of the Cherenkov photons. The DOMs are deployed on 86 vertical strings between 1450
m and 2450m in the Antarctic ice using the method of hot water drilling. Each in-ice
string hosts 60 DOMs. The primary 78 strings form a hexagonal footprint and are placed
125 m apart from each other. The DOMs on the primary strings are placed 17 m apart.
The spacing of the primary strings is suitable for the detection of neutrinos in the energy
range of O(TeV) - O(PeV).

The other 8 strings are called the Deep Core strings. A deep core string has 10 DOMs
deployed between 1900 m and 2000 m with the DOM-to-DOM spacing of 10 m and 50
DOMs deployed between 2100 m and 2450 m with the spacing of 7 m [68]. Such design is
to avoid the so-called ”dust layer” [69] region (2000 m - 2100 m) where there is a significant
increase in the scattering and absorption coe�cient in the ice. The top 10 DOMs of the
deep core strings also serve as a veto cap to reject the penetrating atmospheric muons from
cosmic rays. The much denser DOM placing in the deep core strings shifted the energy
sensitivity of the detection to 10 GeV ⇠ 100 GeV. The physics topic can be performed
with deep core strings are neutrino oscillations [70], nonstandard neutrino interactions
[71], dark matter detection [72], neutrino emission from core-collapse supernovae [73],
and more.

IceTop

IceTop [74] consists of 162 ice-filled tanks located in 81 stations in the vicinity of the
footprint of the IceCube in-ice array on the surface of the antarctic ice. Its primary goal
is to detect cosmic ray air showers. Each station hosts two tanks that are 10 m apart
with ice filled to a height of 0.9 m. Eight extra stations are placed in the center of the
IceTop in the vicinity of the footprint of the Deep Core strings. Within each ice-filled
tank, there is one ”high-gain” DOM (5⇥ 106) and one ”low-gain” DOM (105) to increase
the dynamic range of the air shower detection. IceTop is sensitive to air showers induced
by the cosmic rays with primary energy of PeV to EeV, and the inner denser tanks are
sensitive to the cosmic rays with primary energy of ⇠ 100 TeV. Besides the detection of
cosmic ray air showers, IceTop also serves as the veto cap for the in-ice array to alert the
system for any down-going muons.

The IceCube Laboratory

The IceCube Laboratory (ICL) is the central operation building located in the center of
the footprints of the in-ice array at the surface. All the in-ice cables that connect the
in-ice DOMs and the servers are grouped into two groups and are connected into the
servers through the two cable towers on the two sides of the ICL. A picture of the ICL
is shown in Fig. 2.2. ICL is the host of computers that are responsible for the data
acquisition process and the online filtering process. The building is kept at a constant
temperature of 18 �C.
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Figure 2.3: The schematic of the component of a DOM. The figure is from Ref. [67].

Digital Optical Module

The Digital Optical Modules (DOMs) are used for the data acquisition process in IceCube.
Each DOM contains a downward-facing PMT [75] with the size of 10” diameter and
several circuit boards all wrapped in a spherical glass housing. The schematic of the
structure of a DOM is shown in Fig. 2.3.

The DOMs are wired in direct connection with their above and below neighbor for local
coincidence (LC) photon signal (hits) detection. When a DOM and its nearest neighbors
or next-to-nearest neighbors are hit within a time window of ±1µs, it is called an LC
hit. The hits are called Hard Local Coincidence (HLC) hits when the LC conditions are
met and are otherwise called Soft Local Coincidence (SLC) hits. The HLC hits indicate
multiple photons being detected and thus saved in full details. The SLC hits are more
likely to be noise hits that are not associated with charged particles, therefore only a
timestamp and minimal information is saved.

The control center of a DOM is the main board. The main board manages a series of tasks
including the digitization of the PMT waveforms using the Analog Transient Waveform
Digitizer (ATWD) and fast Analog-to-Digital Converter (fADC), the communication with
the data acquisition (DAQ) system, the calibration of the internal DOM clock, and the
communication with the neighbor DOMs of local coincidence pulses.

The schematic of the data flow within a DOM is shown in Fig. 2.4. The waveform
collected by the PMT is passed through a discriminator (Single Photoelectron (SPE)
discriminator for the in-ice DOMs and Multiple Photoelectron (MPE) discriminator for
the IceTop DOMs), and digitized by the ATWD. The digitized waveform is then sent to
the DAQ (c.f. Sec. 2.3) with the time and charge information. Only if the LC pulse is
detected and the discriminator threshold is passed, is the full waveform data included in
the transmission to the DAQ.

The recording period of the ATWD is 427 ns with a 3.3 ns sampling period. It covers the
light emission within tens of meters of the DOM. The detection of the photons generated
further away from the DOM is cover by the fADC which samples continuously with a 25
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Figure 2.4: The schematic of the data flow within a DOM. The figure is from Ref.
[76].

ns sampling period and an interval of 6.4 µs is saved after the launch. Each main board
contains two ATWDs working in alternations to minimize the dead time. The median
dead time for the in-ice DOMs is 6.6 ⇥10�3% [76].

Each DOM also has a Flasher Board which consists of 12 LEDs. Except for the ”color
DOMs” (cDOMs), all the other LEDs emit light with the wavelength of 405 ± 5 nm which
is close to the wavelength (300 nm) the DOMs are most sensitive to at temperature of -
20 �C. The 12 LEDs are arranged in a circle on the flasher board in pairs. The pairs are
spaced 60� apart with one LED pointing 10.7� downwards and the other 51.6� upwards.
The choice of the angle is to have the downward pointing LED emit light horizontally
and the upward pointing LED emit light in the direction of 48� 2 away from the upward
direction after the refraction through the DOM glass and the ice.

16 cDOMs are evenly deployed on String 79 (in the center of the detector) and String 14
(at the edge of the detector). Each cDOM also contains 12 LEDs in 6 pairs with even
spacing in a circle on the flasher board. On each flasher board of a cDOM, there are
three pairs of 370 nm and 340 nm LEDs and three pairs of 340 nm and 505 nm LEDs.
All of the cDOMs’ LEDs are pointing outward horizontally.

By measuring the controlled light emitted by the LEDs in the DOMs, we study the
response time of the DOMs, measure the position of the DOMs, measure the optical
properties of the ice 3, and calibrate the direction and energy reconstruction algorithms.

2This angle is close to the Cherenkov angle in ice.
3The scattering and absorption property of the ice is shown in Fig. 3.19
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2.3 Data Acquisition and Processing

Data Flow Overview

As discussed in Sec. 2.2, hits are classified as HLC hits or SLC hits according to whether
or not they fulfill the location coincidence condition. All the hits are readout to the com-
puters in the ICL through the data acquisition system (DAQ). The HLC hits are checked
for causal relationships by examining the temporal and sometimes spatial correlations
among them. A set of triggers are applied to the data to reduce the data volume. All
the hits (SLC included) within a certain time window of a trigger are integrated into an
event which is the output of the DAQ. Since the vast majority of the triggered events
are atmospheric muons, the DAQ data rate is between 2.5 KHz to 2.9 kHz due to the
seasonal variation. The median rate is 2.7 kHz which translates to a data volume of 1
TB/day.

About 25 physics filters, which are designed for di↵erent physics analysis purposes are
applied on the DAQ events to select a subset (⇠ 15%) that can be fitted in the allowed
bandwidth of the satellite. The events that pass any filter are transferred to the Northern
Hemisphere through a satellite connection, and all the events (including the ones failed
all the filters) are stored on the local disks which are shipped north at the end of the
season.

The data-taking periods are chosen to be 8 hours. The data acquisition process is not
interrupted by the run transition. The experiment control and monitoring can be con-
ducted via the IceCube Live software system, and the low-latency communications for the
experiment control are managed by the IceCube Messaging System (I3MS). An IceCube
detector year starts around May each year. The detector configuration and the settings
of the online filters can be changed annually before the start of a new data collection year
if needed. A demonstration of the data flow is shown in Fig. 2.5.

Data Acquisition System

The Data Acquisition System (DAQ) includes String Hubs, Triggers, Event Builder,
Secondary Builders and a Command and Control server [76]. It is designed to detect
the hit patterns that potentially result from particle interactions, and bundle the hits to
events before transferring them to Processing and Filtering (PnF).

The first layer of the DAQ is the StringHub. The StringHub contains two parts: the
front end Omicron, and the back end Sender [76]. Omicron collects all the data from
the DOMs including the calibration and monitoring data as well as the physics data. It
organizes the hits from all the DOMs by time and then sends them over to the Sender.
The HLC and SLC hits are temporarily stored in the HitSpool disk cache. The Sender
sends the condensed HLC hits to the triggers. The condensed HLC hits contain the
information about the hit time, the DOM number and the trigger remark. If a time
interval is determined by the triggers, the Event Builder will request the information of
all the hits within the interval from the Senders.
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Figure 2.5: The overview of the data flow in the IceCube online system. The figure
is from Ref. [76].

The triggers are designed to select HLC hits that potentially result from particle interac-
tion by using their spacial and temporal correlations. The fundamental trigger is called
the Simple Multiplicity Trigger (SMT). It requires at least N HLC hits within an n µs
time window. N and n are location specific. For the in-ice DOMs, N = 8 and n = 5.
For the denser DeepCore DOMs, the sensitive energy range is smaller, therefore N = 3
and n = 2.5 are also smaller. For the IceTop DOMs, N = 6 and n = 5 [76]. When the
condition of the SMT is met, the trigger will go on until there is a time window where
there are no HLC hits recorded.

Some triggers have a more relaxed multiplicity requirement and are compensated by a
requirement in spacial correlation. The Volume Trigger requires a certain number (N) of
the HLC hits detected within a cylinder of radius r and height h of each hit DOM within
a time window of n µs. The String Trigger requires the hits to be within a certain number
(M) of adjacent vertical DOMs. As it is for the SMT, r, h, N , and n are di↵erent for the
in-ice DOMs and the IceTop DOMs.
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There are other triggers like the Slow Particle (SLOP) trigger that is designed to select
hits that may be induced by a subrelativistic heavy particle, the Fixed Rate Trigger
(FRT) that reads out all the hits within a 10 ms time window at a certain frequency, and
the Minimum Bias trigger reads out one out of every N HLC hits.

All the trigger data are eventually merged into the Global Trigger, where all the individual
trigger information is still intact without having overlapped events that pass multiple
triggers. The Global Trigger then passes the triggered time window to the Event Builder
which requests the information for all hits within the time window from the StringHubs.
The hits will be bundled into an event with the trigger data by the Event Builder before
being sent to the Processing and Filtering (PnF) system. The total time from the photons
being detected by the PMTs in the DOMs to the event being ready to be picked up by
the PnF is 5 seconds [76].

Online Processing and Filtering

The task of the online Processing and Filtering (PnF) is to further reduce the size of the
data to accommodate the satellite allowance (⇠ 100 GB/day).

Before running the event reconstruction algorithms, the digitized DOM waveforms of the
triggered events are calibrated. The information of geometry, calibration, and detector
status (GCD) is data-taking run specific. The GCD information is not only used online,
but also used o✏ine when more sophisticated event reconstruction algorithms are being
performed on the filtered data in the North. Therefore all the GCD files are stored in a
database.

The information in an event used in the online reconstruction is the time and amplitude
of the waveform. The PnF compresses this information into the Super Data storage
and Transfer (SuperDST) format which reduces the data volume to 9% of the original
waveform. Various reconstruction results such as the energy, direction, interaction vertex,
and the goodness of the fit are used by about 25 filters to select events that are potentially
interesting for physics analyses. Around 15% of the triggered events pass at least one of
the filters. The online filter that is relevant to this analysis is the cascade level2 filter
which is described in Sec. 3.1. Some of the filters that are targeting astrophysical neutrino
signals also produce real-time alerts [77]. When an event passes one of these filters, it
could be potentially produced in an astrophysical phenomenon (e.g. GRBs) that is time
sensitive. These astrophysical events usually also produce other signals like gamma-ray or
gravitational waves that can be observed by other astrophysics observatories. Therefore
a real-time alert enables timely follow-up observations.

Finally the filtered events and their SuperDST version of the DOM information are trans-
ferred to the North via satellite at the rate of ⇠ 90 GB/day. All the triggered events and
their SuperDST DOM information (⇠ 170 GB/day) are stored as the long-term archive
as well as the raw data files with the uncalibrated waveforms for all the DOMs in all
events.

The information such as the rates of DOM readouts, the rate of the triggers and filters are
used in the IceCube Live monitoring system. The IceCube Live system allows the shift
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taker to monitor the real-time data taking processing from any computer with internet
connection in the North.

2.4 Event Signature and Reconstruction

Event Signature

There are three major event signatures in IceCube: a cascade, a track, and a double-
bang. The light propagation and the detector DOM response of these event signatures
are shown in Fig. 2.6. The color coding indicates the relative time when the DOMs
detect the light: red is early in time and blue is late in time. The size of the ”bubble”
in the right column of Fig. 2.6 is proportional to the amount of the charge observed by
that DOM: the bigger the size of the ”bubble”, the more charge it observed.

The cascade signature is induced by ⌫e charged-current interactions, ”low-energy” ⌫⌧

charged-current interactions and neutral current interactions of neutrinos of all flavors.
It is related to the electromagnetic or hadronic shower generated in the interactions.
A ⌫e charged-current interaction produces an electron. Due to the very small mass, the
electron is scattered around the interaction vertex and creates an electromagnetic shower,
thus the cascade signature. A ⌫⌧ charged-current interaction produces a tau lepton. A
low-energy tau lepton decays almost instantaneously after its production and creates a
hadronic shower. When the energy of the ⌫⌧ is less than 1 PeV, the decay vertex of the
tau lepton is close to the vertex of the ⌫⌧ interaction. The two hadronic showers cannot
be distinguished from one another. When a neutral current interaction happens, the
products are an out-going neutrino and a hadronic shower.

The muon track signature is induced by ⌫µ charged-current interactions. A muon is
much heavier than an electron and has a longer lifetime than a tau lepton. After the
production, it propagates in a straight line and loses energy before it decays. Therefore
it leaves a track signature. A down-going muon track that starts outside the detector
is primarily induced by cosmic rays which are the background for the neutrino analyses.
The more reliable ⌫µ signals are either the ones starting within the detector or the ones
from the up-going direction since the up-going cosmic ray induced muons are absorbed
by the Earth.

The double-bang signature which is yet to be observed, is induced by very high-energy
⌫⌧ charged-current interactions. As discussed before, the tau lepton is produced in a ⌫⌧

charged-current interaction. When the energy of the primary neutrino is high enough, the
tau lepton will also carry higher energy that allows it to travel further before it decays.
Due to the large spacing (125 m) between the IceCube in-ice arrays, it requires the decay
vertex of the tau lepton to be several hundred meters apart from the interaction vertex
of the ⌫⌧ for the two cascades to be separable. Therefore only ⌫⌧ with PeV energies can
induce such a signature. Due to the repaid falling spectrum of astrophysical neutrinos,
the event count at the PeV energy level is very low.
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Figure 2.6: The event signatures in IceCube. The left column shows the light prop-
agation and the right column shows the corresponding DOM response in the detector.
The top row is the cascade signature. The middle row is the track signature. The
bottom row is the double-bang signature. Image credit: the IceCube Collaboration.

Event Reconstruction

Di↵erent event topologies require di↵erent event reconstruction methods. In this analysis,
only the cascade sample is used to produce the final result. Among all the reconstruction
methods for the cascade sample, Monopod [78] is the one that produces the reconstructed
result with the best resolution in a reasonable amount of time, thus can be applied on large
scale of data. Some other cascade reconstruction methods such as CascadeLlhVertexFit
[79] (c.f. Sec. 3.3) produces faster and less accurate results. Their reconstruction results
are usually used in the early level event selection to distinguish cascade-like events from
track-like events based on the goodness of fit, since these algorithms are based on a
cascade topology assumption. These reconstruction results can also be used as the seed
for Monopod to reduce the time needed for converge.
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Figure 2.7: An illustration of the unfolding of the waveforms. The left plot shows a
simple waveform case where one photoelectron is detected. The right plot shows a more
complicated waveform case where multiple photoelectrons are detected. The plots are
from Ref. [78].

Monopod is a likelihood-based algorithm. The input of Monopod is a pulse series repre-
sented by the observed number of photons and their time of observation in the DOMs.
The number of photons is obtained by applying a non-negative linear simultaneous un-
folding method on the digitized waveforms [78]. An illustration of the unfolding method
is shown in Fig. 2.7.

A series of light propagation in the South Pole ice sheet [80], [69] from a broad range of
deposited energy is simulated [81] by using the LED calibration data. This simulation is
used as a template to be compared with the photon observations (ki as the number of
photons observed by DOMi) in an event. The likelihood for the true light deposit being
�i while the observation being ki is:

Li =
�
ki
i

ki!
· e��i (2.5)

The true number of photons observed by DOMi from a cascade event with the true
deposited energy E, the true position (x0, y0, z0) and the true direction (✓0, �0) can be
calculated as:

�i = E ⇤i(x0, y0, z0, ✓0,�0) + ⇢i,0, (2.6)

where ⇤i is the expected number of photons produced per unit energy for DOMi and ⇢0

is the expected number of noise photons. ⇤i depends on the position of the DOM, the
vertex of the event and the direction of the event. It can be numerically calculated using
the template simulation with the application of a multi-dimensional spline fit [81].

The combined log likelihood for all the DOMs can be calculated as:
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lnL =
X

i2DOMs

kiln(E⇤i + ⇢i,0)� (E⇤i + ⇢i,0)� ln(ki!) (2.7)

Maximizing the log likelihood with respect to E yields the reconstruction result for the
deposited energy and all the other variables that determine ⇤i: x0

, y
0
, z

0
, ✓

0
,�

0. The maxi-
mization is done by calculating the gradient with respect to E, therefore the term ln(ki!)
will disappear. This is useful because the unfolding of the digitized waveform allows the
result ki to be non-integer.

The photons observed by each DOM can be further binned in time intervals. Adding
this information in Eq. 2.7 will result in a small increase in the energy resolution in the
single-source case. This application is more important in the multi-source case, as well
as the PMT saturation case where only parts of the waveform can be used.

2.5 Monte Carlo Simulation

Monte Carlo simulation is an important part of the IceCube experiment. It is used
extensively in the data analysis process. The major components of the simulation chain
are:

• Generators: produce primary particles (neutrinos or charged particles) from the
positions at the edge of the Earth. The generation of the particles is either done
with simulating the reactions or with a flux spectrum.

• Propagators: propagate the particles to the e↵ective volume of the detector. When
the up-going particles are propagated through the Earth, certain interactions are
simulated with the frequency according to the cross section. If the secondary neu-
trinos are produced, these neutrinos are further propagated to the detector. Due to
the small neutrino interaction cross section, if the interactions within the e↵ective
volume of the detector are also simulated according to the cross section, much more
neutrinos need to be generated to get enough statistics for the neutrino interactions
within the detector. Therefore, all particles are forced to interact inside the detector
volume and are assigned a weight according to the cross section.

• Light injectors: generate the certain amount of photoelectrons observed by each
PMT when an interaction happens. The light injector takes the information of the
event topology, the event deposited energy, and the photonics table [81] to calculate
the number of photoelectrons that needs to be simulated.

• Detector simulation: simulate the detector responses to the photoelectrons sim-
ulated in the previous step. The detector responses include the digitization of the
waveform, applying the trigger criteria, and applying the filters.
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The neutrino simulation in IceCube is done with the Neutrino-Generator (NuGen) [82].
NuGen is based on the All Neutrino Interaction Generator (ANIS). NuGen uses the cross
section table with the most up-to-date PDF: CSMS [62]. The choice of using NuGen
instead of ANIS is to accommodate the data structure of IceCube.

When the interaction produces a muon inside the detector volume or within the reach
of the detector volume, the energy loss of the muon track is simulated using the Muon
Monte Carlo (MMC) [83]. In the case where two neutrinos reach the detector at the
same time, for example, the charged-current interaction of a ⌫⌧ primary neutrino in the
Earth could produce a tau lepton that later decays into two neutrinos, the likelihood
of both neutrinos interact in the detector volume is negligibly small, therefore NuGen
randomly chooses one to interact based on the interaction probability of both neutrinos.
When calculating the interaction probability, the target in the detector volume is the ice
(H2O). When the neutrinos are being propagated through the Earth, the target density
is calculated using the Preliminary Reference Earth Model (PREM) [84].

The atmospheric muon simulation is done with the Cosmic Ray Simulations for Kascade
(CORSIKA) [85] and the MuonGun [65]. CORSIKA simulates the extensive air showers
produced when the cosmic rays enter the Earth’s atmosphere. The primary particles
in CORSIKA are the five most abundant nuclei in the cosmic rays: H, He, N, Al, Fe.
From the air showers, the most pronounced background is the yielded single muons and
muon bundles. The background distributions are crucial in the development of the event
selection. However, simulating the full chain of air shower with CORSIKA is very compu-
tationally expensive. After applying the event selection (c.f. Chapter 3) on the simulation
and experimental datasets, the background rate is very low. Using CORSIKA simulation
to test the background rejection rate is not practical. Therefore a less time-consuming
simulation is used in this stage.

At the final level of the most analyses focused on neutrinos, the major background is
single muons. MuonGun is the simulation that injects single muons at the edge of the
detector with the production rate calculated from CORSIKA. Without having to run the
full air shower simulation, MuonGun can simulate single muons at a much faster rate. It
needs to be kept in mind that even though MuonGun simulation works well at the final
level to describe the data, its distribution fails to match the data at earlier levels because
it doesn’t have the muon bundles.
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Chapter 3

Event Selection

The major background for this analysis is muons induced by cosmic rays when entering
the atmosphere. IceCube detects these muons at a relatively much higher rate of 2.7
kHz [76], and several hundred atmospheric neutrinos per day [86]. Twenty-five online
filters are designed for di↵erent physics analysis purposes and run at the South Pole.
They reduce the triggered event rate to ⇠ 15% in order to accommodate the bandwidth
of the satellite transformation while the rest of the data are kept on tape at the South
Pole and shipped to the North annually [76]. In this analysis, we are interested in the
cascade-like events for their good energy resolution, therefore the cascade level2 online
filter is chosen(c.f. Sec. 3.1). Due to the limited computational power at the South Pole,
the online filters can only perform simple direction and energy reconstructions. After the
data are transmitted to the North, an o✏ine filter - the cascade level3 filter (c.f. Sec. 3.2)
is run on the data to further select the cascade-like events and compute variables that
will be used for the final selection. The online and o✏ine filters are designed and run by
the collaboration to provide a starting point for analyses that use this kind of events.

Starting from the cascade level3 single contained branch (c.f. Sec. 3.2), we develop event
selections that target the cascade-like events at the high energies (above 60 TeV). Only
10% of the experimental data is used to develop unbiased event selections. This 10% of
the experimental data will be referred to as ”burn sample” in the following content. Only
after the event selection is developed, the rest 90% of the experimental data can be viewed
by the analyzer. The rest 90% of the experimental data will be referred to as ”unblinded
sample” in the following content. The procedure of viewing the unblinded sample is called
”unblinding” in the IceCube Collaboration. This analysis uses five years of IceCube data
from 2011 to 2015. The 2011 data analysis utilizes the event selection from Ref. [87]. The
2012-2015 data was unblinded using the event selection developed with the burn sample
of the 2012-215 data and the 100% of 2011 data. The 100% 2011 unblinded data provides
enough statistics to develop the event selections without biasing the new 2012-2015 event
selection. The event selection developed here has achieved a 20% increase in the signal
e�ciency compared to the event selection from Ref. [87]. Eventually, the 2011 final level
sample from Ref. [87] and the 2012-2015 final level sample developed here are combined
with the 2012-2015 final level sample selected using the event selection from Ref. [88],
which targets the energy range below 60 TeV reconstructed energy. Both data sets are
used in this analysis to measure the neutrino interaction cross section.
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3.1 Cascade Level2

3.1.1 Cascade Level2 Filter Passing Rate

The cascade level2 filter is one of the online filters run at the South Pole after the trigger
level. The filter settings change at most once a year. In the data collection period of this
analysis, there are three di↵erent settings of the cascade level2 filter. The 2011 filter is
applied on the 2011 data, the 2012 filter is applied on the 2012 data, while the 2013 filter
is applied on the 2013-2015 data. When the filters are designed, the filter performances
are studied on Monte Carlo simulations. ⌫e simulation generated with the NuGen is
used for the estimation of the signal passing rate for the filters. The passing rate of the
astrophysical neutrinos is estimated using a single power law

�astro = �0 ⇥ (E⌫/100TeV)
�� (3.1)

where � = 2 and �0 is a normalization factor that is dataset-specific . The acceptance
rate of the atmospherical neutrinos is estimated using the weight calculated with the
Honda model [28]. The acceptance rate for the 2011,2012 and 2013 cascade level2 filter
is shown in Table 3.1. The numbers in the table come from the IceCube internal Trigger
Filter Transmission (TFT) proposals (Ref. [89], [90], [91]).

Year Corsika E
�2
⌫e Atm. ⌫e(Honda)

2011 1.1 % 84 % 51 %

2012 1.29 % 88.7 % 71.7 %

2013 1.34 % 89.3 % 70.8 %

Table 3.1: The 2011, 2012, and 2013 cascade level2 filter acceptance rate for astro-
physical neutrinos, atmospherical neutrinos and atmospherical muons (Ref. [89], [90],
[91]).

Figure 3.1 shows the cascade level2 rate of every run in the data taking period of May
2011 to May 2015. The x-axis is the Modified Julian Date (MJD) when the run was
started, scaled to the year of 2013 for comparison. Every data point represents a run
which is the unit of IceCube data collection. A run typically lasts 8 hours. The color
of the points corresponds to di↵erent detector years. Every detector year begins around
May of each calendar year and ends around May of the next calendar year.

As shown in Fig. 3.1, the cascade level2 rate for each detector year is not flat. At this
filter level, the data is dominated by the atmospheric muons. The production of the
atmospheric muons is closely correlated with the condition of the atmosphere. In May,
June, and July, the antarctic winter, the atmosphere above the South Pole is less dense,
which leads to fewer muon productions compared to the antarctic summer (December,
January, February). This results in the seasonal fluctuation of the cascade level2 rate.
At this filter level, the data is in equivalent to the CORSIKA prediction. Table 3.1 shows
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Figure 3.1: The cascade level2 rate of every run between May 2011 to May 2015 vs.
their MJD scaled to 2013.

that in 2012 and 2013, the cascade level2 filter has a higher passing rate for CORSIKA
and Fig. 3.1 shows a higher rate in the experimental data of 2012-2015 compared to
2011. This di↵erence among the data from di↵erent years only exists in the background
dominated level. In Sec. 3.5, we will show that at the final level where the background
contribution to the data sample is less than 10%, the rate among the data from di↵erent
years are consistent, therefore it is possible to use the simulation from one year (instead
of di↵erent simulation datasets for every year) in the following parts of this analysis.

3.1.2 Experimental Data Good Runs

After the cascade level2 filter, we selected ”good runs” for the higher level filters. Only
runs with all 86 strings in the configuration are selected, and rare outliers were removed.
The cascade level2 rate vs. RunID plots for the 2012-2015 data before and after the rare
outlier removal are shown in Fig. 3.2. The RunID correlates with the time the run took
place, therefore the plot shows a similar seasonal fluctuation as in Fig. 3.1. The 2011 run
cleaning was done in Ref. [87].

In summary, 32 runs corresponding to 26.3 hours of the data collection time were removed
as outliers from 2012-2015. After the rare outlier removal, the livetime of the data for
individual years used in this analysis in shown in Table 3.2.
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Figure 3.2: The cascade level2 rate vs. RunID for 2012 (top) - 2015 (bottom), before
(left) and after (right) the rare outlier removal.
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90% [Day] 10% (burn sample) [Day] Total [Day]

2011 301.47 31.04 332.51

2012 296.70 32.64 329.34

2013 316.96 33.67 350.63

2014 325.40 34.33 359.73

2015 321.22 36.54 357.76

Total 1729.97

Table 3.2: 2011-2015 data livetime

3.2 Cascade Level3

The cascade level3 filter is one of the o✏ine filters that are implemented in the North
(Wisconsin IceCube Particle Astrophysics Center) on the data after the transmission. It
is designed to further reduce the background rate while keeping a high neutrino signal
e�ciency. After the selection, the selected cascade-like events are classified into three
di↵erent categories: the single contained branch, the single un-contained branch, and
the coincidence (double) contained branch. An event can be classified as either a single
event or a coincident event depending on if it can be split into sub-events according to
its topology 1. The single events are further classified into two categories: the contained
branch and the un-contained branch according to the position of the first hit in the
cleaned pulse series of the event. If the depth of the first hit is within ± 430 m from the
center of the detector, it belongs to the single contained branch, otherwise, it belongs to
the single un-contained branch. The cascade level3 filter settings are updated at most
once a year. In the data collection season 2011-2015, the cascade level3 filter setting has
remained the same which means all the data used in this analysis are processed with the
2011 cascade level3 filter. The rate of the three cascade level3 branches and the passing
rate for the filter is shown in Table 3.3. The numbers in the table are from Ref. [92].

Corsika E
�2
⌫e Atm. ⌫e(Honda)(E⌫ > 1TeV)

L2 Rate (Hz) 14.25 29.74 ⇥10�7 6.58 ⇥10�5

L3 Rate (Hz) 0.159 14.26 ⇥10�7 2.59 ⇥10�5

Passing Rate (L3/L2) 1.1% 47.9% 39.4%

L3 Single Cont. Rate (Hz) 0.103 9.63 ⇥10�7 2.39 ⇥10�5

L3 Single UnCont. Rate (Hz) 0.025 4.63 ⇥10�7 0.19 ⇥10�5

L3 Double Cont. Rate (Hz) 0.032 0.0037 ⇥10�7 0.00073 ⇥10�5

Table 3.3: Cascade level3 passing rate for the signal and the background. The num-
bers in the table are from Ref. [92]. Only the L3 single contained branch is used for
this analysis.

1When two hits are: 1. on the same string and not further than z DOMs apart; 2. the horizontal
distance between the hits is less than r meters; 3. happen within a time window, they are considered to
belong to the same sub-event.
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3.3 Level 4

In this analysis, the next level selection level4 (c.f. Sec. 3.3) is developed on the cascade
level3 single contained branch, due to the good energy resolution of the single contained
events. As shown in Table 3.3, after selecting the single contained branch of the cascade
level3, the sample is still dominated by the background (⇠ 104 more than the signal). An
event selection is developed based on the single contained branch of the cascade level3 to
provide a background free sample above the reconstructed energy 60 TeV while achieving
an ⇠ 80% signal e�ciency compare to the cascade level3 single contained branch.

The method of this event selection is a series of straight cuts. The cuts are developed with
IceCube 2013 neutrino (⌫e, ⌫µ, ⌫⌧ ) simulations generated with NuGen [82], and the 2011
background simulations generated by CORSIKA [85]. The fluxes used in the simulations
are:

• Conventional Neutrino Flux: The conventional atmospheric neutrinos are pro-
duced by charged pion and kaon decay. HKKMS06 [28] with corrections to account
for the knee in the cosmic-ray spectrum as well as the atmospheric self-veto e↵ect
[93] are used for the conventional flux calculation. A normalization factor of 0.85
[87] is also applied.

• Prompt Neutrino Flux: The prompt atmospheric neutrinos are produced by
heavier meson decay. ERS [94] with corrections to account for the knee in the
cosmic-ray spectrum as well as the atmospheric self-veto e↵ect [93] are used for the
prompt flux calculation. A normalization factor of 0.5 [87] is used to mimic the
latest theoretical prediction BERSS [29]. In the development of the event selection,
ERS is used instead of BERSS since the normalization factors and the astrophysical
neutrino flux spectrum index used in this event selection are calculated using ERS
[87]. After the event selection, a new fit is performed on the selected sample [88].
The rest part of this analysis will use the updated fit result from Ref. [88] and
BERSS for the prompt flux.

• Astrophysical Neutrino Flux A single, unbroken power-law (as shown in Eq.
3.1) with the normalization parameter= 2.3 and the spectrum index = 2.67 is
assumed [87].

• Atmospheric Muon Background (CORSIKA) Ref. [95] is used to calculate
the flux of the atmospheric muons.

The experimental data used for developing the cuts are 100% for the 2011 data and 10%
for the 2012-2015 data.

3.3.1 Variable Definition

The variables used in this event selection are defined as below:
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Monopod Variables

Reconstruction results of the 4-iteration Monopod [78] [65] cascade reconstruction are
used in this event selection. They consist of Monopod Energy, Monopod Z (depth) and
Monopod Zenith.

SPEFit Zenith

The reconstructed zenith angle from the 16-iteration SPEFit [96] reconstruction is used
in the event selection. The SPEFit is a fit-based reconstruction run at the cascade level3
assuming a track hypothesis. For track events, SPEFit has better zenith resolution than
Monopod.

Starting Track Charge

A full sky scan is performed to collect any out-going charge from the Monopod recon-
structed vertex that is disconnected from the cascade itself. If a muon is produced during
the interaction (⌫µ charged-current interaction or the decay of a tau lepton as the prod-
uct of a ⌫⌧ charged-current interaction), it will create a track leaving the vertex of the
interaction. This variable helps remove such background events.

Cascade Llh

The cascade log likelihood is the reduced log likelihood of the CascadeLlhVertexFit [79].
CascadeLlhVertexFit is a fit-based reconstruction run at the cascade level2 assuming a
cascade hypothesis, and the reduced log likelihood indicates how well the data fits to the
hypothesis.

Delay Time

Each event has a Monopod reconstructed vertex and a Monopod reconstructed vertex
time treco. The time of the first hit of DOMi is ti. For the cascade events, assuming the
reconstructed vertex is the interaction vertex, the first hits on the DOMs are from the
photons emitted from the reconstructed vertex. If there is no scattering in the ice, ti can
be calculated as:

ti = treco + di/cice, (3.2)

where di is the distance between the reconstructed vertex and the DOMi and cice is the
speed of light in ice.

In reality, there is scattering in the ice, therefore it takes longer than treco + di/cice for
the DOMi to receive the first hit. The di↵erence between the ti and treco + di/cice, is the
delay time of DOMi:
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dti = ti � treco � di/cice (3.3)

The delay time of an event is the smallest value among all the delay time of all DOMs
with hits.

DelayTime = min
i2all DOMswith hits

(dti) (3.4)

For a true signal cascade event, the reconstructed vertex is the interaction vertex. The
DelayTime should always be greater than or equal to zero due to causality. Since the
reconstruction can only recover the interaction vertex within a limited resolution, small
negative deviations can occur. For a background track event, instead of photons emitting
from one interaction vertex, the photons are emitted along the track the muon travels.
Therefore, hits in some DOMs happen before the reconstructed vertex time. This leads
to a small negative DelayTime value.

TimeSplitPosition

The mean time is defined as the charge-weighted mean time over all the pulses in the
pulses series.

tmean =

P
i2pulse series

Qi ⇥ ti

P
i2pulse series

Qi
(3.5)

where Qi is the charge of pulse i and ti is the time of pulse i. The pulse series is then split
into two halves. The first half contains pulses that occur before the mean time and the
second half contains pulses that occur after the mean time. The CascadeLlhVertexFit
reconstruction is run on each half separately. The distance between the two reconstructed
vertices of the two halves is the TimeSplitPosition.

For a true signal cascade event, the photons are emitted from the interaction vertex in
all directions. The time split should separate the pulse series of a cascade event into two
almost concentric spheres. Therefore the TimeSplitPosition of a cascade event should be
small. For a background track event, the photons propagate in one direction, resulting in
an elongated shape. The time split would cut the track into two no-overlapping halves,
therefore the TimeSplitPosition of a track event ends up being large.

Qtot HLC

Hard Local Coincidence (HLC) hits occur when two of the neighboring or next-to-nearest
neighboring DOMs are both hit by photons within a time window of±1 µs [76]. Qtot HLC
is the total charge of the pulse series that only contains HLC hits (excluding the hits on
Deep Core DOMs), and it is correlated with the deposited energy of the interaction.
Choosing HLC hits will largely eliminate noise hits. Deep Core has a much denser DOM

48



distribution compared to the rest of IceCube, which means the same amount energy
deposited will result in a higher total charge among Deep Core DOMs than the normal
IceCube DOMs. Taking the charges of the Deep Core DOMs into account would cause a
bias in its correlation with the deposited energy, therefore they are excluded.

MaxDomChargeOM

The MaxDomChargeOM is the DOM number of the DOM that sees the most of the light
in the event. In a cascade event, such DOM should be close to the interaction vertex.

DepthofFirstHit

The DepthofFirstHit is the depth of the first hit in a cleaned pulse series. The depth of
the first hit will be closer to the reconstructed vertex for a cascade event than a track
event.

Fig. 3.3 shows the distribution of the data and the Monte Carlo at the cascade level3
single contained branch in di↵erent variables. In the plots, Monte Carlo simulations
include the conventional atmospheric neutrino flux, the prompt atmospheric neutrino
flux, the astrophysical neutrino flux (c.f. 3.3), and cosmic-ray muon background. As
shown in these plots, the data is dominated by the background at the high energy range
(Ereco > 60 TeV), and not very well described by the Monte Carlo (shown in the top-left
plot in Fig. 3.3).

3.3.2 Level 4A: Polygon Cut

The cascade events that happen at the edge of the detector are harder to reconstruct and
have a poor energy resolution. There is also higher background contamination at the edge
of the detector. Hence it is important to implement a containment cut. The containment
cut in the cascade level3 is based on the position of the first hit in a cleaned pulse series of
an event. Due to the large data rate at level2, the hit-based cut is e↵ective in eliminating
the obvious background, but not su�cient by itself. To further ensure the selected events
are contained events, we introduce a cut on the Polygon containment variable. This cut
selects events with the Monopod reconstructed vertex within the IceCube polygon. The
distribution of the polygon containment variable is shown in Fig. 3.4. The selection
criteria for this level is:

Polygon Containment == 1 (3.6)

The rates for data and simulations after the level4 A cut are shown in Table 3.4, in
comparison with the previous level - Level3 SC 2.

2The rate of the MC at Level3 SC is di↵erent from the rate of the MC at level3 SC in Table 3.3 due
to the di↵erence in the MC dataset used in calculating these rates.
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Figure 3.3: Variable distributions for the data and the Monte Carlo at the cascade
level3 single contained branch. From the top to the bottom, the left to the right are:
Monopod Energy, Monopod Z, cos(Monopod Zenith), Starting Track Charge, Cscd Llh,
Delay Time, Time Split Position, Qtot HLC, MaxDomChargeOM, and Depth First Hit.
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Figure 3.4: The Polygon Containment distribution for the data and the Monte Carlo
at the cascade level3 single contained branch.

Level3 SC [mHz] Level 4A [mHz] L 4A/ L3 SC

Data 152.02 ± 0.06 116.63 ± 0.05 76.7%

CORSIKA 129.12 ± 0.54 104.31 ± 0.50 80.8%

NuMu (conv) 0.2387 ± 0.0005 0.2234 ± 0.0004 93.6%

NuE (conv) (5.039 ± 0.005) ⇥10�2 (4.842 ± 0.005 ) ⇥10�2 96.1%

NuMu (astro) (5.718 ± 0.008) ⇥10�3 (5.338 ± 0.008) ⇥10�3 93.4%

NuE (astro) (1.691 ± 0.001) ⇥10�2 (1.624 ± 0.001 ) ⇥10�2 96.0%

NuTau (astro) (1.188 ± 0.002) ⇥10�2 (1.139 ± 0.002) ⇥10�2 95.9%

NuMu (prompt) (4.422 ± 0.008) ⇥10�4 (4.111 ± 0.007 ) ⇥10�4 93.0%

NuE (prompt) (1.4154 ± 0.0009) ⇥10�3 (1.3564 ± 0.0009) ⇥10�3 95.8%

Sum MC 129.44 ± 0.54 104.62 ± 0.50 80.8%

Table 3.4: The rate of the data and the Monte Carlo at the level3 single contained
branch and level4 A.

3.3.3 Level 4B: Monopod Z Cut

The level4 B cut is used to further constrain the containment requirement. The position
of the center of the detector is at (xc, yc, zc) = (0 m, 0 m, 0 m). The detector covers
the depth from - 500 m to + 500 m. The distribution of Monopod reconstructed depth
(z) after the level 4A cut for the data and the Monte Carlo is shown in Fig. 3.5. The
selection criteria for this level is:
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Figure 3.5: Monopod Z distribution for the data and the Monte Carlo at level 4A.

|Monopod z| < 450m (3.7)

The events with 450< |Monopod z| <500 are considered ”partially contained” events.
Their vertex is within the detector volume, but not the entire event. A dedicated event
selection [97] is developed to select partially contained neutrinos to enhance the e↵ective
area in the very high energy range. In this analysis, we’ll only focus on fully contained
events.

The rate for data and simulations after the level 4B are shown in Table 3.5, in comparison
with the previous level - level 4A.

3.3.4 Level 4C: Qtot HLC Cut

As described in Sec. 3.3.1, Qtot HLC is the total charge of the HLC hits in a cleaned
pulse series. The higher the total charge, the more energetic the event is. Therefore, it
should be positively correlated with the reconstructed energy. As shown in Fig. 3.6 (top
left and right), in the Monopod reconstructed energy vs. Qtot HLC distribution of the
background events (Corsika) and the data, which is background dominated at this level,
there is a considerable amount of events with a low total charge but a relatively high
reconstructed energy. These events are mis-reconstructed events and should be removed
from the final level sample. To best determine the boundary for applying the cut, a
quantity called ”signal significance” is introduced. It is calculated using the equation
below:
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Level 4A [mHz] Level 4B [mHz] L 4B/L 4A

Data 116.63 ± 0.05 113.74 ± 0.05 97.5%

CORSIKA 104.31 ± 0.50 102.42 ± 0.49 98.2%

NuMu (conv) 0.2234 ± 0.0004 0.2205 ± 0.0004 98.7%

NuE (conv) (4.842 ± 0.005 ) ⇥10�2 (4.794 ± 0.005) ⇥10�2 99.0%

NuMu (astro) (5.338 ± 0.008) ⇥10�3 (5.256 ± 0.008) ⇥10�3 98.5%

NuE (astro) (1.624 ± 0.001 ) ⇥10�2 (1.605 ± 0.001) ⇥10�2 98.8%

NuTau (astro) (1.139 ± 0.002) ⇥10�2 (1.126 ± 0.002) ⇥10�2 98.8%

NuMu (prompt) (4.111 ± 0.007 ) ⇥10�4 (4.046 ± 0.007) ⇥10�4 98.4%

NuE (prompt) (1.3564 ± 0.0009) ⇥10�3 (1.3398 ± 0.0009) ⇥10�3 98.8%

Sum MC 104.62 ± 0.50 102.72 ± 0.49 98.2%

Table 3.5: The rate of data and Monte Carlo at level4 B in comparison with the
previous level (level4 A).

Signal Significance =
Nsignalp

Nsignal +Nbackground

(3.8)

The signal significance distribution in the Monopod reconstructed energy vs. the total
charge grid is shown in Fig. 3.6 (bottom right).

The level 4C cut is designed to remove the events whose reconstructed energy is much
higher than the total charge. However, it is undesirable to remove events with a high
total charge nevertheless. Therefore the selection criteria for this level is chosen as below:
it checks if the reconstructed energy and the total charge are positively correlated unless
the total charge is higher than 1000 Photo Electron (P. E.).

log
10
(Monopod Energy/GeV) < log

10
(Qtot HLC/P.E.) + 1.6 or Qtot HLC > 1000 P.E.

(3.9)

Note that the selection only removes events with a low total charge and high reconstructed
energy, but not events with a high total charge that are mistakenly reconstructed to a
lower energy. This is because the occurrence of the latter case is much lower compared
to the former case, and in principle, the events with a high total charge should be kept.

The selected area is indicated with the blue lines in Fig. 3.6. Fig. 3.6 (top left and right)
shows that this cut removes mis-reconstructed events in the background sample. At the
mean time, the removed region has a much lower signal significance compared to the kept
region (shown in Fig. 3.6 (bottom right)).
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Figure 3.6: Monopod Energy vs. Qtot HLC at level 4B: data (top left), Corsika
(top right), and NuGen (bottom left). The bottom right plot is the signal significance
distribution in Monopod Energy vs. Qtot HLC grid. The blue arrow indicates the area
being kept in the level 4C cut.

The rate for the data and the simulations after the level 4C are shown in Table 3.6, in
comparison with the previous level - level 4B.

3.3.5 Level 4D: TimeSplitPosition Cut

As discussed in Sec. 3.3.1, the TimeSplitPosition for a cascade event is much smaller than
it is for a track event, therefore it is better to keep events with a small TimeSplitPosition.
By observing the 2-D histogram of the Monopod reconstructed energy and the TimeS-
plitPosition for signal events (the bottom left plot in Fig. 3.7), one could see that the two
variables have a negative correlation. The design of the level 4D cut follows the similar
idea of the level 4C cut: remove the events that don’t follow the negative correlation
between the Monopod reconstructed energy and the TimeSplitPosition and keep events
with a small TimeSplitPosition ( 60) nevertheless. The cutting criteria for level4 D are
:
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Level 4B [mHz] Level 4C [mHz] L 4C/L 4B

Data 113.74 ± 0.05 111.16 ± 0.05 97.7%

CORSIKA 102.42 ± 0.49 100.86 ± 0.49 98.5%

NuMu (conv) 0.2205 ± 0.0004 0.2180 ± 0.0004 98.9%

NuE (conv) (4.794 ± 0.005) ⇥10�2 (4.752 ± 0.005) ⇥10�2 99.1%

NuMu (astro) (5.256 ± 0.008) ⇥10�3 (5.133 ± 0.007) ⇥10�3 97.6%

NuE (astro) (1.605 ± 0.001) ⇥10�2 (1.561 ± 0.001)⇥10�2 97.2%

NuTau (astro) (1.126 ± 0.002) ⇥10�2 (1.097 ± 0.001) ⇥10�2 97.4%

NuMu (prompt) (4.046 ± 0.007) ⇥10�4 (3.935 ± 0.007) ⇥10�4 97.2%

NuE (prompt) (1.3398 ± 0.0009) ⇥10�3 (1.3005 ± 0.0009) ⇥10�3 97.1%

Sum MC 102.72 ± 0.49 101.16 ± 0.49 98.5%

Table 3.6: The rate of the data and the Monte Carlo at level 4C in comparison with
the previous level (level 4B).

log
10
(Monopod Energy/GeV) < (�0.01⇥ TimeSplitPosition/m+ 1.6) or TimeSplitPosition  60m

(3.10)

The rate for the data and the simulations after the level 4D cut are shown in Table 3.7,
in comparison with the previous level - level 4C.

Level 4C [mHz] Level 4D [mHz] L 4D/L 4C

Data 111.16 ± 0.05 87.84 ± 0.05 79.0%

CORSIKA 100.86 ± 0.49 82.25 ± 0.44 81.5%

NuMu (conv) 0.2180 ± 0.0004 0.1800 ± 0.0004 82.6%

NuE (conv) (4.752 ± 0.005) ⇥10�2 (3.889 ± 0.005) ⇥10�2 81.8%

NuMu (astro) (5.133 ± 0.007) ⇥10�3 (4.438 ± 0.007) ⇥10�3 86.5%

NuE (astro) (1.561 ± 0.001)⇥10�2 (1.378 ± 0.001) ⇥10�2 88.3%

NuTau (astro) (1.097 ± 0.001) ⇥10�2 (0.966 ± 0.001) ⇥10�2 88.0%

NuMu (prompt) (3.935 ± 0.007) ⇥10�4 (3.387 ± 0.007) ⇥10�4 86.1%

NuE (prompt) (1.3005 ± 0.0009) ⇥10�3 (1.1578 ± 0.0008) ⇥10�3 89.0%

Sum MC 101.16 ± 0.49 82.50 ± 0.44 81.6%

Table 3.7: The rate of data and Monte Carlo at level 4D in comparison with the
previous level (level 4C).
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Figure 3.7: Monopod Energy vs. TimeSplitPosition at level 4C: data (top left), Cor-
sika (top right), and NuGen (bottom left). The bottom right is the signal significance
distribution in Monopod Energy vs. TimeSplitPosition grid. The blue arrow indicates
the area being kept in the level 4D cut.

3.3.6 Level 4E: Delay Time Cut

The DelayTime of an event is the minimum delay time of all the DOMs that see hits in
an event. A DOM’s delay time is defined as the time di↵erence between the first hit seen
in the DOM and the time a photon takes to directly travel from the reconstructed vertex
to the DOM subtracted. If the cascade hypothesis is true, the DelayTime of an event is
always positive. Otherwise, it is negative (c.f. Sec. 3.3.1). Even though by design this
variable has a great separation power between the cascade events and the track events,
the imperfect performance of the pulse cleaning process would lead to an unexpected
value of the DelayTime.

In the 2011 data sample, we observed several cases where the events look like cascade
events in the event display and are suggested as cascade events by all the other variables,
but their DelayTime values are all small negative numbers. In these events, some hits
were found much earlier than in the cascade itself. The dis-connectivity in both space
and time from the cascade events suggests these hits are not part of the cascades, but
just noise hits. The noise hits not being removed from the pulses series leads to a small
negative value of the DelayTime of these events.
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Figure 3.8: The depth resolution of the Monopod reconstruction for cascade events.
The resolution is calculated using the NuE simulation at the final level with the recon-
structed energy greater than 1TeV.

Since no better pulse-cleaning algorithm is available, extra caution needs to be taken
when applying cuts on the DelayTime. In this event selection, the DelayTime cut is only
applied to the events that are likely to be track events indicated by the other variables.
The criteria of an event being indicated as a track event are listed as below:

• Monopod Energy  600 TeV

• Down-going:
cos(Zenithreco) � 0.2 (3.11)

The choice of the zenith reconstruction depends on whether the event is more
cascade-like or more track-like. The Monopod reconstructed zenith is used for the
former case and the SPEFit reconstructed zenith is used for the latter. As shown
in Fig. 3.8, the cascade events have a good depth resolution (�z ⇠ 3 m). The depth
of the first hit for a cascade event should be the depth of its vertex. If the following
condition holds, it is unlikely to be a cascade event:

|DepthFirstHit�Monopod z| > 15 m (3.12)

Therefore, if Eq. 3.12 holds the SPEFit reconstructed zenith is used for the judge
of the direction of the event, otherwise, the Monopod reconstructed zenith is used.

• The event falls in the limbo between the signal and the background: if 2
out of 3 of the following conditions are fulfilled:

– CascadeLlh > 7.5

– TimeSplitPosition > 40 m

– |DepthFirstHit�Monopod z| > 15 m,
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Figure 3.9: Monopod Energy vs. DelayTime at level 4D: data (top left), Corsika
(top right), and NuGen (bottom left). The bottom right plot is the signal significance
distribution in Monopod Energy vs. DelayTime grid. The blue arrow indicates the
area being kept for the level 4E cut.

We applied the cut on the DelayTime as described below:

log
10
(Monopod Energy/GeV) < 4⇥ 10�3 ⇥DelayTime/m+ 5.6 or DelayTime > �200 m

(3.13)

The 2D distributions of the Monopod Energy and the DelayTime for the data and the
simulation, as well as the signal significance at level 4D, are shown in Fig. 3.9. The rate
for the data and the simulations after the level 4E are shown in Table 3.8, in comparison
with the previous level - level 4D.

3.3.7 Level 4F: MaxDomChargeOM Cut

The level 4F utilizes the MaxDomChargeOM variable, the DOM number of the DOM
contains the most of the charge in an event. When the DOM contains the most of the
charge is located at the top or at the bottom of the detector, it becomes harder to identify
if the event is a track or a cascade, thus the removal of such events. The optical modules
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Level 4D [mHz] Level 4E [mHz] L 4E/ L 4D

Data 87.84 ± 0.05 78.58 ± 0.04 89.4%

CORSIKA 82.25 ± 0.44 74.85 ± 0.42 91.0%

NuMu (conv) 0.1800 ± 0.0004 0.1788 ± 0.0004 99.3%

NuE (conv) (3.889 ± 0.005) ⇥10�2 (3.881 ± 0.005) ⇥10�2 99.8%

NuMu (astro) (4.438 ± 0.007) ⇥10�3 (4.382 ± 0.007) ⇥10�3 98.7%

NuE (astro) (1.378 ± 0.001) ⇥10�2 (1.373 ± 0.001) ⇥10�2 99.6%

NuTau (astro) (0.966 ± 0.001) ⇥10�2 (0.962 ± 0.001) ⇥10�2 99.6%

NuMu (prompt) (3.387 ± 0.007) ⇥10�4 (3.356 ± 0.007) ⇥10�4 99.1%

NuE (prompt) (1.1578 ± 0.0008) ⇥10�3 (1.1537 ± 0.0008) ⇥10�3 99.6%

Sum MC 82.50 ± 0.44 75.10 ± 0.42 91.0%

Table 3.8: The rate of data and Monte Carlo at level 4E in comparison with the
previous level (level 4D).

on the IceCube strings (String Number < 79) and the DeepCore strings (String Number
� 79)are numbered from the top to the bottom as 1-60. While the top DOMs of the
IceCube strings are at the edge of the detector, due to the location of the DeepCore
strings [76], their top DOMs are well contained in the detector. Therefore the cutting
criteria for the level 4F cut is described as below:

Keep

8
><

>:

MaxDomChargeOM < 58, if String No. � 79.

5  MaxDomChargeOM < 58, if String No. < 79 and Monopod E � 50 TeV.

9  MaxDomChargeOM < 58, if String No. < 79 and Monopod E < 50 TeV.
(3.14)

The distribution of the maxDomChargeOM at the level 4E is shown in Fig. 3.10. After
the cut is applied, the rate for the data and the simulations are shown in Table 3.9, in
comparison with the previous level - level 4E.

3.3.8 Level 4G (Final Level): Starting Track Charge Cut

The starting track events consist of a hadronic cascade and a track starting from the origin
of the cascade. If the track is generated within the cascade, its energy will be smaller
then the cascade’s energy. Therefore, compared to a track event, a starting track event
appears to be more like a cascade event than a track event in the variable distributions.
To distinguish the starting tracks from the real cascades, the Starting Track Charge
variable is used. When a cascade event is very energetic, with many photons propagating
outwards, some of the photons from the shower part might get mistaken as photons from
a starting track. To prevent losing highly energetic events, the cut on the Starting Track
Charge has a limit on the Monopod energy: when the Monopod energy is higher than
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Figure 3.10: The MaxDomChargeOM distribution for the data and the Monte Carlo
at level 4E.

Level 4E [mHz] Level 4F [mHz] L 4F/L 4E

Data 78.58 ± 0.04 73.96 ± 0.04 94.1%

CORSIKA 74.85 ± 0.42 72.84 ± 0.42 97.3%

NuMu (conv) 0.1788 ± 0.0004 0.1767 ± 0.0004 98.8%

NuE (conv) (3.881 ± 0.005) ⇥10�2 (3.842 ± 0.005 ) ⇥10�2 99.0%

NuMu (astro) (4.382 ± 0.007) ⇥10�3 (4.309 ± 0.007) ⇥10�3 98.3%

NuE (astro) (1.373 ± 0.001) ⇥10�2 (1.354 ± 0.001) ⇥10�2 98.6%

NuTau (astro) (0.962 ± 0.001) ⇥10�2 (0.948 ± 0.001) ⇥10�2 98.5%

NuMu (prompt) (3.356 ± 0.007) ⇥10�4 (3.294 ± 0.006) ⇥10�4 98.2%

NuE (prompt) (1.1537 ± 0.0008) ⇥10�3 (1.1367 ± 0.0008) ⇥10�3 98.5%

Sum MC 75.10 ± 0.42 73.08 ± 0.42 97.3%

Table 3.9: The rate of the data and the Monte Carlo at level 4F in comparison with
the previous level (level 4E).

600 TeV, the cut is not applied. The selection criteria for the level 4G cut is described
as below:

log
10
(Monopod Energy/GeV) > 0.1⇥ StartingTrackCharge/P.E.+ 4.4

or StartingTrackCharge  4 P.E.

or Monopod Energy > 600 TeV
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Figure 3.11: Monopod Energy vs. Starting Track Charge at level 4F: data (top left),
Corsika (top right), and NuGen (bottom left). The bottom right plot is the signal
significance distribution in Monopod Energy vs. Starting Track Charge grid. The blue
arrow indicates the area being kept for the Level4 F cut.

The distribution of the Starting Track Charge variable at the level 4F is shown in Fig.
3.11. After the cut is applied, the rate for the data and the simulations are shown in
Table 3.10, in comparison with the previous level - level 4F. The agreement in the rate
of the data and the Monte Carlo results in a significant improvement compared to the
starting point of the event selection (level 3SC).

The distributions of variables are shown in Fig. 3.12. In the top left plot (the recon-
structed energy distribution), the agreement between the data and the Monte Carlo events
become much better compared to the cascade level3, and the sample is background free
above 60 TeV.

3.4 Signal E�ciency, Background Rejection and Ef-
fective Area

To study the event selection’s e↵ectiveness, three variables are used: the signal e�ciency,
the background rejection and the e↵ective area. In this section we will compare these
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Figure 3.12: Variable distributions for the data and the Monte Carlo at the final level.
From the top to the bottom, the left to the right are: Monopod Energy, Monopod
Z, cos(Monopod Zenith), Starting Track Charge, Cscd Llh, Delay Time, Time Split
Position, Qtot HLC, MaxDomChargeOM, Depth First Hit.
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Level 4F [mHz] Level 4G (final level) [mHz] L 4G/L 4F

Data 73.96 ± 0.04 72.95 ± 0.04 98.6%

CORSIKA 72.84 ± 0.42 71.92 ± 0.42 98.7%

NuMu (conv) 0.1767 ± 0.0004 0.1635 ± 0.0004 92.5%

NuE (conv) (3.842 ± 0.005 ) ⇥10�2 (3.839 ± 0.005) ⇥10�2 99.9%

NuMu (astro) (4.309 ± 0.007) ⇥10�3 (3.821 ± 0.006) ⇥10�3 88.7%

NuE (astro) (1.354 ± 0.001) ⇥10�2 (1.351 ± 0.001) ⇥10�2 99.8%

NuTau (astro) (0.948 ± 0.001) ⇥10�2 (0.938 ± 0.001) ⇥10�2 98.9%

NuMu (prompt) (3.294 ± 0.006) ⇥10�4 (2.866 ± 0.006) ⇥10�4 87.0%

NuE (prompt) (1.1367 ± 0.0008) ⇥10�3 (1.1345 ± 0.0008) ⇥10�3 99.8%

Sum MC 73.08 ± 0.42 72.15 ± 0.42 98.7%

Table 3.10: The rate of the data and the Monte Carlo at level 4G (final level) in
comparison with the previous level (level 4F).

three variables for the event selection developed in this analysis versus the one for the
cascade 2yr analysis [87] 3.

3.4.1 Signal E�ciency and Background Rejection

The signal e�ciency is defined as the signal rate at the final level divided by the rate at the
starting level (the cascade level 3SC). The signal e�ciency in the Monopod reconstructed
energy bins is shown in the top two plots and the bottom left plot of Fig. 3.13. Figure
3.13 shows the e�ciency of this event selection in comparison with the event selection
of the cascade 2yr analysis. For the main signal of these two analyses: electron and tau
neutrinos, this event selection is ⇠ 30% higher in the signal e�ciency than the cascade
2yr analysis in all energy ranges. Note that the cascade 2yr analysis has a very low
e�ciency below 10 TeV. This is because it is designed to select relatively high energy
events (above 10 TeV), and it has a cut on the reconstructed energy from a di↵erent
cascade reconstruction at 10 TeV. For muon neutrinos, the signal e�ciencies for the two
event selections are similar.

The background rejection is reflected by the rate of the passing background rate at the
final level. The rate of the background simulation CORSIKA at the final level for the
two selections and at the cascade level3 single contained branch are shown in the bottom
right plot of Fig. 3.13. The plot shows that the cascade 2yr analysis is more e�cient at
reducing background, however above 60 TeV both event selections have no background.
Since this event selection targets a reconstructed energy range above 60 TeV and the

3The cascade 2yr analysis is an analysis using the cascade sample in 2010-2011 IceCube data to
measure the astrophysical neutrino flux. A dedicated event selection targeting the cascade sample was
developed for the analysis and was the most up-to-date cascade event selection before this one. The
event selection developed in this analysis aims to gain more signal e�ciency compare to the cascade 2yr
analysis.
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Figure 3.13: The rate at the final level of this selection, the final level of the cascade
2yr analysis and the cascade level3 single contain branch for the simulations in the
Monopod reconstructed energy bins. Top left: NuE, top right: NuTau, bottom left:
NuMu, bottom right: CORSIKA. The bottom half of every plot is the passing rate of
the two selections.

reconstructed energy range of below 60 TeV is covered by the dedicated low energy event
selection developed in Ref. [88], the higher passing rate of the background below 60 TeV
in this event selection is not a concern.

3.4.2 E↵ective Area

The detection volume for the IceCube detector is fixed. However, di↵erent event selections
will result in di↵erent e�ciencies and di↵erent fiducial volumes for the accepted neutrino
events. To better compare the selection e�ciencies and to enable a comparison with other
detectors, the e↵ective area is introduced. The e↵ective area is the size of an area which
is 100% e�cient for detecting neutrinos. It is evaluated using the NuGen simulation [82].

In reality, most of the neutrinos pass through the detector without any interactions and
the astrophysical neutrino flux has a relatively soft index [88]. It would be ine�cient
to simulate neutrinos in the same manner. In the NuGen simulation, neutrinos are
generated with a harder spectrum so that the higher energy neutrinos are well represented
and all the neutrinos are forced to interact inside the detector. Each neutrino is also
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assigned a corresponding weight according to the interaction cross section. This weight
is called OneWeight. With OneWeight, the physical rates of the neutrinos interacted in
the detector can be recovered. OneWeight is calculated using the formula below:

OneWeight =
Pint

E��
·
Z Emax

Emin

E
��
dE · Area · ⌦[GeV · cm2 · sr], (3.15)

where Pint is the total interaction probability weight, E�� is the generated energy spec-
trum of neutrinos, Emin and Emax define the energy range of the neutrino generation,
Area is the generation surface, and ⌦ is the generation solid angle.

The e↵ective area is calculated using the equation below:

E↵ectiveArea = 10�4 ·OneWeight · 1

TotalGeneratedEvents
· 1

4⇡ · EnergyBinWidth
[m2]

(3.16)

where the EnergyBinWidth is the bin width of the energy bin whose e↵ective area is being
calculated. The e↵ective area is expressed in the unit of m2 and the unit of OneWeight
is cm2, therefore a factor of 10�4 is applied.

The e↵ective area of ⌫e, ⌫⌧ and ⌫µ for this event selection are shown in Fig. 3.14, in
comparison with the Cascade 2yr analysis event selection. Fig. 3.14 shows that for ⌫e

and ⌫⌧ , the e↵ective area of this event selection is at ⇠ 30% higher than the Cascade 2yr
analysis event selection, and for ⌫µ, it’s ⇠ 40% higher.

3.5 Cross Year Comparison

The data from each year in the 2011-2015 collection are compared. Table 3.11 shows
the rate of the 2011-2015 data at the final level for the whole energy range and for
the reconstructed energy range of above 60 TeV. The table shows that the event rates
are consistent within statistical uncertainties for all years. Figure 3.15 shows the variable
distributions for the five years separately, compared to the Monte Carlo simulation results.
The distribution plots show that the data from the five years are consistent for both the
event rates and the variable distributions. The consistency across years justified the use
of the Monte Carlo simulation from a single year (2013).

3.6 Merging with the Low Energy Event Selection

As stated at the beginning of this chapter, the event selection described in this dissertation
is designed to achieve a high signal e�ciency and a low background passing rate for the
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Figure 3.14: The e↵ective area of ⌫e (top), ⌫⌧ (bottom left) and ⌫µ ( bottom right)
for this event selection compared to the cascade 2yr analysis event selection.

reconstructed energy range above 60 TeV as shown in Fig. 3.13. For lower energy events,
a dedicated low energy (LE) event selection was developed and applied [88].

To reasonably compare the signal e�ciency of the LE event selection and the high energy
(HE) event selection developed in this thesis, the comparison is done in a low background
region. As shown in the middle plot in the third row in Fig. 3.12, the background
dominates the region of the total charge below 1000 P. E. Therefore, to compare the LE
and the HE event selection, an extra cut as below is applied.

Qtot HLC > 1000P. E. (3.17)

The comparison of the signal e�ciency and the background passing rate between the LE
and the HE selection after the cut on the total charge is applied is shown in Fig. 3.16.
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Figure 3.15: Variable distribution for the 2011 100% data, the 2012-2015 10% data
and the Monte Carlo at the final level. From top to bottom, left to right are Monopod
Energy, Monopod Z, cos(Monopod Zenith), Starting Track Charge, Cscd Llh, Delay
Time, Time Split Position, Qtot HLC, MaxDomChargeOM, Depth First Hit.
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Final Level (all) [mHz] Final Level (>60TeV) [µHz]

2011 (100%) 70.99 ± 0.05 453 ± 126

2012 (10%) 72.76 ± 0.16 709 ± 501

2013 (10%) 73.61 ± 0.16 1031 ± 595

2014 (10%) 73.81 ± 0.16 337 ± 337

2015 (10%) 73.22 ± 0.15 0

Table 3.11: The rate of the 2011 100% data and the 2012-2015 10% data at the final
level.

The plots show that below 60 TeV (indicated by the vertical black line in the plots),
the LE selection has a higher signal e�ciency and a lower background passing rate in
the region below 60 TeV, while the HE selection has a higher signal e�ciency and is
background free in the region above 60 TeV. To maximize the advantages of the two
event selections, the sample is separated into two parts: the LE selection is applied on
events with reconstructed energy below 60 TeV and the HE selection is applied on events
with reconstructed energy above 60 TeV. These two parts constitute the final sample for
this analysis.

The selection e�ciency of the LE and HE combined selection is shown in Fig. 3.17. The
plots show that the LE + HE selection has a ⇠ 20% higher signal e�ciency and a much
lower background passing rate compared to the cascade 2yr analysis. Fig. 3.18 also shows
that the e↵ective area of the LE + HE selection is least 20% larger than the cascade 2yr
analysis.

3.7 Unblinded Sample

With the demonstration of the data and the Monte Carlo agreement and the study of the
signal e�ciency and the background rejection rate, the event selection developed in this
dissertation is proven to be e↵ective. These cuts are applied on all events in 2012-2015
and the results are then ”unblinded”. After unblinding, we found 402 cascade events
with reconstructed energy above 10 TeV among which three events are above 1 PeV. The
three PeV events are the highest energy cascade events found in IceCube so far. Their
reconstructed energies are 2.00 PeV, 1.04 PeV, and 1.14 PeV. The event view of these
three events are shown in the top right, the bottom left, and the bottom right plot in
Fig. 3.21.

In the unblinded sample, we also found several events with the interaction vertices located
in the ”dust layer”. We will show that using the conventional cascade reconstruction
method (Monopod) on these events will lead to a bias in the reconstructed energy. In the
next section, we will discuss a special energy reconstruction developed for this analysis
using the boosted decision tree for events located in the dust layer.
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Figure 3.16: The rate of the final level of this selection, the final level of the LE
selection and the cascade level3 single contained branch for the simulations in the
Monopod reconstructed energy bins. Top left: ⌫e, top right: ⌫⌧ , bottom left: ⌫µ,
bottom right: cosmic-ray background (CORSIKA). The lower half of each plot is the
passing rate of the two selections as a function of the reconstructed energy. The vertical
black line is at the reconstructed energy of 60 TeV.

3.7.1 Dust Layer Events

The two most important parameters used to describe the optical properties of the ice
are the absorption coe�cient and the scattering coe�cient. The absorption coe�cient a
describes the average travel distance of a photon before the absorption (1/a), and the
scattering coe�cient b describes the average distance between the successive scatterings
(1/b) [69]. These two parameters of the glacial ice in which the IceCube detector is built,
to first order change with the increase of the depth of the ice.

Figure 3.19 shows the depth dependence of the absorption (left) and the scattering (right)
parameters. The black line comes from the SPICE LEA [98] 4 model which is used for the
Monte Carlo simulations. Both parameters have a spike between a depth of 2000 m to
2050 m. The area around the spike is called the ”dust layer”. It is caused by the volcanic
dust from the time that layer of the glacier was formed. Due to the short scattering

4SPICE LEA is the newer ice model compared to SPICE MIE. It has included the slight azimuthal
dependence of the ice properties in the model which yields a better description of the calibration data
compared to SPICE MIE.
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Figure 3.17: The rate of the final level of the LE + HE selection, the final level of
the Cascade 2yr analysis selection and the cascade level3 single contained branch for
the simulations in the Monopod reconstructed energy bins. Top left: ⌫e, top right: ⌫⌧ ,
bottom left: ⌫µ, bottom right: cosmic-ray background (CORSIKA). The lower half of
each plot is the passing rate of the two selections as a function of the reconstructed
energy. The vertical black line is at the reconstructed energy of 60 TeV.

and absorption distance in the dust layer, the photons are less likely to reach the DOMs
further away from the interaction vertex compared to the case when the same interaction
was to happen in the clearer layer of the ice.

With the spike in the scattering and absorption coe�cient, the reconstructed energy of
the events located in the dust layer is biased when they are reconstructed using the
Monopod reconstruction. The optical properties used in Monopod only correspond to
those from clean ice. Therefore the dust layer region is almost always removed in other
event selections. For example, the High Energy Starting Events (HESE) [56] is an analysis
based on a veto-based event selection that uses the dust layer as the veto region to ensure
the purity of the events located in the e↵ective volume of the detector at the cost of a
loss of some statistics from events located in the dust layer. One of the big advantages
of the event selection developed in this dissertation is that it includes the dust layer
in the e↵ective volume without losing the background free feature in the high energy
region. Keeping the dust layer significantly increases the signal e�ciency in the high
energy region. After unblinding, there are some interesting cascade events found in the
final sample that are not in the HESE sample [57], [99], [100]. Among these events, there
are five high-energy events located in the dust layer. The most energetic event is named
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Figure 3.18: The e↵ective area of ⌫e (top), ⌫⌧ (bottom left) and⌫µ (bottom right) for
the LE + HE selection, in comparison with the cascade 2yr analysis selection.

as ”Eurus”. It is an event detected on August 8th, 2013 with RunID: 122819 and Event
ID: 44356016. Some of its variables regarding the reconstructed energy are:

• Monopod Z = - 82 m

• Monopod Energy = 2.06⇥106 GeV

• Qtot HLC = 2047 P.E.

As shown in the right plot of Fig. 3.20, in order for an event to get a reconstructed energy
as 2 PeV, at least ten times more than 2000 P.E. of the total charge need to be observed
by the DOMs if the event occurred in the clear part of the ice. In the dust layer, as
shown in the left plot of Fig. 3.20, the total charges of the majority of the PeV events
are around a few thousand P. E. in the region of -85m < Monopod Z < -75m.
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Figure 3.19: The depth dependence of the absorption (left) and scattering (right)
parameters of the South Pole Ice. The parameters of two ice models are plotted:
SPICE MIE [69] (magenta) and SPICE LEA [98] (black). The figure is from Ref [98].

Figure 3.20: The Monopod reconstructed energy vs. the total charge for NuE sim-
ulation in the region of -85m < Monopod Z < -75m (left) and in the whole detector
(right).

The event display of ”Eurus” is shown in Fig. 3.21 (top left). It is in comparison with
the other three most energetic cascade events observed by IceCube so far: ”Bert” (1.04
PeV), ”Ernie” (1.14 PeV) [56], and ”BigBird” (2.00 PeV) [57]. The interaction vertices of
”Bert”, ”Ernie” and ”BigBird” are outside of the dust layer; therefore, much more charges
from these interactions are observed by the DOMs. In comparison, the total amount of
observed charge for ”Eurus” is much smaller due to the interaction vertex being located
in the dust layer.

The center of the detector is located at 1950 m in depth. The Monopod reconstructed
depth (Monopod Z) is in the detector coordination system. This means the reconstructed
interaction vertex of ”Eurus” is located at the depth of around 2032 m. As shown in Fig.
3.19, it is in the region where the absorption length and the scattering length are much
shorter than for the rest of the detector.
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Figure 3.21: The event display of ”Eurus” (top left), and ”BigBird” (top right),
”Bert” (bottom left), and ”Ernie” (bottom right). Except for ”Eurus”, ”BigBird”,
”Bert”, and ”Ernie” are located outside the dust layer with reconstructed energy of
2.00 PeV, 1.04 PeV, and 1.14 PeV respectively.

Since the dust layer region is ⇠ 10% of the whole detector, and the energy range of interest
is at the high end, the standard simulation datasets do not provide enough statistics to
study the energy resolution for these events. Therefore a dedicated simulation dataset is
generated. This dataset is generated with the SPICE 3.2 ice model which is the newest
generation of the ice model. The SPICE 3.2 model is fitted with more extensive LED
(”Flasher”) data. It uses a more refined method for adding corrections to the absorption
and the scattering coe�cients and provides a better description of the South Pole ice
properties compared to the SPICE LEA model [98]. In this simulation, only electron
neutrinos with neutrino energy of 500 TeV, 1 PeV, and 1.5 PeV are generated. The
injection depths are set to -65 m, -70 m, -75 m, and -80 m. In Fig. 3.22, the resolution of
this special simulation is plotted for di↵erent injection depths. As shown in the plot, the
events in the dust layer have a ⇠ 100% bias in energy reconstruction. This means the
deposited energy of ’Eurus’ is overestimated by the Monopod reconstruction. To account
for this bias and recover the true deposited energy, a machine learning algorithm called
the Gradient Boosted Decision Trees (GBDT) has been used [101].
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Figure 3.22: The energy resolution for the special NuE simulation injected at the
di↵erent depths in the dust layer.

3.7.2 Dust Layer Events Energy Reconstruction using Gradient
Boosted Decision Trees

Decision Tress - Regression

A regression task is to find a model f(X) to estimate y when X is given. When solving
such problems using decision trees, the variable space is partitioned into M di↵erent
regions R1, R2, ...RM , and in each region, a simple model (usually a constant) is fitted
[102]. Then the model f(X) can be expressed as

f(X) =
MX

m=1

cmI(X 2 Rm), (3.18)

where I(X 2 Rm) is an indicator function which equals to 1 when X 2 Rm, otherwise it
equals to 0.

A simple example of a 2D variable space partition is shown in Fig. 3.23. The variable
space is first split at X2 = s1. The region of X2 < s1 is further split at X1 = s2: when
X1 < s2, it’s region R1, otherwise it’s region R2. The region of X2 � s1 is further split at
X1 = s3: when X1 � s3, the region is R3, otherwise the region is split at X2 = s4: when
X2 < s4, it’s region R4, otherwise it’s region R5. The partition of the variable space is
shown in the left plot of Fig. 3.23. The right plot of Fig. 3.23 is the corresponding tree
diagram of the partition. The testing data will go through the conditions on each tree
node and be assigned to a certain tree leaf in the last layer. Each region is modeled with
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Figure 3.23: A demonstration of the decision tree algorithm. The left plot shows a
partition of the variable space. The right plot shows the corresponding decision tree of
the partition in the left plot.

a constant cm which will be the y estimation of the testing data that are assigned to this
region.

To build such a model, a training data set of N observations (Xi, yi) is needed. The best
way to estimate cm is to minimize the sum of the squared errors:

X

Xi2Rm

(yi � f(Xi))
2 (3.19)

The solution to Eq. 3.19 is the average of yi in region Rm

ĉm = ave(yi|Xi 2 Rm) (3.20)

At each node, a variable j and a threshold s are to be elected for the partition. The
partition will split the space into two parts:

Ra(j, s) = {Xi|Xij < s} and Rb(j, s) = {Xi|Xij � s} (3.21)

j and s are chosen to minimize the sum squared error of both Ra and Rb after the split:

75



X

Xi2Ra(j,s)

(yi � ĉa)
2 +

X

Xi2Rb(j,s)

(yi � ĉb)
2 (3.22)

where ĉa and ĉb are estimated using Eq. 3.20.

Continuation of the partitioning will certainly reduce the sum squared error of the training
sample. In the extreme case, each region would contain only one event, reducing the sum
squared error to zero. However, this will lead to overfitting. The ultimate goal of training
the decision tree is to perform classification/ regression on the testing sample. When
the overfitting happens, the performance on the training sample is good but not on the
testing sample. To prevent overfitting, some stopping rules of the partition are applied.
The commonly seen stopping rules are the maximum depth of the tree, the minimum
reducetion of the sum squared error, and the minimum data points on a leaf [102].

Gradient Boosted Decision Trees

Boosting is a powerful tool in machine learning which was first implemented as ”Ad-
aBoost” in Ref. [103]. It is an iterative procedure that combines multiple weighted
”weak” trees to produce a ”strong” output. In each iteration, the di↵erence between the
output of the previous tree and the target value will be compensated by the current tree.
If a total number of M iterations is to be performed, the tree at m iteration is constructed
as:

fm(X) = fm�1(X) + hm(X) (3.23)

where h(X) is fitted to the residual:

y � fm�1(X) (3.24)

In the gradient boosting, the first tree is initialized to an optimal constant model that
minimizes the loss function L [102]:

f0(X) = arg min�

NX

i=1

L(yi, �), (3.25)

where N is the size of the training sample.

At each iteration, hm(Xi) is fitted to minimize the loss function:
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fm(X) = fm�1(X) + arg minhm2H
[

NX

i=1

L(yi, fm�1(Xi) + hm(Xi))]. (3.26)

Computing hm in each step of Eq. 3.26 is computationally expensive. Therefore it is
calculated in the greedy fashion [104]: the steepest descent (the negative gradient) is
used for the minimization. For every event, a pseudo-residual is calculated as:

rim = �

@L(yi, f(Xi))

@f(Xi)

�

f=fm�1

. (3.27)

A regression tree hm(X) is fitted to these pseudo-residuals using the training set {(Xi, rim)}ni=1
.

In Ref. [105], a method of finding hm(X) is proposed. When the variable space is par-
titioned in to Jm regions at m iteration: Rjm, j = 1, 2, ..., Jm, hm(X) can be calculated
using Eq. 3.18

hm(X) =
JmX

j=1

cjmI(X 2 Rjm) (3.28)

For each region Rjm, a weight of hm(X) is calculated as

�jm = arg min�

X

Xi2Rjm

L(yi, fm�1(Xi) + �cjm). (3.29)

Since �jm is the weight of hm in region Rjm, cjm can be merged to �jm by calculating
�jm using the equation below:

�jm = arg min�

X

Xi2Rjm

L(yi, fm�1(Xi) + �). (3.30)

Finally, we have

fm(X) = fm�1(X) +
JmX

j=1

�jmI(X 2 Rjm) (3.31)
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The total number of regions J determines the allowance of the interactions between
the variables in the model. There are interactions between up to J-1 variables allowed,
therefore when J = 2, no interactions between variables exist. Ref. [102] suggests that
4  J  8 is usually a good choice for most of the boosting tasks and within the range,
the choice of J has little e↵ect on the result. The case when J is greater than 10 is rarely
needed.

Apart from the stopping rules in the single decision tree, there are some other parameters
in the boosted decision trees that can help prevent overfitting as well. One of them is
the number of trees (iterations) M in the boosting process. With the increase of M , the
value of the training sample’s loss function will decrease, but this will also potentially
lead to overfitting.

The ”learning rate” of the process can also be used to prevent overfitting. The learning
rate parameter l is add in Eq. 3.31, so that it becomes:

fm(X) = fm�1(X) + l ·
JmX

j=1

�jmI(X 2 Rjm) (3.32)

Eq. 3.31 is equivalent to having l = 1. Typically having l < 0.1 can greatly improve the
performance of the boosting method compare to the case where l = 1 [102]. However,
to achieve such performance when having a relatively low learning rate, more iterations
(larger M) will be needed. This will result in an increase of the computing time.

Dust Layer Events energy Reconstruction with XGBoost

The regression task in this chapter is to reconstruct the deposited (visible) energy of the
events in the dust layer. To complete this regression task, certain variables (X) need to
be selected to feed the boosted decision trees (BDT). From Fig. 3.22, we know that even
though for the dust layer events there is a bias between the Monopod reconstructed energy
and the visible energy, they are still correlated. Therefore the monopod reconstructed
energy is a good variable to feed the BDT. Since the problem starts with events being in
the dust layer, it is obvious that the interaction vertex is important in this task. Events
being in the di↵erent locations of the dust layer results in di↵erent biases between the
Monopod reconstructed energy and the visible energy. This can be interpreted as the
closer to the center of the dust layer the larger the bias, and the closer to the edge of the
dust layer the smaller the bias. The total charge is also a major factor that could indicate
the visible energy. As shown in Fig. 3.20, in both the dust layer region and the rest of the
detector, there is a correlation between the total charge and the Monopod reconstructed
energy. The di↵erence is the correlation is di↵erent in the two regions. The last variable
that could be of importance is the direction (zenith ✓ and azimuth �) of the event.

In summary, the variables used in the regression BDT are:

• Monopod Energy
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• Monopod X

• Monopod Y

• Monopod Z

• Qtot HLC

• Monopod Zenith

The implementation of the GBDT used in this analysis is XGBoost [101]. The loss
function used in the boosting method is the root mean square error (rmse) which can be
expressed as the equation below:

sPN
i=i(ŷi � yi)2

N
, (3.33)

where N is the size of the training sample, ŷi is the prediction value for sample i and yi

is the true value for sample i.

Some other settings of the GBDT are:

• Tree Depth: 5

• Number of Trees: 3000

• Minimum Loss Function Reduction: 0

• Minimum Data Points on a Leaf: 1

• Learning Rate: 0.1

To perform this regression task, an electron neutrino simulation dataset with SPICE 3.2,
energy spectral index of -1.5 and the primary neutrino energy range of 5TeV - 10PeV has
been produced. In total 7000 files were generated with each file containing 10000 events.
This simulation set was processed to the final level of the event selection used in this
analysis.

Since all the dust layer events are in the high energy region (the low energy event selection
has an anti-dust-layer cut implemented [88]), only the simulated events with a Monopod
reconstructed energy of above 10 TeV are selected in the training and testing process. A
depth selection is also implemented by selecting simulated events for training and testing.
The correlation between the training variables and the visible energy is di↵erent in the
clear ice compared to the dust layer. With the thickness of the dust layer being ⇠ 1/10
of the clear ice, the majority of the events are located in the clear ice. Without the
depth selection for the training and testing sample, the GBDT will be guided to find the
correlation between the training variables and the visible energy in the clear ice instead
of the dust layer. Therefore it is necessary to apply the depth cut in training/testing
sample selection.
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Figure 3.24: The energy resolution of the GBDT reconstructed energy: in the depth
range from -60 m to -90 m (left), and in the depth range from -100 m to - 140 m (right).
The median, average and 68 % confidence interval is labeled in the plot.

After the selection conditions are applied, 50% of the selected simulated events are ran-
domly picked as the training sample and the rest are used for testing. For the simulated
events, the visible energy is used as the regression target y. According to the depth distri-
bution of the five dust layer events (as shown in Table. 3.12), two GBDTs are built: one
for the regression task of events within the depth of -60 m to -90 m and the other for the
regression task of events within the depth of -100 m and -140 m. The resolutions of the
GBDT reconstructed energy on the testing sample for the two GBDTs are shown in Fig.
3.24. The bias of the GBDT reconstruction is less than 3%, which is a great improvement
compared to the bias (⇠ 100%) of the monopod reconstructed energy shown in Fig. 3.22.
The resolution (68 % confidence interval) of the GBDT reconstructed energy is around
20 % ⇠ 30%, which is higher than the monopod energy resolution (15 %) of the cascade
events in the clear ice [76]. Considering the di�culty of reconstructing the dust layer
events, this energy resolution is acceptable.

The result of the GBDT reconstructed energy for the five most energetic dust layer events
are shown in Table 3.12. Also shown are the reconstructed results from an alternative
CPU intensive event reconstruction using the direct event re-simulation (Direct Fit) [106].
Direct Fit simulates events with di↵erent sets of energy, direction, vertex location, and
returns as a result the one that is the most similar to the real event by comparing the
likelihood described in Ref. [107]. One of the disadvantages of Direct Fit is that it is much
more time consuming compared to GBDT. Once the GBDT is trained it can produce the
test result for new data in O(1) time.

Table 3.12 shows that the reconstructed results by the two very di↵erent methods are
consistent for all but one event (”Zephyrus”). This verified the e↵ectiveness of the GBDT
results.

Some investigations on ”Zephyrus” are performed to understand the failure of its re-
construction with GBDT. Most of the variables used in the GBDT are the Monopod
reconstructed result. The Monopod setting used in this analysis is the recommended
setting by the collaboration and has been tested to provide good results. Furthermore,
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Detector
Year

Run ID
Event ID

Name Depth (in
IceCube
coordi-
nation
system)

(Biased)
Monopod
Energy

GBDT Energy Direct Fit
Energy

2013 122819
44356016

Eurus -82 m 2 PeV 0.78 PeV+0.20 PeV

�0.17 PeV
0.77 PeV

2012 122144
80391638

Campbell -126 m 548 TeV 0.49 PeV+0.15 PeV

�0.12 PeV
0.47 PeV

2012 120730
25304985

Zephyrus -75 m 473 TeV 368 TeV+92 TeV

�83 TeV
186 TeV

2011 118432
67932074

Ophelia -118 m 235 TeV 174 TeV+52 TeV

�43 TeV
157 TeV

2014 125741
1771788

Bob -118 m 178 TeV 158 TeV+47 TeV

�39 TeV
126 TeV

Table 3.12: The depth, monopod reconstructed energy, GBDT energy and the direct
fit energy of the five most energetic dust layer events. The uncertainty of the Direct
Fit reconstructed energy is ⇠ 15%.

the reconstructed result should not depend on the setting of the reconstruction method.
A few tests were run with di↵erent settings. Some of the test results show consistency
with the Direct Fit result. This suggests that this event probably has some features that
make it sensitive to the reconstruction settings. In this case, the reconstruction result
of Direct Fit is likely to be more trustworthy. Therefore the reconstructed result of the
Direct Fit is used for the five dust layer events in this analysis.

In each energy bin, the sample is separated into two groups: the down-going group
and the up-going group. This separation is done on the reconstructed zenith angle. If
the reconstructed zenith angle of an event is smaller than 90 degrees, it is considered
down-going, otherwise up-going. As shown in Fig. 3.25, the bias in the monopod zenith
reconstruction of the dust layer events is small, and the resolution (spread) is relatively
large. However, the zenith bin size used in this analysis is 90 degree which is larger than
the zenith resolution even for the dust layer events.

To study this point, the monopod reconstructed direction and the direct fit reconstructed
direction for the five most energetic dust layer data events and their energy bin allocation
is shown in Table 3.13. Three of the five events have the same reconstructed direction
(up or down) using the Monopod reconstruction and the Direct Fit reconstruction. The
two events that have the opposite reconstructed direction from the methods belong to
the same energy bin and the opposite zenith bins. The means the event distribution
in the reconstructed energy and zenith 2-D grids are the same when using the Monopod
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Figure 3.25: The Monopod zenith resolution calculated using the ⌫e simulation in
the above 100 TeV reconstructed energy range, within the depth of [-60 m, -140m].

reconstruction and the Direct Fit reconstruction, therefore the choice of the reconstruction
method will not a↵ect the result of this analysis.

Name Energy Bin [log(E/GeV)] Monopod Direction Direct Fit Direction

Eurus 5.4-6.2 Up Up

Campbell 5.4-6.2 Down Down

Zephyrus 4.6-5.4 Down Down

Ophelia 4.6-5.4 Down Up

Bob 4.6-5.4 Up Down

Table 3.13: The energy bin and the directional reconstruction result from the Mono-
pod reconstruction and the Direction Fit reconstruction of the dust layer events. The
binning in the reconstructed energy will be discussed in Chapter 4.

The energy reconstruction using the Direct Fit is only performed on the dust layer events
in the final experimental data sample, but not on the simulation sample. This is because
the information on the simulation datasets used in this analysis is in the unfolding process
(c.f. Chapter 5). In this process, all events in a particular energy and zenith bin are used
regardless of their interaction position. Even though the Monopod reconstructed energies
of the dust layer events are biased (as shown in Fig. 3.26), the amount of the dust layer
events is much smaller compare to the total number of events in the whole detector.
The resolution of the Monopod reconstructed energy for the whole detector is shown
in the right plot of Fig. 3.26. The bias in the Monopod reconstructed energy for the
whole detector is almost zero and the uncertainty of the reconstruction is also much
smaller than the uncertainty in the Monopod reconstruction for the dust layer events 5.

5The reason for the existence of the ⇠ 5% bias is not related to the dust layer events but rather
the mismatch between the hole ice model used in the simulation and the Monopod reconstruction. The
hole ice model used in the simulation is the Hole Ice 30 (scattering length of 30 cm) which is closer to
the experimental data than the Hole Ice 50 (scattering length of 50 cm) (c.f. Sec. 6.1.1). With better
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Figure 3.26: The energy resolution of the monopod reconstructed energy in the dust
layer region (left) and the whole detector (right). Both Plots are made with events
above 100 TeV Monopod reconstructed energy from NuE simulation.

Therefore when calculating the unfold matrix, the bias e↵ect from the dust layer events
is negligible.

While the dust layer events contribute little to the total number of events in the simu-
lation, the situation is slightly di↵erent in the experimental data. For example, in the
energy bin of [105.4, 106.2] (see Chapter 4 for the detail on the binning), there are four
events in total in the unblinded sample with two inside of the dust layer and two outside.
The contribution of the dust layer events at high energy is not negligible in the experi-
mental data, therefore it is necessary to correct the bias in the Monopod reconstructed
energy of the dust layer events in the experimental data. Even though the data has a
higher contribution from the dust layer events, this is not completely unexpected. Figure
3.27 shows the Monopod reconstructed depth distribution of the unblinded sample and
the simulation for the reconstructed energy range above 100 TeV. In the dust layer region,
the event rate of the experimental data is higher than the simulation, however, it is still
within a 1 � uncertainty. The higher contribution from the dust layer events in the final
data sample is likely to be a statistical fluctuation instead of a mismatch between the
data and the simulation.

3.7.3 Final Level Contained Cascade Five Years Data Sample
Statistic

The final sample used in this analysis consists of two parts:

• The 2012-2015 data unblinded with the high energy event selection developed in
this analysis and the low energy event selection developed in Ref. [88], merged at
the reconstructed energy of 60 TeV

understanding of the South Pole ice, the simulation has been updated to Hole Ice 30 but the table used
in the Monopod reconstruction has yet to be updated from the Hole Ice 50 ice model.
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Figure 3.27: The Monopod reconstructed depth distribution of the unblinded sample
and the simulation for above 100 TeV reconstructed energy.

• The 2011 data unblinded with the event selection developed by the previous two-
year contained cascade analysis [87]

After unblinding, the data and simulation statistics in all the reconstructed energy bins
(with the correction of the dust layer events in the data sample as discussed in the
previous section) used in this analysis are shown in Table 3.14 (the reconstructed down-
going sample) and Table 3.15 (the reconstructed up-going sample). The astrophysical
neutrino flux index, normalization, and the atmospherical neutrino flux normalization
used to in the calculation of the neutrino simulation statistics are from Ref. [88], which
utilized the same event sample as in this analysis. The values are shown below:

• Astrophysical neutrino flux index: -2.5,

• Astrophysical neutrino flux normalization: 1.59,

• Conventional atmospherical neutrino flux normalization: 1.05,

• Prompt atmospherical neutrino flux normalization: 9.66 ⇥10�5

The background estimation is done using the MuonGun simulation [65] (c.f. Sec. 2.5).

The event distribution in the reconstructed energy and zenith for the unblinded data and
the simulation at the final level are shown in Fig. 3.28. The top plot is the reconstructed
energy distribution for all the events, with the four bins of the measurement result indi-
cated by the dashed lines. The bottom plot is the reconstructed zenith distribution for
all the events with the reconstructed energy above 103.8 GeV. These two plots show a
good data/MC agreement for the variables (the reconstructed energy and zenith) used in
this analysis.
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Figure 3.28: The reconstructed energy (top) and zenith (bottom) distribution for the
unblinded data and the simulation at the final level. The bottom plot only includes the
events with the reconstructed energy greater than 103.8 GeV.
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Energy Range
[log(Ereco/GeV)]

2.2 - 3.0 3.0 - 3.8 3.8 - 4.6 4.6 - 5.4 5.4 - 6.2 6.2 - 7.0

Data 256 942 274 46 3 1

MuonGun 41(8) 129(17) 16(2) 0 0 0

NuMu (conv) 124(4) 478(9) 106(2) 3.2(1) 0.08(2) 0.006(3)

NuE (conv) 51(1) 183(1) 39.8(1) 1.482(6) 0.0217(2) 1.26(3)e-4

NuMu (astro) 0.43(1) 7.02(6) 10.40(5) 2.75(2) 0.504(7) 0.066(2)

NuE (astro) 1.79(2) 33.5(1) 52.31(6) 17.08(3) 3.48(1) 0.98(1)

NuTau (astro) 1.34(3) 23.8(1) 35.4(1) 10.44(4) 1.72(1) 0.174(3)

NuMu (prompt) 6.7(2)e-6 7.16(9)e-5 5.20(6)e-5 6.3(2)e-6 4.1(3)e-7 3.9(9)e-8

NuE (prompt) 3.14(4)e-5 5.01(2)e-4 4.870(7)e-4 7.35(2)e-5 4.33(2)e-6 1.70(3)e-7

Sum MC 220(9) 854(19) 260(3) 35.0(1) 5.81(2) 1.23(1)

Table 3.14: The number of the down-going events for all the reconstructed energy bins
for the unblinded data and simulation at the final level. The Monopod reconstructed
energy is used for all the simulation and data events except for the dust layer events in
the experimental data, in which case the Direct Fit reconstructed energy is used.

Energy Range
[log(Ereco/GeV)]

2.2 - 3.0 3.0 - 3.8 3.8 - 4.6 4.6 - 5.4 5.4 - 6.2 6.2 - 7.0

Data 954 1997 306 23 1 0

MuonGun 38(7) 130(18) 17(4) 0.3(2) 0 0

NuMu (conv) 717(10) 1471(13) 164(2) 4.1(1) 0.048(5) 0.014(8)

NuE (conv) 182(1) 381(1) 47.6(1) 1.486(5) 0.0196(1) 1.22(4)e-4

NuMu (astro) 3.10(4) 17.3(1) 9.15(7) 1.66(2) 0.236(7) 0.031(2)

NuE (astro) 12.07(6) 79.0(2) 49.18(6) 10.92(2) 1.507(6) 0.215(5)

NuTau (astro) 9.06(9) 57.2(3) 33.0(1) 6.72(5) 0.81(1) 0.081(3)

NuMu (prompt) 5.74(8)e-5 3.14(2)e-4 1.34(1)e-4 1.36(2)e-5 5.5(3)e-7 4(1)e-8

NuE (prompt) 2.20(1)e-4 1.483(3)e-3 8.39(1)e-4 1.236(3)e-4 6.08(3)e-6 1.68(2)e-7

Sum MC 961(12) 2136(22) 320(4) 25.2(2) 2.62(1) 0.34(1)

Table 3.15: The number of the up-going events for all the reconstructed energy bins
for the unblinded data and the simulation at the final level. The Monopod reconstructed
energy is used for all the simulation and data events except for the dust layer events in
the experimental data, in which case the Direct Fit reconstructed energy is used.
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Chapter 4

Analysis Method

In this dissertation, we introduce a novel analysis method developed to measure flux inde-
pendent neutrino interaction cross section [108]. The method utilizes the Earth absorption
e↵ect to measure the cross section. The schematic of the analysis method is shown in Fig.
4.1. The neutrino sample is divided into two groups: down-going and up-going. With
the increase of neutrino energy and interaction cross section, more up-going neutrinos are
absorbed by the Earth while the down-going neutrinos remain una↵ected. By calculating
the ratio of the down-going neutrinos to the up-going neutrinos in each neutrino energy
bin, the corresponding neutrino interaction cross section can be calculated. The idea was
first brought up by D. Hooper in Ref. [108], as a theoretical calculation without taking
into consideration reconstruction and detector e↵ects. In this chapter, we will discuss the
analysis method in detail, and show how to realize the experimental measurement from
a theoretical idea.

4.1 An Overview of the Analysis Method

IceCube detects neutrinos from all directions. The neutrinos from the southern hemi-
sphere (down-going) directly reach the detector. The number of the down-going neutrino
events detected in IceCube can be expressed as

N(E⌫ , down) = �down(E⌫)⇥ Acptdown(E⌫)⇥ �(E⌫)⇥ A
3/2 ⇥ n (4.1)

where �down(E⌫) is the neutrino flux from the Southern hemisphere, Acptdown(E⌫) is the
detector acceptance rate for the down-going events, �(E⌫) is the neutrino interaction
cross section, A is the neutrino e↵ective area and n is the density of the targets that can
interact with a neutrino.

The neutrinos from the Northern hemisphere (up-going) travel through the Earth. When
the neutrinos pass through matter with density nE, the interaction length can be calcu-
lated using the formula below [108]:
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Figure 4.1: The schematic of the analysis method to measure the neutrino interaction
cross section.

l = (�(E⌫)⇥ nE)
�1 (4.2)

When the interaction length is smaller than the distance that a neutrino needs to travel
to reach the detector, the neutrino will be absorbed by the Earth before it can reach
the detector. The number of the up-going neutrino events detected in IceCube can be
expressed as:

N(E⌫ , up) = �up(E⌫)⇥ Acptup(E⌫)⇥ (1� Absp(�(E⌫)))⇥ �(E⌫)⇥ A
3/2 ⇥ n (4.3)

where �up(E⌫) is the neutrino flux from the northern hemisphere, Acptup(E⌫) is the
detector acceptance rate for the up-going events, and Absp(�(E⌫)) is the fraction of the
up-going neutrinos absorbed by the Earth.

In this analysis, we form a ratio of the number of down-going events to the number of
up-going events:

R(E⌫) =
N(E⌫ , down)

N(E⌫ , up)

=
�down(E⌫)⇥ Acptdown(E⌫)⇥ �(E⌫)⇥ A

3/2 ⇥ n

�up(E⌫)⇥ Acptup(E⌫)⇥ (1� Absp(�(E⌫)))⇥ �(E⌫)⇥ A3/2 ⇥ n

(4.4)
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�(E⌫), A and n are the same in the denominator and the numerator, thus canceled out.
The neutrino flux is a combination of the atmospheric flux and the astrophysical flux.
The conventional part of the atmospheric neutrino flux is produced by charged pion and
kaon decays and is modeled with HKKMS06 [28]. The prompt part of the atmospheric
neutrino flux is produced by heavier meson decays and is modeled by BERSS [29]. The
conventional atmospheric neutrino flux is symmetric around the horizon (✓ = 90�). The
prompt atmospheric neutrino flux is isotropic. Fig. 4.2 shows the zenith distribution
of the atmospheric neutrino flux for neutrino energy of 10 TeV. We assume that the
astrophysical neutrino flux is isotropic as well since current data does not indicate is it
anisotropic [88].

Figure 4.2: The zenith angle dependence of the atmospheric neutrino flux at 10 TeV
neutrino energy.

With the isotropic astrophysical neutrino flux assumption, the flux of the down-going
neutrinos and the up-going neutrinos are the same (�down(E⌫) = �up(E⌫)). The ratio of
the number of the down-going events to the number of the up-going events then becomes:

R(E⌫) =
N(E⌫ , down)

N(E⌫ , up)
=

Acptdown(E⌫)

Acptup(E⌫)⇥ (1� Absp(�(E⌫)))
(4.5)

Once the ratio is corrected for the detector acceptance e↵ect (c.f. Sec. 4.3.1), the ratio
only depends on the neutrino interaction cross section.

The neutrino interaction cross section, neutrino energy and the ratio of down-going events
to up-going events have the relationship shown in Fig. 4.3. In the experiment, we
reconstruct the deposited energy and zenith angle of the neutrinos. The mapping between
the reconstructed energy and the true neutrino energy, the reconstructed zenith angle
and the true zenith angle using the unfolding method is discussed in detail in the next
chapter. After the mapping, neutrino events are assigned in neutrino energy bins. In each
neutrino energy bin, they are separated into two groups according to their true zenith
angle: down-going and up-going. In each neutrino energy bin, the ratio R(E⌫) of the
down-going events to the up-going events is calculated. Thus we are able to obtain the
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relationship between the ratio dependence on the neutrino energy, which is shown as the
green curve in Fig. 4.3.

The ratio (R(�)) increases with the increase in the interaction cross section; the higher
the cross section, the shorter the interaction length, the more events get absorbed by the
Earth. The relationship between the ratio and the cross section can be obtained by using
Monte Carlo simulations (c.f. Sec. 4.2) and is shown as the purple curve in Fig. 4.3.

From the two projections R(E⌫) and R(�) on a 3D curve, we can construct the third
projection �(E⌫) which is shown as the red curve in Fig. 4.3.

Figure 4.3: A simplified illustration of the correlation among the neutrino energy,
the down-going events/up-going events ratio and the neutrino interaction cross section.
The green curve represents the ratio vs. the neutrino energy, the purple curve represents
the ratio vs. the cross section, and the red curve represents the goal of this analysis:
the cross section vs. the neutrino energy.

4.2 Ratio Versus Cross Section

All-sky neutrinos of all flavors are simulated with the total DIS (charged-current inter-
actions and neutral current interactions 1 )cross section range from 10�9 mb to 10�4 mb
using NuGen [82]. The Earth density model used in the simulation is PREM [84]. No
detector e↵ects are included in this simulation, therefore the only factor that contributes
to the di↵erence between the number of the down-going events and the number of the
up-going events is the cross section. The simulated events are grouped in cross section
bins with a bin size of 0.2 in logarithm space �9 < log

10
(�/mb) < �4. In each cross

section bin, the events are divided into two groups: down-going and up-going. The ratio
of down-going events to up-going events in each cross section bin is calculated and a spline

1The ratio vs. cross section curve generated with neutrino-nucleon DIS interaction simulations reflects
the Earth absorption e↵ect of nucleon targets. The same curve can also be used to measure the total
cross section (including the ⌫̄ee scattering (Glashow Resonance) cross section) with a scaling factor for
the target density. (c.f. Sec. 7.4.1)
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fit is applied to create a smooth curve connecting all the data points, as shown in Fig.
4.4. In this process, no relationship between the cross section and the neutrino energy is
assumed, thus no bias is introduced when using the ratio vs. cross section curve.

Figure 4.4: The ratio of the down-going events to the up-going events vs. the cross
section.

4.3 Ratio Versus Neutrino Energy

4.3.1 Detector Acceptance E↵ect Correction Factor

As seen in Eq. 4.5, the ratio of the down-going events to the up-going events also depends
on the detector acceptance. The di↵erence between the acceptance rate for the down-
going events and the up-going events is due to the self-veto e↵ect [109], [93] and the
di↵erence in the selection e�ciency. The self-veto e↵ect means an atmospheric neutrino
will be removed from the analysis since it is accompanied by a muon produced from the
same cosmic ray shower. The e↵ect only exists in the down-going atmospheric neutrinos,
since all the up-going atmospheric muons will get absorbed by the Earth.

To correct for these e↵ects, we introduce the correction factor, which is calculated as the
acceptance rate for the up-going events divided by the acceptance rate for the down-going
events:

CF (E⌫) ⌘
Acptup(E⌫)

Acptdown(E⌫)
, (4.6)

where the acceptance rates are calculated as the number of events for a certain direction
at the final level divided by the number of events at the generated level without any
detector e↵ects for that direction:
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Acptup(E⌫) =
NEvents(E⌫ , up, final)

NEvents(E⌫ , up, gen)
(4.7)

Acptdown(E⌫) =
NEvents(E⌫ , down, final)

NEvents(E⌫ , down, gen)
(4.8)

The upper part of Fig. 4.5 shows the neutrino energy distribution for the down-going
events and the up-going events at the generated level and at the final level. Both astro-
physical neutrino flux and the atmospheric neutrino flux are included. The lower part of
Fig. 4.5 shows the acceptance rates for down-going and up-going events calculated using
Eq. 4.8 and Eq. 4.7.

With the acceptance rates, the correction factors (CFs) are calculated using Eq. 4.6 and
listed in Table 4.1.

After applying the correction factor, Eq. 4.5 becomes:

R(E⌫) =
N(E⌫ , down)

N(E⌫ , up)
⇥ CF (E⌫) =

1

1� Absp(�(E⌫))
(4.9)

This ratio only reflects the Earth absorption e↵ect and is used for the cross section
determination.

Figure 4.5: Upper part: the neutrino energy distribution for the down-going events
and the up-going at the generated level and at the final level. Lower part: the detector
acceptance rate for the down-going events and the up-going events in neutrino energy
bins.

92



log10(E⌫/GeV ) 2.2-3.0 3.0-3.8 3.8-4.6 4.6-5.4 5.4-6.2 6.2-7.0
Correction Factor 6.395 3.219 1.928 1.278 1.024 1.026

Table 4.1: The detector acceptance correction factors for all the neutrino energy bins.

4.3.2 Ratio Versus Neutrino Energy for Asimov Data

Using the neutrino energy distribution 2 for down-going and up-going events, the correc-
tion factor and Eq. 4.9, the ratio in neutrino energy bins can be calculated.

Asimov data [110] is the distribution according to the Monte Carlo expectation. The
expectation for N(E⌫ , down) and N(E⌫ , up) was calculated using the simulation and a
livetime of 5 years. We use the following astrophysical neutrino flux:

�astro = �0 ⇥ (E⌫/100 TeV)��
, (4.10)

where �0 = 1.59⇥10�18 GeV�1s�1sr�1cm�2 and �=2.50. The normalization and spectral
index are the best fit result from Ref. [88].

The ratio R(E⌫) from Asimov data is shown in Fig. 4.6.

Figure 4.6: Ratio vs. neutrino energy for Asimov data (5 years of livetime).

4.4 Cross Section Versus Neutrino Energy

4.4.1 Cross Section vs. Neutrino Energy for Asimov Data

We use the ratio R(E⌫) from Asimov data (as shown in Fig. 4.6 ) to find the corresponding
cross section �(E⌫) according to Fig. 4.4. The cross section vs. the neutrino energy

2The mapping from the reconstructed space to the true space see Chapter 5
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log10(E⌫/GeV ) 2.2-3.0 3.0-3.8 3.8-4.6 4.6-5.4 5.4-6.2 6.2-7.0

Bin Center
Value

2.826+0.001
�0.001 3.446+0.002

�0.002 4.133+0.004
�0.006 4.916+0.011

�0.015 5.734+0.001
�0.017 6.513+0.010

�0.015

Table 4.2: The weighted bin centers.

correlation for Asimov data is shown in Fig. 4.7.

As shown in Fig. 4.4, for small values of cross section, the Earth absorption e↵ect is
negligible. Therefore, below a certain cross section value, the ratio will always be 1,
implying no up-going neutrinos are absorbed by the Earth. As a result, there are an
equal number of events in the down-going and the up-going region. Here, the method
reaches its limit. The ratio for the first neutrino energy bin (150 GeV to 1 TeV) in Fig.
4.6 is close to 1. For the above reasons, the ratio in the first bin is not informative. As a
result, it is omitted in Fig. 4.7.

The bin centers chosen for the data points display in Fig. 4.7 are the weighted average
neutrino energy for all the events in the neutrino energy range. It is calculated as:

Ecenter =

P
j Ej ⇥WjP

j Wj
(4.11)

The weighted bin centers and their uncertainties are shown in Table 4.2. Here the best fit
value is calculated using the fit result of the astrophysical flux in Fig. 6.18 (left) alongside
the atmospheric flux. The statistical uncertainty is associated with the 68% C. L. contour
of the astrophysical flux shown in Fig. 6.18 (left).

Asimov data is the expectation from Monte Carlo simulation which is simulated using the
CSMS [62] cross section. Fig. 4.7 shows that the measured neutrino energy dependence
of the neutrino cross section is consistent with the CSMS cross section.

4.4.2 Neutrino to Antineutrino Ratio

There are two components of the neutrino flux: the astrophysical component and the
atmospheric component. The astrophysical flux is the same for neutrinos and antineu-
trinos, and the same for all neutrino flavors (assuming a (1:1:1) flavor ratio at Earth).
The atmospheric flux is di↵erent for neutrinos and antineutrinos. It is also di↵erent for
⌫e and ⌫µ. The compositions of the two components are di↵erent due to the di↵erence in
the selection e�ciencies for di↵erent neutrino flavors. For the same neutrino flavor, the
selection e�ciency is the same for neutrinos and antineutrinos.

The selection e�ciency for a given neutrino flavor is defined as:

f⌫i(E⌫) =
NEventsfinal,⌫i(E⌫)

NEventsgen,⌫i(E⌫)
(4.12)
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Figure 4.7: Cross section vs. neutrino energy for Asimov data (5 years of livetime).

where

NEventsgen,⌫i(E⌫) =

�⌫(E⌫)⇥ 2⇡

Z
1

�1

[d�⌫,astro(E⌫)/dE⌫ + d�⌫i,atm(E⌫ , ✓⌫)/dE⌫ ]dcos(✓⌫)+

�⌫̄(E⌫)⇥ 2⇡

Z
1

�1

[d�⌫,astro(E⌫)/dE⌫ + d�⌫̄i,atm(E⌫ , ✓⌫))/dE⌫ ]dcos(✓⌫)

(4.13)

is the number of events for that neutrino flavor at the generated level. The number of
events for that neutrino flavor at the final level can be expressed as:

NEventsfinal,⌫i(E⌫) =

f⌫i(E⌫)⇥ {�⌫(E⌫)⇥ 2⇡

Z
1

�1

[d�⌫,astro(E⌫)/dE⌫ + d�⌫i,atm(E⌫ , ✓⌫)/dE⌫ ]dcos(✓⌫)+

�⌫̄(E⌫)⇥ 2⇡

Z
1

�1

[d�⌫,astro(E⌫)/dE⌫ + d�⌫̄i,atm(E⌫ , ✓⌫)/dE⌫ ]dcos(✓⌫)}

(4.14)

The weighted average total neutrino cross section is:

�̄(E⌫) =
�⌫(E⌫)

P
i [f⌫i(E⌫)⇥ �⌫i(E⌫)] + �⌫̄(E⌫)

P
i [f⌫i(E⌫)⇥ �⌫̄i(E⌫)]P

i [�⌫i(E⌫) + �⌫̄i(E⌫)]⇥ f⌫i(E⌫)
(4.15)

where �⌫ is the total cross section for neutrinos, �⌫̄ is the total cross section for antineu-
trinos.
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�⌫i(E⌫) = 2⇡

Z
1

�1

[d�⌫,astro(E⌫)/dE⌫ + d�⌫i,atm(E⌫ , ✓⌫)/dE⌫ ]dcos(✓⌫) (4.16)

is the total flux for neutrinos with flavor i and

�⌫̄i(E⌫) = 2⇡

Z
1

�1

[d�⌫,astro(E⌫)/dE⌫ + d�⌫̄i,atm(E⌫ , ✓⌫))/dE⌫ ]dcos(✓⌫) (4.17)

is the total flux for antineutrinos with flavor i.

Figure 4.9 shows the composition of neutrino and antineutrino at the final level (
P

i [f⌫i(E⌫)⇥ �⌫i(E⌫)]
and

P
i [f⌫i(E⌫)⇥ �⌫̄i(E⌫)]) as a function of neutrino energy. The lower part of the plot

shows the neutrino to antineutrino ratio.

Figure 4.8: Neutrino and antineutrino composition at the final level.

The weighted total cross section (the sum of the charged-current interaction cross section
and the neutral current interaction cross section averaged over neutrinos and antineutrinos
according to their ratio) with neutrino to antineutrino ratio = 1:1 and the neutrino energy
dependent neutrino to antineutrino ratio is shown in Fig. 4.9. The maximum di↵erence
between the two weighted total cross sections is less than 5%. For simplicity, the neutrino
to antineutrino ratio being 1:1 is used when calculating the weighted total cross section
in comparison with the experimental result.

4.5 Tau Regeneration

With the increase of cross section, it is more likely for up-going neutrinos to interact in
the Earth. When the charged-current interaction of a tau neutrino occurs, a tau lepton
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Figure 4.9: Weighted total cross section (CSMS) as a function of neutrino energy.

will decay into neutrinos which will have some probability of reaching the detector from
below.

⌧
� �! ⌫⌧ +W

� �! ⌫⌧ + e
� + ⌫̄e (4.18)

�! ⌫⌧ + µ
� + ⌫̄µ (4.19)

If these product neutrinos reach the detector and interact there, they will have lower
neutrino energy compared to the original tau neutrino that interacted in the Earth.

The number of the up-going events reaching the detector with the neutrino energy E1

without any interactions in the Earth is:

Nup,atDetector,no�inter(E1) = Nup,atEarth(E1)⇥ (1� abs(�(E1))) (4.20)

The number of the up-going events with the neutrino energy E1 that interact when passing
through the Earth is:

Nup,inter(E1) = Nup,atEarth(E1)⇥ abs(�(E1)) (4.21)

The products of these interactions can be neutrinos (from neutral current interactions or
⌫⌧ charged current interactions). These neutrinos will carry a lower energy E2 compared
to their parent neutrinos that interacted in the Earth. Therefore the neutrinos that reach
the detector with energy E2 consist of two parts: the neutrinos that reached the Earth
with energy E2 and go through the Earth without any interactions:
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Nup,atDetector,no�inter(E2) = Nup,atEarth(E2)⇥ (1� abs(�(E2))), (4.22)

and the neutrinos that reached the Earth with a higher energy E1, interacted in the
Earth and produced new neutrinos from the interactions with energy E2. The number of
neutrinos from the second part is proportional to the number of events that reached the
Earth with E1.

Nup,atDetector(E1 ! E2) ⇠ Nup,atEarth(E1)⇥ abs(�(E1)) (4.23)

Nup,atDetector(E2) = Nup,atDetector,no�inter(E2) +Nup,atDetector(E1 ! E2) (4.24)

In this binned analysis, when E2 belongs to a lower energy bin, due to the fast falling
spectrum, the down-feed e↵ect is very small.

Nup,atDetector,no�inter(E2) � Nup,atDetector(E1 ! E2) (4.25)

Figure 4.10 is a demonstration the down-feed e↵ect. The red part indicates the down-feed
e↵ect: the primary neutrinos’ energy comes from a higher energy bin than the secondary
neutrino’s energy.

Figure 4.10: The composition of the up-going neutrinos at the detector: the green
part is the proportion that goes through the Earth without any interactions; the blue
part is the proportion that interacts in the Earth and produces a secondary neutrino
with a lower energy that is in the same energy bin as the primary neutrino energy;
the red part is the proportion that interacts in the Earth and produces a secondary
neutrino whose primary neutrino’s energy belongs to a higher energy bin compare to
the secondary neutrino’s energy.
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Some proportion of neutrinos interact in the Earth and produce a secondary neutrino
that reaches the Earth. This process is cross section dependent. When creating the ratio
vs. cross section curve, these events are taken into consideration: the number of up-going
neutrino in a certain cross section bin includes the events that have interactions in the
Earth. Therefore the down-feed e↵ect is accounted for in this analysis.

4.6 Validation Study with ⌫⌧s

To test the validity of the analysis method, three sets of ⌫⌧ simulations are simulated using
NuGen [82] with the Standard Model cross section scaled by 0.2, 1, and 5 respectively.
The Standard Model cross section used is the CSMS [62] calculation. The 5*CSMS
simulation is used to calculate the ratio vs. cross section curve (R(�)).

The ratio vs. cross section curve is independent of the cross section dependence on the
neutrino energy (�(E⌫)). In Fig. 4.11, the ratio vs. cross section curves (R(�)) generated
with 1⇥CSMS, 0.2⇥CSMS and 5.0⇥CSMS simulation are plotted. The three curves are
consistent within the statistical uncertainties. Due to the same neutrino energy range
used for the simulations, the 0.2⇥CSMS and 1.0⇥CSMS curves run out of statistics at
a lower cross section value compared to the 5⇥CSMS curve. For the same reason, at
the low cross section values, the 5⇥CSMS curve does not have enough statistics. Since
this test covers cross section values up to 10�5 mb, the 5⇥CSMS simulation is used to
generate the ratio vs. cross section curve. In principle, provided enough statistics and
a large enough energy range for the simulation, a simulation generated with any cross
section table can be used to calculate the ratio vs. cross section curve.

Figure 4.11: The ratio of the down-going events to the up-going events vs. cross
section, calculated using Monte Carlo simulations generated with three di↵erent scaling
factors of CSMS cross section.
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For the purpose of testing the analysis method, true neutrino energy is used 3. For
each simulation dataset, the events are assigned into di↵erent neutrino energy bins and
separated into down-going group and up-going group. The ratio vs. neutrino energy
curve for the three datasets are shown in Fig. 4.12. The 5*CSMS (blue) curve in Fig.
4.11 is used to calculate the corresponding cross section value for each ratio in Fig. 4.12.

The resulting cross section for the three simulation datasets is shown in Fig. 4.13, show-
ing consistency with the cross section used in the generation of the simulations. The
only mismatch is in the first energy bin of the 0.2⇥CSMS data set. This is due to the
insensitivity of this method towards the low cross section value. As shown in Fig. 4.11,
for cross section values smaller than ⇠ 10�8.5 mb, the ratio is always consistent with
1, which means no Earth absorption e↵ect. This indicates the method is insensitive for
small cross section values.

This test has shown that using the event distributions in neutrino energy and zenith bins,
the neutrino interaction cross section as a function of neutrino energy can be measured
using this method.

Figure 4.12: Ratio (after the application of the detector correction factors) vs. neu-
trino energy for Monte Carlo simulations generated with three di↵erent scaling factors
of CSMS cross section.

3The validation test of the mapping from the reconstructed energy to the true neutrino energy for
di↵erent underlying cross section and energy relationships is shown in Chapter 5
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Figure 4.13: Cross section (indicated by the data points) vs. neutrino energy for
Monte Carlo simulations generated with three di↵erent scaling factors for the CSMS
cross section. Dotted lines indicated the corresponding scaled CSMC cross section’s
neutrino energy dependence.
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Chapter 5

Unfolding

The goal of this analysis is to measure the neutrino energy dependent neutrino interaction
cross section. The variables measured in the experiment are the reconstructed variables.
In ⌫e and ⌫⌧ charged-current interactions, the interacting neutrino deposits almost all of
its energy in the detector. However, in ⌫µ charged-current interactions and all neutral
current interactions, the out-going particle carries a fraction of the primary neutrino
energy. Therefore, the deposited energy is smaller than the primary neutrino energy (as
shown in Fig. 5.1 (left) where the o↵-diagonal events are mostly with a reconstructed
energy smaller than the neutrino energy). There is also reconstruction e↵ect: for cascade
events, the energy resolution is �E ⇠ 15%, and the zenith resolution is �✓ ⇠ 10o � 15o.
These factors will result in a di↵erence between the reconstructed variables and the true
variables. For mapping from the reconstructed space to the true space, we introduce the
unfolding method. In this analysis we are interested in the data distribution in a 2D
(energy, zenith) grid; therefore we unfold these two variables simultaneously.

Figure 5.1: Reconstructed energy vs. neutrino energy (left) and reconstructed zenith
vs. true zenith (right) for the neutrino-induced cascades.
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5.1 Iterative Unfolding

After a dedicated study of many di↵erent unfolding methods and the regularization meth-
ods (to balance the variance and the bias of the unfolded result) associated with them,
Iterative Unfolding [111] has been chosen for this analysis.

5.1.1 Iterative Unfolding Method

Iterative unfolding is based on Bayes’ Theorem. The probability of having reconstructed
energy Rj given true energy Ti (P (Rj|Ti)) is known (the detector response matrix or
the unfolding matrix), and the probability of having true energy Ti given reconstructed
energy Rj (P (Ti|Rj)) is of interest. The equation connects the two probabilities is:

P (Ti|Rj) =
P (Rj|Ti)P (Ti)

P (Rj)
(5.1)

P (Rj) =
X

i

P (Rj|Ti)P (Ti), P (Ti) =
N(Ti)P
i N(Ti)

(5.2)

where N(Ti) is the number of events in true bin i. In this analysis, it is the number of
events in a certain neutrino energy and true zenith bin. Note that we know P (Rj|Ti)
because of the kinematic of interactions. For neutrinos with di↵erent flavors, the kine-
matic is di↵erent. For example, ⌫e charged-current interaction will deposit almost all the
energy into the detector while ⌫µ charged-current interaction will result in an out-going
muon which carries away a certain amount of the primary neutrino energy. Therefore
in this analysis, we need to assume a ⌫e: ⌫µ: ⌫⌧ = 1: 1: 1 flavor ratio to calculate the
detector response matrix (unfolding matrix). After plugging Eq. 5.2 into Eq. 5.1, Eq.
5.1 becomes:

P (Ti|Rj) =
P (Rj|Ti)N(Ti)P
i P (Rj|Ti)N(Ti)

(5.3)

The goal of the unfolding is to obtain the distribution in true space (N(T )) according
to the distribution in reconstructed space (N(R)). At the beginning of the iteration, the
Monte Carlo truth is chosen to be the initial N(T ) (N(Ti)(0) in the equation below), the
first iteration is expressed as following:

P (Ti|Rj)
(0) =

P (Rj|Ti)N(Ti)(0)P
i P (Rj|Ti)N(Ti)(0)

(5.4)

After acquiring the P (Ti|Rj)(0) from the first iteration, we calculate the truth distribution
after the first iteration, N(Ti)(1):

N(Ti)
(1) =

X

j

P (Ti|Rj)
(0)
N(Rj)/↵j (5.5)
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where
↵j =

X

j

P (Rj|Ti) (5.6)

corrects for acceptance losses. ↵ is the sum of all the reconstruction probabilities, given
a certain range in true space. Theoretically, it should be 1. However, due to the limited
size of the unfolding range. ↵ can be smaller than 1. Therefore it is necessary to have this
term in the denominator to correct for the acceptance losses. For example, the current
unfolding energy range is from 150 GeV to 10 PeV 1 for both reconstructed energy and
neutrino energy. If there are events with true neutrino energy within this range and after
reconstruction, they fall outside this range, ↵ would be smaller than 1. The ↵ values for
the unfolding matrix built with the baseline simulation are listed in the table below.

Energy Range
[log(E⌫/GeV)]

2.2-3.0 3.0-3.8 3.8-4.6 4.6-5.4 5.4-6.2 6.2-7.0

up-going 0.997 0.999 1.000 0.999 0.999 0.995

down-going 0.999 1.000 1.000 0.999 0.999 0.991

Table 5.1: The ↵ values for the unfolding matrix built with the baseline simulation.

For the k+1 th iteration:

P (Ti|Rj)
(k) =

P (Rj|Ti)N(Ti)(k)P
i P (Rj|Ti)N(Ti)(k)

(5.7)

N(Ti)
(k+1) =

X

j

P (Ti|Rj)
(k)
N(Rj)/↵j (5.8)

The energy binning used in this analysis is in the common logarithm space (log
10
(E/GeV))

from 2.2 to 7.0 with the bin size 0.8. The zenith binning used is [0�, 90�] (down-going)
and [90�,180�] (up-going). The same binning is used for both reconstructed space and
true space.

P (R2j|T2i) represents the probability of an up-going event with true energy i (i th energy
bin) gets reconstructed as up-going with reconstructed energy j (j th energy bin).

P (R2j+1|T2i) represents the probability of an up-going event with true energy i (i th
energy bin) gets reconstructed as down-going with reconstructed energy j (j th energy
bin).

P (R2j|T2i+1) represents the probability of a down-going event with true energy i (i th
energy bin) gets reconstructed as up-going with reconstructed energy j (j th energy bin).

1Even though the measured cross section is in the energy range of 6 TeV to 10 PeV, it is still necessary
to unfold in the whole energy range (150 GeV to 10 PeV) where events are observed, since the events
in the lower reconstructed energy bins may have a higher primary neutrino energy. For the measured
result, in the energy range of 150 GeV to 6 TeV there are large systematic uncertainties and the cross
section over this energy range is too small to be sensitive to this analysis method; therefore the result
doesn’t have physical meaning.
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P (R2j+1|T2i+1) represents the probability of a down-going event with true energy i (i th
energy bin) gets reconstructed as down-going with reconstructed energy j (j th energy
bin).

The above probability of P (R|T )s are the elements of the unfolding matrix. The unfolding
matrix elements of the baseline simulation are listed in the table below.

5.1.2 Iteration Optimization

With the increase in the number of iterations, the bias of the result (the di↵erence between
the unfolded value and the true value) decreases while the variance of the result increases.
We want the bias to be small, so that the choice of the initial distribution in true space
(N(T )(0)) in Eq. 5.4 will have a minimal e↵ect on the result. We also want a relatively
small variance so that the result is stable against statistical fluctuations. Therefore, it is
crucial to determine the optimum number of iterations.

The goal is to balance between the variance and the bias. Usually weighted Mean Square
Error (MSE) is used to quantify these two variables:

MSE
0 =

V ar +Bias
2

NEvents
(5.9)

Figure 5.2 shows the change of MSE
0 with the number of iterations. Ideally, we should

choose the stop time so that the MSE
0 is the global minimum (average over all bins), as

indicated by the vertical dotted line in the right plot of Fig. 5.2. This way we have a good
balance between the bias and the variance. However, in reality, we have no information
on the true distribution; therefore we can not calculate MSE

0 (since we can not calculate
the bias).

The method used to determine the optimal number of iterations is from Ref. [111]. During
the first few iterations, the bias decreases rapidly. After a certain number of iterations,
the bias reduction becomes negligible and the variance keeps increasing. To find this
point, we introduce a log likelihood ratio to quantify the bias. Even though the true
distribution is unknown, we could recalculate the reconstructed distribution (Niter(R))
after every iteration using Eq. 5.8:

Niter(Ri) = N(Ri)
(k+1) =

X

j

P (Ri|Tj)N(Tj)
(k+1) (5.10)

A log likelihood ratio can then be calculated using the equation below to quantify the
di↵erence between the reconstructed distribution from the unfolding and the real recon-
structed distribution. This log-likelihood also reflects the di↵erence between the true
distribution from the unfolding and the real true distribution. Therefore, we set a critical
value for the log likelihood. Once this critical value is reached, the interaction should
stop.
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Figure 5.2: Relationship between theMSE0 and the number of iterations according to
simulations: for the up-going events (left), for the down-going events (middle). Di↵erent
lines indicate di↵erent energy bins. The average MSE0 for all the energy and zenith
bins is shown on the right.

� 2ln(
LLH

LLHtrue
) = �2⇥ (

X

i

[Nori(Ri)ln(Niter(Ri))�Niter(Ri)]�
X

i

[Nori(Ri)ln(Nori(Ri))�Nori(Ri)])
(5.11)

To find the critical value, we use the original distribution in the reconstructed space
Nori(R) as the expectation of a Poisson distribution to sample Nsam(R) 100,000 times.
For each sampling, we calculate the log likelihood ratio:

� 2ln(
LLH

LLHtrue
) = �2⇥ (

X

i

[Nsam(Ri)ln(Nori(Ri))�Nori(Ri)]�
X

i

[Nsam(Ri)ln(Nsam(Ri))�Nsam(Ri)])
(5.12)

The log likelihood ratio distribution is shown in the left plot of Fig. 5.3. The critical
value is chosen to be the point corresponds to a p-value of 0.5. Once the likelihood valued
for an iteration is smaller than the critical value, we use twice the number of iterations
as the optimum number of iterations. The reason for choosing this p-value is that the
increase of p-value gets slower with the increase of iteration time. It’s hard to determine
when it gets to 1 (see the right plot of Fig. 5.3). Therefore we choose the iteration time
when p-value is close to 0.5, which is easier to determine since that’s when the likelihood
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ratio drops fastest. We then multiply this number by 2 as the number of iterations to
run. The vertical dotted line, which indicates the number of iterations in Fig. 5.2 is
determined using the method described above. Figure 5.2 shows that we are able to find
the number of iterations where the MSE

0 is at its global minimum.

Figure 5.3: Left: the distribution of the likelihood ratio calculated using Eq. 5.12.
Right: the likelihood ratio (left y-axis) vs. the number of iterations and p-value (right
y-axis) vs. the number of iterations.

A test has been done to show that the above method will give an unbiased result. Three
sets of ⌫⌧ events were simulated using NuGen [82] with the Standard Model CSMS cross
section [62] scaled by 0.2, 1 and 5 respectively. The 5⇥CSMS simulation is used to build
the unfolding matrix. The reconstructed distribution of the other two sets of simulation
are used as the input to unfold. The unfolded true distribution of three sets of simulation
using the same matrix built with the 5⇥CSMS simulation are shown in comparison to
their real true distributions in Fig. 5.4. The lower plot of Fig. 5.4 shows the ratio of
the unfolded true value and the real true value. Even when the data set being unfolded
and the data set used for building the matrix have orders of magnitudes of di↵erence in
the event distribution, the unfolding method is able to recover the true distribution with
almost zero bias. This test proves that in the real experiment, the true distribution of
the observed data can be recovered using an unfolding matrix built with the simulation
using the Standard Model cross section regardless of what the actual values of the cross
section might be.

5.2 Uncertainty Estimation

5.2.1 Markov Chain Monte Carlo

Since the unfolding method is involved, directly calculating the uncertainty on the un-
folded number of events using error propagation is overly complicated. Instead, Markov
Chain Monte Carlo (MCMC) is used for the statistical uncertainty estimation. An uni-
form prior in logarithm space from 10�10 to 1010 is chosen. The same prior and its range
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Figure 5.4: The unfolded true distribution and the real true distribution. The 2i-1
th and 2i th bins are over the same energy range, with 2i-1 th bin representing the
up-going region and 2i th bin representing the down-going region.

are used for all the bins to avoid any bias caused by the assumption for the expected
number of events in a bin. The broad range (10�10 to 1010) ensures coverage of all pos-
sible events given the experimental livetime (5 years) for this analysis. The probability
distribution function using Poisson statistics on our observations from the reconstructed
space is used to calculate the likelihood for the MCMC. 20,000 samples are simulated
using MCMC. The first 10% of the simulated samples are discarded to ensure that the
samples used have reached an equilibrium state. The sample distribution from Asimov
data (Monte Carlo expectation) for all reconstructed energy and zenith bins are shown
in Fig. 5.5.

All samples from MCMC are unfolded with the procedure described above. Then we
obtain the posterior distributions for the true space for true neutrino energy and true
zenith bins, as shown in Fig. 5.6. The vertical black lines in Fig. 5.6 indicate the central
values of the unfolded result. They are the result of directly unfolding the observed
reconstructed distribution. The colored lines in Fig. 5.6 indicate the 68% statistical
uncertainty range for the unfolded result. The uncertainty range is calculated based on
the posterior distribution: 16% in both tails of the distribution are marked as the edges
of the uncertainty range. This uncertainty range should correspond to 68% of the truth
coverage which will be discussed in the next section.

In this analysis, the ratio of down-going events to up-going events as a function of neutrino
energy is needed to calculate the corresponding cross section. After unfolding, we have
the number of events for the down-going region and the up-going region in each neutrino
energy bins. After applying the correction factor (c.f. Sec. 4.3.1), we obtain the ratio in
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Figure 5.5: The MCMC sample (for Asimov data) number of events distribution in
the reconstructed space for all reconstructed energy and zenith bins.

each neutrino energy bin. The statistical uncertainty estimation of the unfolded ratio is
done the same way as the statistical uncertainty estimation for the unfolded number of
events described in the proceeding paragraph: using MCMC to sample according to the
observed reconstructed distributions. For each sample, the ratio in the neutrino energy
bins after unfolding is calculated. The posterior distributions of the ratio for Asimov data
in the neutrino energy bins are shown in Fig. 5.7.

5.2.2 Truth Coverage Test

After choosing a method to estimate the statistical uncertainty, it is important to test
the truth coverage of the method. A truth coverage test is a test to exam if the statistical
uncertainty estimated by a certain method can cover the true value given the statistical
fluctuations.

The ratios in neutrino energy bins from Asimov data are used as the true values (shown
as the horizontal black lines in Fig. 5.8). Asimov data is used as the expectation of
the Poisson distribution sampled 100 times over the reconstructed space to serve as the
statistical fluctuations. The set of ratios for each sample is calculated from unfolding
and their statistical uncertainties (68%) are estimated using MCMC as described above
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Figure 5.6: The unfolded number of events posterior distribution for Asimov data
in the true space for true neutrino energy and true zenith bins. The vertical black
lines indicate the central values. The vertical colored lines indicate the 68% statistical
uncertainty range.

(represented by the colored data points with error bars in Fig. 5.8). The green data
points in all energy bins are the ones do not correspond to the true value within the
estimated uncertainty while the other colors do cover the true value within the estimated
uncertainty. Since the 68% range is chosen as the uncertainty, the truth coverage for this
test should be approximately 68%.

As shown in Fig. 5.8, for the first three bins, the truth coverage is ⇠ 68%. However,
for the last two bins, the truth coverage is significantly lower (the bin of log10(E/GeV):
2.2-3.0 is omitted as described in Sec. 4.4.1). The loss in coverage for the last two bins
can be explained by low statistics: the second to last bin contains ⇠ 8 events and the
last bin contains ⇠ 1 event according to the Asimov data with 5 years of livetime. When
the livetime of the Asimov data is increased to 100 years, the truth coverages in all the
bins become ⇠ 68%, as shown in Fig. 5.9.

To compensate for the insu�cient truth coverage in the low statistics bins, a re-calibration
is needed for those bins. As shown in Fig. 5.10 (left), when there are enough statistics,
the range used in the posterior distribution to estimate the uncertainty is the same with
the corresponding truth coverage. When the statistics are low, as shown in Fig. 5.10
(right), the truth coverage is always lower than the corresponding uncertainty range in
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Figure 5.7: The unfolded ratio posterior distribution for Asimov data in neutrino
energy bins. The vertical black lines indicate the central value and the vertical colored
lines indicate the 68% statistical uncertainty range.

the posterior distribution. To maintain a 68% truth coverage (indicated by the horizontal
black lines in Fig. 5.10), a larger range in the posterior distribution is needed for the
uncertainty estimation. Figure 5.10 shows that for the second to last bin, where there are
⇠ 8 events, using 80% as the range for the uncertainty estimation will result in a truth
coverage of at least 68%. However, for the last bin where the total number of events is
smaller than 1, a finer scan is needed to perform the study.

In Fig. 5.10, the expected number of events is altered by changing the livetime which
means the number of events in the down-going bin and the up-going bin are modified
by the same scaling factor. In Fig. 5.11, the ratio truth coverage is calculated for the
di↵erent combinations of the number of events in the down-going bin and the up-going
bin for the case where both of them are smaller than 1. Figure 5.11 shows that with a 90%
range in the posterior distribution taken as the uncertainty estimation, it is guaranteed
to have a truth coverage of at least 68% for the very low statistics case.

After re-calibrating the second to last bin with a 80% and the last bin with a 90% range
in the posterior distributions for the uncertainty estimation, the truth coverages for all
the bins have reached 68% as shown in Fig. 5.12.
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Figure 5.8: The unfolded ratio truth coverage for 5 years of livetime: horizontal black
lines indicate the true ratio for each neutrino energy bin; the colored data points are
the ratio and its uncertainty from each Poisson resample. The green data points do not
cover the true value while other colors do cover the true value.
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Figure 5.9: The unfolded ratio truth coverage for 100 years of livetime: horizontal
black lines indicate the true ratio for each neutrino energy bin; the colored data points
are the ratio and its uncertainty from each Poisson resample. The green data points do
not cover the true value while other colors do cover the true value.

Figure 5.10: The truth coverage rate vs. the expected number of events (µ) for
di↵erent uncertainty ranges in the posterior distribution: the case of enough statistics
(left), the case of low statistic case (right). The y-axis is the truth coverage rate and
the x-axis is the expected number of events. Di↵erent colored lines correspond to the
di↵erent ranges in posterior distribution when estimating the statistical uncertainties.
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Figure 5.11: The ratio truth coverage vs. expected number of events in the down-
going bin and the up-going bin of a low statistics case: (top) 68% range in the posterior
distribution for the uncertainty estimation, (middle) 80% range in the posterior distri-
bution for the uncertainty estimation, (bottom) 90% range in the posterior distribution
for the uncertainty estimation. The black plane indicates the 68% truth coverage plane
in the 2D plot.
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Figure 5.12: The unfolded ratio truth coverage for 5 years of livetime with recalibrated
uncertainty ranges for the last 2 bins.
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Chapter 6

Systematic Uncertainties

Besides the statistical uncertainties, one must also take systematic uncertainties into
consideration when estimating the total uncertainty for the result. In this analysis, sys-
tematic uncertainties come from the environment, such as the ice property of the South
Pole ice and the Earth composition model; the apparatus, such as the DOM e�ciency,
and the analysis techniques such as the self-veto e↵ect for atmospheric neutrinos. In
this chapter, we will discuss how these systematic e↵ects a↵ect the result of this analy-
sis, and how to estimate the total systematic uncertainty on the final result. To study
these systematic e↵ects, simulation datasets with the change of corresponding systematic
parameters are generated. These systematic datasets are generated for neutrinos of all
three flavors and have the same generation spectrum, energy range, and statistics as the
baseline simulation.

6.1 The Ice Property of the South Pole Ice

From the emission point (such as neutrinos interactions vertices) to their receiver DOMs,
photons travel through the South Pole ice. The probability of these photons getting scat-
tered or absorbed depends on the ice property which is described by parameters like the
absorption coe�cient (the average distance to absorption) and the scattering coe�cient
(the average distance between successive scatters of photons) [69]. Such parameters are
crucial for creating Monte Carlo simulations and event reconstructions. The IceCube
calibration has done dedicated studies on the ice property by using the LED calibration
system [69]. These studies provide an estimation of the uncertainty of the ice property
parameters. In this section, we will discuss the systematic e↵ects from the three most
important parameters of the ice properties: hole ice scattering, absorption, and bulk ice
scattering.

6.1.1 Hole Ice Scattering

To deploy the DOMs and the cables into the South Pole Ice, 86 vertical holes were drilled
using hot-water jet [76]. After the deployment, the hot water around the DOMs refroze
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Figure 6.1: H2 30 simulation/ H2 50 simulation in the reconstructed (left) and the
neutrino (right) energy and zenith bins for all flavors at the final event selection level.

into ice, and formed a 30 cm radius cylinder around the IceCube strings. Compared to
the pristine glacial ice (bulk ice), the refreeze ice (hole ice) contains residual air bubbles
that increase the light scattering [69]. Historically the hole ice model was built based on
the study done for the AMANDA detector [112] (H2 model) and is characterized by the
scattering length in the hole ice.

Here we study two di↵erent H2 Hole Ice models: the scattering length of 30 cm (H2 30)
and the scattering length of 50 cm (H2 50). As shown in Fig. 6.1, when changing the
scattering length in the hole ice, the di↵erence between the two models in the true energy
and zenith bins is small (less than a few percents) while the change in the reconstructed
energy and zenith bins is rather large (⇠ 10%).

In this analysis, the variable distributions from the simulated datasets contribute to two
parts of the analysis procedure. The first part is the calculation of the detector acceptance
correction factor (c.f. Sec. 4.3.1). The distribution of the neutrino energy and the true
zenith angle are used in Eq. 4.7 and Eq. 4.8. The second part is the calculation of the
unfolding matrix (c.f. Chapter 5). The unfolding matrices map from the reconstructed
space to the true space where both the distribution of the simulated datasets in the
reconstructed variables and in the true variables are used. Therefore, applying di↵erent
unfolding matrices and correction factors calculated with di↵erent systematic simulation
datasets will yield results on the cross section systematic uncertainties.

For a long time, the H2 50 model was the default baseline model. The systematic datasets
with di↵erent scattering/absorption lengths (c.f. Sec. 6.1.2 and Sec. 6.1.3) and DOM
e�ciencies (c.f. Sec. 6.2) are simulated based on H2 50. This means the hole ice model
used in all the systematic datasets is the H2 (50) model while the other systematic
parameters are being changed.

H2 30 model was originally introduced as a hole ice scattering systematic dataset. How-
ever, the study done in [88] showed that when fitting the simulation to the experimental
data the goodness of fit of the H2 30 model was better than for the H2 50 model. Fig.
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Figure 6.2: The reconstructed zenith and energy distribution of the 2011-2015 un-
blinded data, compared with the H2 (30) neutrino simulation and the H2 50 neutrino
simulation.

6.2 also shows that the H2 30 model describes the experimental data better in the recon-
structed zenith and energy distribution. Therefore, the H2 30 hole ice model is chosen to
be the baseline of this analysis. Since the H2 30 model fits the experimental data much
better than the H2 50 model, the di↵erence between the two hole ice scattering lengths
is not considered as a part of the systematic e↵ect on the hole ice model.

Now we will discuss how the systematic uncertainty associated with the hole ice e↵ect is
estimated. With the recent study done on the IceCube flasher data [69], a new method
(Flasher Hole Ice model) to parameterize the hole ice model with the angular acceptance
e↵ect of the DOMs was proposed [113], [114]. The angular acceptance e↵ect of the
DOMs is that the probability of the acceptance of a photon has directional dependence.
In this new model, there are two parameters used to describe the relationship between
the acceptance and the incoming direction. The model can be expressed as the equation
below:

Angular Acceptance = 0.34(1 + 1.5 cos ⌘ � cos3 ⌘/2) + p · cos ⌘(cos2 ⌘ � 1)3

+p2 · exp(10(cos ⌘ � 1.2))
(6.1)

The change in the p and p2 parameters in Eq. 6.1 can be used to quantify the systematic
e↵ect of the hole ice model. The angular acceptance curves calculated with di↵erent
combinations of the p and p2 parameters are shown in Fig. 6.3. The plot shows that
when changing p, the change of the curve is not significant while changing p2 causes a
much more noticeable change on the curve. Therefore, the variation of p2 is chosen to
describe the systematic e↵ect on the hole ice model.

It is suggested by the IceCube collaboration that the reasonable range of p2 for the
systematic uncertainty estimation is from -1 to +1, while p2 = 0 is served as the baseline
for the flasher hole ice model. The comparison of p2 = -1 and p2 = 1 to p2 = 0 simulation
in the reconstructed energy and zenith bins and the true energy and zenith bins is shown
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Figure 6.3: The angular acceptance curves with di↵erent parameters in comparison
with the H2 50 model. The plot is from Ref. [114]

in Fig. 6.4. The plots show a consistency in the distribution of the true space 1. In
the reconstructed space, the plots show that the p2 = 1 simulation turns to have a bias
towards the up-going direction and the p2 = -1 turns to have a bias towards the down-going
direction compared to the p2 = 0 simulation. The bias in the directional reconstruction
a↵ects the result for the down/up ratio unfolded with the systematic datasets.

To study the uncertainty associated with the change of p2 in the cross section measure-
ment, the p2=0 simulation is used as the Asimov dataset and all the three p2 variation
datasets (p2=-1, 0, 1) are used to calculate the unfolding matrices and the correction fac-
tors to be applied on the Asimov data, respectively. The ratio of the down-going to the
up-going events in the neutrino energy bins of the Asimov dataset after the application
of unfolding and the factor correction using the di↵erent systematic datasets are shown
in Fig. 6.5 (left). The corresponding cross section in the neutrino energy bins is shown in
Fig. 6.5 (right) where the red band indicates the systematic uncertainty range associated
with the change of p2 in the Asimov test.

To implement the calculation of the p2 hole ice systematic uncertainty in this analysis,
ideally, the simulations of p2 variations with the 30 cm hole ice scattering length should
be used. However, since the discovery that our data is better described by the H2 30
model is very recent, it was not feasible to produce all systematic datasets with H2 30
as a baseline model. To extrapolate the systematic e↵ects to the H2 30 model, which is
being used as the baseline of this analysis, the assumption that the systematic e↵ects on
the H2 50 model are the same with the e↵ects on the H2 30 model is adopted.

The systematic e↵ect from the change of p2 parameter on the H2 50 simulation in each
neutrino energy bin is shown in Fig. 6.6. Assuming the change in the ratio from p2 = 0

1The inconsistency in the top left bins in the top right plot is due to the statistical fluctuations of the
simulation in the low energy bins.
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Figure 6.4: The ratio of the number of events from the Flasher Hole Ice (p2 = 1)
simulation to the number of events from the Flasher Hole Ice (p2 = 0) simulation in the
reconstructed (top left) and the neutrino (top right) energy and zenith bins for events
with all flavors at the final event selection level. The ratio of the number of events from
the Flasher Hole Ice (p2 = -1) simulation to the number of events from the Flasher Hole
Ice (p2 = 0) simulation in the reconstructed (bottom left) and the neutrino (bottom
right) energy and zenith bins for events with all flavors at the final event selection level.

to p2 = 1 has the same rate for the H2 50 model and the H2 30 model, the ratio in each
neutrino energy bin for the H2 30 model when p2 = 1 can be calculated as:

Ratio30,p2=1(Bini) =
Ratio50,p2=1(Bini)

Ratio50,p2=0(Bini)
⇥ Ratio30,p2=0(Bini) (6.2)

Similarly, the ratio in each neutrino energy bin for the H2 30 model when p2 = -1 can be
calculated in the same way as:

Ratio30,p2=�1(Bini) =
Ratio50,p2=�1(Bini)

Ratio50,p2=0(Bini)
⇥ Ratio30,p2=0(Bini) (6.3)
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Figure 6.5: The systematic uncertainty associated with the p2 parameter on the ratio
(R(E⌫)) (left) and the cross section (right) in the neutrino energy bins, tested with the
Asimov data (p2 = 0). The data points of di↵erent colors represent the simulation result
from the unfolding matrices built with the simulations utilizing di↵erent p2 parameters.
The statistical uncertainties are not shown in the right plot.

In this way, the uncertainty due to the H2 30 model can be studied using the systematic
simulation of the H2 50 model. The systematic uncertainty associated with the hole ice
e↵ect on the cross section measurement result is discussed in Sec. 7.3.2.

6.1.2 The Absorption Length Uncertainty in the South Pole Ice
(Bulk Ice)

The bulk ice at the South Pole is modeled with the scattering and absorption coe�cient.
To study the systematic e↵ect associated with the bulk ice scattering and absorption
characteristic, three neutrino simulation datasets of all flavors are generated respectively:
10% increase in the scattering coe�cient, 10% increase in the absorption coe�cient and
7% decrease in both the scattering coe�cient and the absorption coe�cient 2.

To study the systematic e↵ect associated with the absorption coe�cient, the 10% increase
in the absorption coe�cient dataset and its relative ”baseline” (H2 50) simulation was
used. The comparison of +10% absorption simulation and the ”baseline” simulation in
the reconstructed energy and zenith bins and the true energy and zenith bins are shown
in Fig. 6.7. The plots show a consistency in the distribution in the true space. In the
reconstructed space, the +10% absorption dataset does not have a noticeable preference in
the directional reconstruction compared to the bias caused by changing the p2 parameter
of the hole ice scattering (see Fig. 6.4).

The H2 50 with the baseline value of the absorption coe�cient is used as the Asimov data.
The unfolding matrices and the correction factors calculated with the datasets simulated
with the +10% absorption coe�cient, the baseline absorption coe�cient, and the -7%
absorption and scattering coe�cient are applied on the Asimov data. The unfolded and

2The hole ice scattering model used in all these simulations is H2 50.
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Figure 6.6: The unfolded and factor corrected ratio of the p2 = 0 Asimov data using
the p2 = -1, 0, 1 H2 50 simulation in di↵erent neutrino energy bins.

Figure 6.7: The 10% increase in the absorption coe�cient simulation/baseline (H2
50) simulation in the reconstructed (left) and the neutrino (right) energy and zenith
bins for all flavors at the final event selection level.
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Figure 6.8: The systematic uncertainty associated with the change on the absorption
coe�cient in the bulk ice on the ratio (R(E⌫)) (left) and the cross section (right) in
the neutrino energy bins tested with the Asimov data (H2 50). The data points of
di↵erent colors represent the simulation result from the unfolding matrices built with
the simulation utilizing di↵erent variations on the absorption coe�cient. The statistical
uncertainties are not shown in the right plot.

corrected ratios of the Asimov data in the neutrino energy bins are shown in Fig. 6.8
(left) and the corresponding cross sections are shown in Fig. 6.8 (right). The plots
show that the cross section result from the absorption baseline simulation and the +10%
absorption simulation are consistent, while the cross section result from the -7% scattering
and absorption simulation are inconsistent with the other two. This observation suggests
that the increase/decrease in the absorption coe�cient will have little e↵ect on the cross
section measurement, thus can be neglected for the systematic uncertainty estimation.
The di↵erence between the cross section result processed with the -7% scattering and
absorption simulation and the baseline simulation is likely to be caused by a change in
the scattering coe�cient.

6.1.3 The Scattering Length Uncertainty in the South Pole Ice
(Bulk Ice)

To study the systematic e↵ect associated with the scattering coe�cient, a 10% increase
in the scattering coe�cient dataset and its relative ”baseline” (H2 50) simulation is used.
The comparisons of +10% scattering simulation and the ”baseline” simulation in the
reconstructed energy and zenith bins and the true energy and zenith bins are shown
in Fig. 6.9. The plots show a consistency in the distribution in the true space. In
the reconstructed space, the +10% scattering dataset reconstruction has a noticeable
preference in the direction, which likely a↵ects the cross section.

The Asimov test uses the baseline of the scattering coe�cient (H2 50) simulation as the
input data. The unfolding matrices and the correction factors calculated with the dataset
simulated with the +10% scattering coe�cient, baseline scattering coe�cient, and -7%
absorption and scattering coe�cient are applied on the Asimov data. The unfolded and
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Figure 6.9: The 10% increase in the scattering coe�cient simulation/baseline (H2 50)
simulation in the reconstructed (left) and the neutrino (right) energy and zenith bins
for neutrinos of all flavors at the final event selection level.

corrected ratios of the Asimov dataset in the neutrino energy bins are shown in Fig. 6.10
(left) and the corresponding cross sections are shown in Fig. 6.10 (right). The plots show
that the change in the scattering coe�cient does have an impact on the cross section
result.

The fact that the seemingly small systematic uncertainties in the ratio in the lower en-
ergy bins is translated into larger systematic uncertainties for the cross section and the
relatively large systematic uncertainties in the ratio in the high energy bins is translated
into smaller systematic uncertainties for the cross section can be explained by Fig. 4.4.
Fig. 4.4 shows that the ratio increases slowly with the increase of the cross section, when
the cross section value is small and the curve becomes more steep for large cross section
values. This indicates that for small cross section values, the little change in the ratio
can be mapped into to relatively large change in the cross section value while for large
cross section values the relatively large change in the ratio could only be mapped into a
small change in the cross section value.

As shown in Fig. 6.10, the lower limit on the systematic uncertainty associated with the
scattering coe�cient for the first data point is infinity. This is due to the fact that the
ratio in the first energy bin is smaller than 1 when unfolded with the +10% scattering
coe�cient simulation. Figure 4.4 shows that when the cross section is smaller than a
certain value the ratio stays at ⇠1 regardless of the change in the cross section value. This
feature suggests that when the ratio is smaller than 1, the method can not determine the
corresponding cross section, and the cross section can have any value below the threshold.

Since the change in the scattering coe�cient is likely to have an impact on the cross
section, it is taken into consideration when estimating the systematic uncertainty. The
variation range of the scattering coe�cient proposed by the IceCube collaboration is
(-10%, +10%). The current available simulated datasets are the baseline simulation
(H2 50), the scattering coe�cient +10% simulation, and the scattering and absorption
coe�cient -7% simulation. To extrapolate the -10% scattering coe�cient, only the first
two datasets are used.
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Figure 6.10: The systematic uncertainty associated with the change on the scattering
coe�cient on the ratio (R(E⌫)) (left) and the cross section (right) in the neutrino energy
bins tested with the Asimov data (H2 50). The data points of di↵erent colors represent
the simulation result from the unfolding matrices built with the simulation utilizing
di↵erent variations on the scattering coe�cient. The statistical uncertainties are not
shown in the right plot.

The unfolded and factor corrected ratios (R(E⌫)) in each neutrino energy bin of the
Asimov data using the baseline simulation and the +10% scattering simulation are shown
in Fig. 6.11. The baseline scattering is factorized as 100% and the +10% scattering as
110%. Assuming the change of the ratio due to the change in the scattering percentage
follows a linear relationship, it can be expressed as the equation below.

Ratioscat,x,50
Ratioscat,1.0,50

= x⇥ A+B (6.4)

There are two data points to Eq. 6.4 : 1.0 and 1.0, which can be used to solve for A and
B:

(
Ratioscat,1.0,50

Ratioscat,1.0,50
= 1.0⇥ A+B

Ratioscat,1.1,50

Ratioscat,1.0,50
= 1.1⇥ A+B

(6.5)

The solution to Eq. 6.5 is:

(
A = (Ratioscat,1.1,50

Ratioscat,1.0,50
� 1)/0.1

B = 1� A
(6.6)
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Once A and B are calculated, the ratio for -10% (90%) scattering can be calculated using
Eq. 6.4 with x substituted by 0.9.

Ratioscat,0.9,50
Ratioscat,1.0,50

= 0.9⇥ A+B (6.7)

Above are the extrapolations of the H2 50 model simulations. Due to the lack of the
bulk ice scattering variation systematic datasets of the H2 30 model, we can extrapolate
the e↵ect from the H2 50 simulations. Assuming the variation of the bulk ice scattering
coe�cient has the same e↵ect on H2 30 simulation and H2 50 simulation, the change in
ratio for both hole ice models follows the same linear relationship:

Ratioscat,x,30
Ratioscat,1.0,30

= x⇥ A+B (6.8)

Therefore, the +10% (110%) scattering and the -10% (90%) scattering e↵ect of the H2
30 baseline can be calculated as:

Ratioscat,x,30 = Ratioscat,1.0,30 ⇥ (x⇥ A+B) (6.9)

6.2 The Detector Response - the Relative DOM Ef-
ficiency

Apart from the systematic e↵ect associated with the ice properties, the DOM e�ciency
can potentially have an e↵ect as well. The true relative DOM e�ciency (✏0) depends on
the rate of light detection. Assuming an event deposits E0 energy into the detector, the
number of photons (n0) observed by the DOMs can be expressed as:

n0 = C✏0E0 (6.10)

where C is a known constant involving the transformation from the deposited energy to
photons. It also includes the absolute PMT photon detection e�ciency, quantum and
photon collection e�ciency, and other e↵ects. The energy reconstruction is a process
used to reconstruct the deposited energy from the observed photons:

Ereco =
n0

C✏
(6.11)
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Figure 6.11: The unfolded and factor corrected ratio of the baseline scattering Asimov
data using the baseline scattering and the +10% simulation in di↵erent neutrino energy
bins. (H2 50)

where ✏ is the relative DOM e�ciency we assumed for the DOMs. If ✏ = ✏0, the recon-
structed energy will be relatively accurate. When ✏ < ✏0, the reconstructed energy will
be overestimated and vice versa.

The ✏ used in the IceCube analyses is 99%, and it also represents the relative DOM
e�ciency used in the baseline simulation. The uncertainty on the relative DOM e�ciency
measured by the IceCube collaboration is ± 9%. Systematic simulation datasets are
generated with 90%, 95%, and 108% relative DOM e�ciency, respectively 3.

The comparison between the relative DOM e�ciency systematic simulations and the
baseline (99%) simulation are shown in Fig. 6.12. When the relative DOM e�ciency in
the simulation is smaller than that the assumed for the relative DOM e�ciency (99%)
in the reconstruction, the rate in the reconstructed energy and direction bins are smaller
than the baseline simulation and vice versa. This is expected based on Eq. 6.10 and 6.11.

The event rates are comparable for all the DOM e�ciency simulations except in the
low neutrino energy bins. This di↵erence is due to the threshold e↵ect of the event

3The hole ice scattering model used in these simulations are all H2 50
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selection. When ✏0 < ✏ , the reconstructed energy of a certain event is smaller than when
✏0 = ✏. Therefore, it may not be able to pass some reconstructed-energy-related cut in
the systematic simulation while it passes such selection in the baseline simulation.

The change in the reconstructed and true distributions associated with the change of the
DOM e�ciency is mostly homogenous. The change of DOM e�ciency does not bring a
bias in the reconstructed direction. Therefore it is likely that the change of the DOM
e�ciency will have little impact on the cross section result.

The Asimov test uses the baseline of the DOM e�ciency (99%) simulation as the input
data. The unfolding matrices and the correction factors calculated with the dataset
simulated with the DOM e�ciency of 90%, 95%, 99%, and 108% are applied on the
Asimov data. The unfolded and corrected ratios of the Asimov data in the neutrino
energy bins are shown in Fig. 6.13 (left) and the corresponding cross sections are shown
in Fig. 6.13 (right). The plots show that the change in DOM e�ciency has very little
impact on the cross section result as we predicted. Therefore the systematic uncertainty
associated with the DOM e�ciency is neglected.

6.3 The Earth Atmosphere

The major systematic e↵ect associated with the Earth atmosphere comes from two parts:
the conventional atmospheric neutrino flux and the self-veto e↵ect that exists in both the
conventional and the prompt atmospheric neutrino fluxes. In this section, these e↵ects
will be discussed and estimated.

6.3.1 The Conventional Atmospheric Neutrino Flux

The conventional atmospheric neutrino flux used in this analysis is calculated using the
Honda Model [28] which utilized the U.S. Standard 1976 [115] atmosphere model. The
calculation does not take into consideration of the South Pole location of the IceCube
detector and the fact that the atmosphere above the South Pole is much cooler compared
to the rest of the Earth. It also does not take into consideration of the seasonable
fluctuation of the atmospheric temperature.

To make a more realistic estimation of the conventional atmospheric neutrino flux, the
NRLMSISE00 [116] model was used. The NRLMSISE00 model is an empirical atmo-
spheric model that models the temperature and the density of the atmosphere. Since the
experimental data used in this analysis were collected continuously for five years, in the
conventional flux calculation, the atmospheric data used are the average between winter
and the summer seasons.

The newly calculated conventional neutrino flux for electron neutrinos, electron antineu-
trinos, muon neutrinos, and muon antineutrinos are shown in Fig. 6.14 in comparison
with the original conventional neutrino flux. The plots show that the flux calculated
using the more accurate model does show a di↵erence from the one calculated using the
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Figure 6.12: DOM e�ciency = 90% simulation/ DOM e�ciency = 99% simulation
in the reconstructed (top left) and the neutrino (top right) energy and zenith bins
for neutrinos of all flavors at the final event selection level. DOM e�ciency = 95%
simulation/ DOM e�ciency = 99% simulation in the reconstructed (middle left) and
the neutrino (middle right) energy and zenith bins for neutrinos of all flavors at the
final event selection level. DOM e�ciency = 108% simulation/ DOM e�ciency = 99%
simulation in the reconstructed (bottom left) and the neutrino (bottom right) energy
and zenith bins for neutrinos of all flavors at the final event selection level.
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Figure 6.13: The systematic uncertainty associated with the relative DOM E�ciency
on the ratio (R(E⌫)) (left) and the cross section (right) in the neutrino energy bins
tested with the Asimov data (H2 50). The data points of di↵erent colors represent
the simulation result from the unfolding matrices built with the simulation utilizing
di↵erent relative DOM e�ciencies. The statistical uncertainties are not shown in the
right plot.

older model. The di↵erence is relatively small (a few percents) and is mainly located in
the up-going region.

The small di↵erence in the conventional flux calculations indicates that the impact of us-
ing the updated atmospheric model might be small on this analysis. The total event rates
of the baseline simulation (H2 30) for neutrinos of all flavors at the final event selection
level are calculated with the NRLMSISE00 conventional flux and the U.S. Standard 1976
conventional flux respectively with all the other parameters (the astrophysical neutrino
flux, the prompt atmospheric neutrino flux, the normalization of the fluxes) kept the
same. The comparison between the two total rates is shown in Fig. 6.15.

It is expected that the di↵erence between the total rates are mostly in the low energy
region where the conventional neutrino flux dominates. In the high energy region, where
the astrophysical neutrino flux dominates, the di↵erence between the conventional neu-
trino flux will have little impact on the total event rate. Even in the low energy region,
the di↵erence is smaller than 2%.

The Asimov test uses the baseline simulation (H2 30) with the conventional flux calculated
with the U.S. Standard 1976 model as the Asimov data. The Asimov data was treated
with unfolding matrices and the correction factors calculated using event rates from the
two atmospheric models respectively. The unfolded and corrected ratios of the Asimov
data in the neutrino energy bins are shown in Fig. 6.16 (left) and the corresponding cross
sections are shown in Fig. 6.16 (right). The systematic uncertainty associated with the
atmospheric model is very small, thus neglected.
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Figure 6.14: The ratio of the conventional atmospheric neutrino flux calculated using
the NRLMSISE00 model to the one using the U.S. Standard 1976 model in the neutrino
energy and zenith bins for ⌫e (top left), ⌫̄e (top right), ⌫µ (bottom left) and ⌫̄µ (bottom
right). The data used to make these plots are from Ref. [116] and Ref. [115]. The plots
are provided by H. M. Niederhausen.

6.3.2 The Self-Veto E↵ect for Atmospheric Neutrinos

The self-veto e↵ect was originally described in Ref. [109]. The publication mainly focused
on the case of the charged pion and kaon two-body decay:

⇡
± ! µ

± + ⌫µ(⌫̄µ) (6.12)

K
± ! µ

± + ⌫µ(⌫̄µ) (6.13)

The filtering system in IceCube and the event selection developed for this analysis are
designed to remove muons. When the decay product muon arrives at the detector in the
vicinity of the neutrino, the neutrino will be vetoed together with the muon. Ref. [109]
reports that in the case of charged pion decay the distances between the muon and the
neutrino after a 10 km path is less than 1 m (0.1 m) when the neutrino energy is above
1 TeV (10 TeV). The distance is less than 10 m (1m) in the case of charged kaon decay
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Figure 6.15: The comparison between the total event rate calculated with the NRLM-
SISE00 conventional flux and the U.S. Standard 1976 conventional flux in the recon-
structed (left) and true (right) energy and zenith bins for the baseline simulation (H2
30) for neutrinos of all flavors at the final event selection level.

Figure 6.16: The systematic uncertainty associated with the atmospheric model on
the ratio (R(E⌫)) (left) and the cross section (right) in the neutrino energy bins tested
with the Asimov data (H2 30). The data points of di↵erent colors represent the result
from the unfolding matrices built with the conventional neutrino flux calculated using
di↵erent atmospheric models. The statistical uncertainties are not shown in the right
plot.
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Figure 6.17: The comparison between the self-veto e↵ect calculated with di↵erent
Eµ,mins and the event rate of the atmospheric neutrino with the full CORSIKA simu-
lation in the reconstructed energy bins (left) and in the neutrino energy bins (right).
The plots are from Ref. [88].

for the same conditions. This distance is su�ciently small for neutrinos to be vetoed due
to the accompanied muons.

The self-veto e↵ect only exists for atmospheric neutrinos originated from the southern
hemisphere, since the accompanied muons from the northern hemisphere are all absorbed
by the Earth before reaching the detector. This causes a di↵erence in the signal e�ciency
in the down-going region and the up-going region which is crucial for calculating detector
acceptance correction factors (c.f. Sec. 4.3.1) and for building the unfolding matrices
(c.f. Chapter 5) in this analysis. It is important to correctly model the veto probability
for di↵erent neutrino energy and zenith regions for di↵erent neutrino flavors. Ref. [93]
introduced a method to parameterize the veto probability with one parameter Eµ,min.
Eµ,min is the minimum energy of the muon needed to trigger the veto e↵ect when it
reaches the detector.

When we consider the systematic uncertainty associated with the self-veto e↵ect, we are
considering the uncertainty of Eµ,min. A study done in Ref. [88] has shown that the
choice of Eµ,min = 100 GeV for the event selection of this analysis provides an excellent
description of the self-veto e↵ect. The study was conducted using a full CORSIKA
[85] simulation which includes the production and the propagation of the neutrinos and
muons. The simulation was processed through all the filters and the event selections of this
analysis. By simulating the full chain of the atmospheric neutrino production, the event
rate expectation from this simulation will reflect the real self-veto e↵ect. By comparing
the self-veto e↵ect calculated using di↵erent Eµ,mins with the atmospheric neutrino rate
expectation from the full CORSIKA simulation, it is concluded that the choice of Eµ,min =
100 GeV provides the best resemblance of the full CORSIKA simulation (Fig. 6.17). Due
to the good agreement between the self-veto e↵ect predicated by Eµ,min = 100 GeV and
the one from the full CORSIKA simulation, the uncertainty on Eµ,min should be small.
Hence the systematic uncertainty associated with the self-veto e↵ect can be neglected for
this analysis.
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6.4 The Astrophysical Neutrino Flux

One of the advantages of utilizing the ratio of the down-going events to the up-going
events in this analysis is the astrophysical neutrino flux independence. With a general
and reasonable assumption of the astrophysical neutrino flux being isotropic, the flux
component in both the denominator and the numerator in Eq. 4.4 cancel out.

The astrophysical neutrino flux independence makes this method unique from some of
the other cross section measurements conducted with the IceCube data [117], [118], where
in both Refs. the assumption about the shape of the astrophysical neutrino flux model
was made. The only step in this analysis that involves the shape of the astrophysical
neutrino flux is the building of the unfolding matrices. The unfolding matrices reflect the
kinematics of the neutrino interaction. They are formed by the probabilities of a neutrino
depositing a certain amount of energy into the detector from its primary energy. These
probabilities are neutrino flavor dependent. Therefore, the flavor ratio determines the
element values for the unfolding matrices. While the neutrino flavor ratio in the astro-
physical neutrino predominant energy region and the atmospheric neutrino predominant
energy region are fixed, the flavor ratio in the transition region is dependent of the com-
position of the two. Therefore the shape of the astrophysical neutrino flux could have an
impact of the unfolding matrices in this energy region.

The uncertainty of the astrophysical neutrino flux used to estimate its impact on the
cross section measurement is chosen as the 68% confidence level contour as shown in the
left plot of Fig. 6.18. The contour is formed by the combinations of the astrophysical
neutrino flux index and the normalization parameter. The data shown in Fig. 6.18 (left)
is from Ref. [88]. The Asimov data is the baseline simulation (H2 30) weighted with the
best fit result of the astrophysical neutrino flux. Di↵erent unfolding matrices built with
the same simulation weighted using di↵erent astrophysical neutrino flux parameters from
the contour are used to unfold the Asimov data. The cross section measurement results
of these tests are shown in the right plot of Fig. 6.18. The red band covers the range of
the minimum to the maximum value among all the test results in each neutrino energy
bin. The plot shows that the impact of the uncertainty on the astrophysical neutrino
flux is mainly in the energy bin of 103.8 - 104.6 GeV where the transition from the atmo-
spheric neutrino predominant energy region to the astrophysical neutrino predominant
energy region happens, and it’s relatively small compared to the systematic uncertainty
associated with the ice scattering coe�cient.
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Figure 6.18: Left: the 68% confidence level contour of the fit result of the astrophysical
neutrino flux (data provided by Ref. [88]) with the best fit value indicated by the star
in the center of the contour. Right: the systematic uncertainty associated with the
astrophysical neutrino flux (red band) in the cross section measurement result of the
Asimov Data. The statistical uncertainties are not shown in the right plot.
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Chapter 7

Results

In the previous chapter, we discussed the analysis method and the method to estimate the
statistical and systematic uncertainty on the neutrino cross section. The validation of the
methods was done with Monte Carlo simulation. The impacts from di↵erent systematic
parameters were also estimated using Monte Carlos simulation.

In this chapter, we describe the application of the analysis method on the unblinded
experimental data. The neutrino interaction cross section measurement result using the
five years of IceCube data is presented along with the statistical and systematic uncer-
tainty. The result is compared with two other cross section measurements using di↵erent
datasets from the IceCube data as well as theoretical predictions. The p-value for the
result is calculated and presented.

7.1 Analysis Procedure Summary

The procedure of the analysis can be summarized as below:

• Obtain the distribution of the final level experimental data and the MuonGun back-
ground simulation in reconstructed energy and zenith bins. The six reconstructed
energy bins are evenly distributed in the logarithmic scale [log10(Ereco/GeV)] from
2.2 to 7. The two reconstructed zenith bins are from 0o to 90o (down-going) and
from 90o to 180o (up-going).

• The Monte Carlo background rates are subtracted from the experimental data rates
in each reconstructed energy and zenith bin to obtain the neutrino rate.

• The neutrino rates in the reconstructed energy and zenith bins are used as the input
for the unfolding procedure. The unfolding matrices were built with the baseline
neutrino Monte Carlo simulation at the final level.

• The unfolded neutrino rates from the experimental data in the neutrino energy and
zenith bins are used to form the ratios of down-going events to up-going events. This
ratio in each neutrino energy bin is used to find the corresponding cross section.
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Energy Range
[log(E⌫/GeV)]

2.2 - 3.0 3.0 - 3.8 3.8 - 4.6 4.6 - 5.4 5.4 - 6.2 6.2 - 7.0

Down-going 117+14

�14
785+35

�36
363+25

�24
73+11

�11
4.4+2.4

�2.3 1.5+1.2
�1.3

Up-going 565+30

�30
1918+51

�52
554+29

�29
50+9

�9
1.5+1.2

�1.0 0.037+0.044
�0.026

Table 7.1: The number of down-going and up-going events in the neutrino energy
bins for the unblinded data after unfolding with statistical uncertainties.

• The neutrino rate from the experimental data in the reconstructed energy and zenith
bins are unfolded with unfolding matrices built with the systematic neutrino Monte
Carlo simulations at the final level to estimate the systematic uncertainty on the
measured cross section.

7.2 Unfolding Result

7.2.1 Unfolded Distribution

The number of events for data and Monte Carlo in the reconstructed space are shown in
Table 3.14 and 3.15. The corresponding distribution plots are shown in the top row of
Fig. 7.1. As discussed in Chapter 6, the Monte Carlo simulation used as the baseline is
the H2 holeice model with 30 cm scattering length (H2 30).

The unfolding method described in Sec. 5.1 is applied to the data using the unfolding
matrix built with the H2 30 simulation. The unfolded number of events of the unblinded
data in neutrino energy bins and in the true down-going and true up-going directions are
shown in Table 7.1. The method for the estimation of the statistical uncertainties shown
in the table was shown in Sec. 5.2.1. The corresponding distribution of the unfolded data
and Monte Carlo in the neutrino space are shown in the bottom row of Fig. 7.1.

7.2.2 Statistical Uncertainty Calculation

The statistical uncertainty was estimated using MCMC (c.f.Sec. 5.2.1). The sampling
was done according to the distribution of the unblinded data in the reconstructed space.
Each sample is unfolded using the same procedure as used on the experimental data. The
posterior distribution of the sampling in the true space is shown in Fig. 7.2. The uncer-
tainty range on the posterior distribution to ensure the 68% coverage in the statistical
uncertainty is chosen as: 68% for the first four energy bins, 80 % for the fifth energy bin
and 90% for the last energy bin due to the little statistics in the last two energy bins
(c.f.Sec. 5.2.2).
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Figure 7.1: The reconstructed energy distribution for down-going events (top left)
and up-going events (top right). The unfolded distribution in neutrino energy bins for
true down-going events (bottom left) and true up-going events (bottom right).

7.3 Cross Section Measurement Result

7.3.1 Statistical Uncertainty

Finally, we calculate the ratio of the unfolded number of down-going to up-going events,
corrected for the detector acceptance e↵ect with Eq. 4.9 and Table 4.1. The statisti-
cal uncertainty on this ratio was calculated using MCMC. The unfolded ratios of the
unblinded data in neutrino energy bins are shown in the left plot of Fig. 7.3 and its
posterior distribution of the MCMC sampling is shown in the right plot of Fig. 7.3 with
the center value of the ratio indicated with black lines and the 68% confidence level of
the statistical uncertainty indicated with colored lines.

We find the cross section value for each ratio in neutrino energy bins utilizing the ratio-
cross section correlation as shown in Fig. 4.4. The upper and lower value of the ratio
statistical uncertainty was used to find the corresponding statistical uncertainty on the
cross section. The result with the statistical uncertainty is shown in Fig. 7.4. As discussed
in Sec. 4.4.1, at low neutrinos energies, when the cross section value is low, the Earth
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Figure 7.2: The unfolded number of events posterior distribution for the unblinded
data in all neutrino energy and zenith bins. The vertical black lines indicate the central
value and the vertical colored lines indicate the 68% statistical uncertainty range.

Figure 7.3: Left: the unfolded ratio of the unblinded data in neutrino energy bins with
statistical uncertainty. Right: the unfolded ratio posterior distribution of the unfolded
ratio from the MCMC in neutrino energy bins. The vertical black lines indicate the
central value and the vertical colored lines indicate the statistical uncertainty at 68%
C. L.
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Figure 7.4: The cross section measurement result of the unblinded data and its sta-
tistical uncertainty (68% C. L.).

Energy Range
[log(E⌫/GeV)]

3.8 - 4.6 4.6 - 5.4 5.4 - 6.2 6.2 - 7.0

Bin Center
Value

4.133+0.004
�0.006 4.916+0.011

�0.015 5.734+0.001
�0.017 6.513+0.010

�0.015

Cross Section
[mb]

2.00+0.54
�0.65 ⇥ 10�7 5.0+1.6

�1.5 ⇥ 10�7 1.02+1.26
�0.68 ⇥ 10�6 7.6+8.8

�6.4 ⇥ 10�6

Table 7.2: The cross section measurement result of the 2011-2015 IceCube cascade
sample and its statistical uncertainty (68% C. L.).

absorption e↵ect has little significance and the ratio is inseparable from 1. In Chapter
6, we have shown that the systematic e↵ects are dominant at lower energies. Therefore
only the statistically significant results are presented in Fig. 7.4 and Table 7.2

7.3.2 Systematic Uncertainty

The study done in Chapter 6 shows that the most significant systematic uncertainties
are associated with the hole ice scattering, the bulk ice scattering, and the astrophysical
neutrino flux. Among the three factors, the bulk ice scattering is predominant. In
this section, we will calculate the systematic uncertainty associated with these factors
using the method discussed in Chapter 6 and present the total value of the systematic
uncertainty.

141



Figure 7.5: The ratio (left) and the cross section (right) as a function of neutrino
energy for three values of the p2 parameter. The data points of di↵erent colors represent
the result from the unfolding matrices built with the simulation using di↵erent p2
parameters. The statistical uncertainty is not shown in the right plot.

Flasher Hole Ice Model

The e↵ect of changing the p2 parameter is studied using the H2 50 simulated datasets with
variations on the p2 parameter (p2 = �1, 0, 1). The systematic uncertainty associated
with the p2 parameters is calculated using Eq. 6.2 and 6.3. The uncertainties on the
ratio and the cross section measurement result are shown in Fig. 7.5 and their values are
shown in Table 7.3.

Bulk Ice Scattering

The largest systematic e↵ect comes from the scattering coe�cient in the bulk ice. With
the available simulation of H2 50 and H2 50 with a 10% increase in the scattering co-
e�cient, we extrapolate the e↵ect of any change on the scattering coe�cient in the H2
50 simulation with Eq. 6.5. To calculate the systematic uncertainty associated with the
bulk ice scattering coe�cient, Eq. 6.9 is applied. The Ratioscat,1.0,30 is the unfolded ratio
of the unblinded data where the unfolding matrix is built with the baseline simulation
(H2 30). The uncertainty on the scattering coe�cient is estimated as ±10%. Therefore
the x in Ratioscat,x,30 are 90% and 110%.

The uncertainty on the ratio and the cross section measurement result are shown in Fig.
7.6 and their values are shown in Table 7.3.

Astrophysical Neutrino Flux

To estimate the systematic uncertainty associated with the astrophysical neutrino flux,
the unfolding matrices are built with the same baseline simulation but di↵erent astro-
physical neutrino fluxes (according to the contour in Fig. 6.18) when calculating the total
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Figure 7.6: The ratio (left) and the cross section (right) as a function of neutrino
energy for three values of the bulk ice scattering coe�cient. The data points of di↵erent
colors represented the result from the unfolding matrices built with the simulation using
di↵erent variations on the bulk ice scattering coe�cient. The statistical uncertainty is
not shown in the right plot.

Figure 7.7: The systematic uncertainty associated with the change in the astrophysi-
cal neutrino flux of the cross section in the neutrino energy bins of the unblinded data.
The statistical uncertainty is not shown in the right plot.

neutrino weight 1. The unblinded data was unfolded with these matrices. The red band
in Fig. 7.7 indicates the range of the cross section measurement corresponding to these
unfolding results. This range is the systematic uncertainty associated with the change
in the parameters of the astrophysical neutrino flux. The values of the uncertainty are
shown in Table 7.3.

Table 7.3 summaries all the systematic uncertainties considered in this analysis, and the
total systematic uncertainties are all of the above added in quadrature. The lower total
systematic uncertainty of the energy range 103.8 � 104.6 [log10(E⌫/GeV)] is equal to the
value itself. This indicates that the systematic uncertainty is too large that the ratio of

1The simulated neutrinos are generated with a di↵erent spectrum from their real flux. The neutrino
weight is applied to calculate the real neutrino rate from the simulated spectrum.
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Energy
Range
[log(E⌫/GeV)]

3.8 - 4.6 4.6 - 5.4 5.4 - 6.2 6.2 - 7.0

Hole Ice Scat-
tering [mb]

2.00+0.49
�0.39 ⇥ 10�7 4.99+0.43

�0.36 ⇥ 10�7 1.02+0.05
�0.06 ⇥ 10�6 7.59+0.07

�0.47 ⇥ 10�6

Bulk Ice Scat-
tering [mb]

2.0+1.5
�2.0 ⇥ 10�7 5.0+1.7

�1.8 ⇥ 10�7 1.02+0.22
�0.21 ⇥ 10�6 7.6+1.2

�1.1 ⇥ 10�6

Astro. ⌫ Flux
[mb]

2.00+0.25
�0.26 ⇥ 10�7 4.99+0.33

�0.22 ⇥ 10�7 1.024+0.005
�0.004 ⇥ 10�6 7.59+0.79

�0.57 ⇥ 10�6

Total [mb] 2.0+1.6
�2.0 ⇥ 10�7 5.0+1.8

�1.8 ⇥ 10�7 1.02+0.22
�0.22 ⇥ 10�6 7.6+1.5

�1.3 ⇥ 10�6

Table 7.3: The cross section measurement result of the 2011-2015 IceCube cascade
sample and its systematic uncertainties.

Energy Range
[log(E⌫/GeV)]

3.8 - 4.6 4.6 - 5.4 5.4 - 6.2 6.2 - 7.0

Bin Center
[log(E⌫/GeV)]

4.133+0.004
�0.006 4.916+0.011

�0.015 5.734+0.001
�0.017 6.513+0.010

�0.015

Cross Section
with �stat [mb]

2.00+0.54
�0.65 ⇥ 10�7 5.0+1.6

�1.5 ⇥ 10�7 1.02+1.26
�0.68 ⇥ 10�6 7.6+8.8

�6.4 ⇥ 10�6

Cross Section
with �sys [mb]

2.0+1.6
�2.0 ⇥ 10�7 5.0+1.8

�1.8 ⇥ 10�7 1.02+0.22
�0.22 ⇥ 10�6 7.6+1.5

�1.3 ⇥ 10�6

Cross Section
with �total [mb]

2.0+1.7
�2.1 ⇥ 10�7 5.0+2.4

�2.4 ⇥ 10�7 1.02+1.28
�0.72 ⇥ 10�6 7.6+8.9

�6.5 ⇥ 10�6

Table 7.4: The cross section measurement result of the 2011-2015 IceCube cascade
sample with its statistical uncertainty (68% C. L.), systematic uncertainty, and the
combined uncertainty.

the down-going events to the up-going events in that energy range could be lower than
1 within the systematic uncertainty. It was discussed in Sec. 4.4.1 that the method
reaches its limit at the point where ratio equals to 1. Hence for this energy bin there is
no constraint on the lower end of the measured cross section value.

Table 7.4 shows the statistical uncertainty, the systematic uncertainty, and the combined
uncertainty (the statistical uncertainty and the systematic uncertainty added in quadra-
ture) of the measured cross section. We noticed that in the energy range of 103.8 � 105.4

[log10(E⌫/GeV)] the dominant uncertainty is the systematic uncertainty while in the en-
ergy range of 105.4 � 107.0 [log10(E⌫/GeV)] the dominant uncertainty is the statistical
uncertainty. To get a better precision in the cross section measurement in the low energy
range, a better understanding of the systematic parameters is needed while in the high
energy range, more statistics are needed.
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7.4 Discussion of the Cross Section Measurement Re-
sult

7.4.1 Physical Interpretation of the Measured Cross Section

This analysis utilizes the Earth absorption e↵ect to measure the cross section. The
measured cross section reflects all neutrino interactions of which the majority is the deep
inelastic scattering (DIS). However, at E⌫ ⇠ 6.3 PeV, the cross section of an electron
antineutrino interacting with an electron and producing a W boson becomes significantly
large (c.f.Sec. 1.3.2):

⌫̄e + e
� ! W

� (7.1)

This process is called Glashow Resonance (GR). This kind of interaction has only been
calculated theoretically without experimental events being detected. Since E⌫ of 6.3 PeV
is in the energy range of this measurement, this analysis is sensitive to this e↵ect. No other
cross section measurements done with IceCube data [117], [118] have such sensitivity.

At high energies where the astrophysical neutrino flux is predominant, the number of
up-going events absorbed by the Earth due to DIS is proportional to:

�astro, total ⇥ �DIS ⇥Np+n, Earth, (7.2)

where �astro, total is the total astrophysical neutrino flux for neutrinos and antineutrinos
of all flavors, �DIS is the total cross section of the charged-current interaction and the
neutral current interaction averaged over neutrinos and antineutrinos, and Np+n, Earth is
the nucleon target density in the Earth.

In the last energy bin (106.2 � 107.0 [log(E⌫/GeV)] ) where the Glashow Resonance is
expected to happen, the number of up-going events absorbed by the Earth due to GR is
proportional to:

�astro,⌫̄e ⇥ �GR ⇥Ne, Earth, (7.3)

where �astro,⌫̄e is the flux of astrophysical electron antineutrinos, �GR is the cross section
of GR and Ne, Earth is the electron target density in the Earth.

The chemical composition of the Earth is shown in Table 7.5 alongside with the number
of the electrons and nucleons per atom of the elements. These elements contribute to
99% of the Earth mass. All of these elements except for iron, nickel, and aluminum have
isoscalar nucleus which means the number of the electrons of the atom is half of the

145



Element Composition No. of electrons
per Atom

No. of nucleons
per Atom

Fe 32.1% 26 56

O 30.1% 8 16

Si 15.1% 14 28

Mg 13.9% 12 24

S 2.9% 16 32

Ni 1.8% 28 58

Ca 1.5% 20 40

Al 1.4% 13 27

Table 7.5: The chemical composition of the Earth and the number of electrons and
nucleons per atom. The numbers are from Ref. [119]

Process ⇠

pp ! ⇡
± pairs 9/54

pp ! ⇡
± with damped µ

± 6/54

p� ! ⇡
+ only 4/54

p� ! ⇡
+ only with damped µ

+ 0

Table 7.6: The electron antineutrino fraction in the total astrophysical neutrino flux
at Earth for di↵erent astrophysical source models. The numbers are from Ref. [30]

number of the nucleons of the atom. For iron, nickel, and aluminum, the ratio of the
number of electrons to nucleons is approximately one half. Therefore it is safe to assume
the electron target density is one half of the nucleon target density:

Ne, Earth ⇡ 1

2
Np+n, Earth (7.4)

The flux of astrophysical electron antineutrinos at Earth can be written as:

�astro,⌫̄e = ⇠ · �astro, total, (7.5)

where, ⇠ is the fraction of �astro,⌫̄e in �astro, total, and it depends on the process assumed at
the source of the neutrino generation. A list of di↵erent processes and their corresponding
⇠ values are given in Table 7.6.

The total number of the up-going events absorbed in the Earth for any kind of interactions
at E⌫ ⇠ 6.3 PeV can be expressed as:

�astro, total ⇥ �DIS ⇥Np+n, Earth + �astro,⌫̄e ⇥ �GR ⇥Ne, Earth (7.6)
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Utilizing Eq. 7.4 and 7.5, Eq. 7.6 becomes:

�astro, total ⇥ (�DIS + ⇠ · 1
2
�GR)⇥Np+n, Earth (7.7)

The measured cross section includes all neutrino interactions. In the energy range of
E⌫ < 106.2 GeV and E⌫ > 107 GeV, the measured total cross section is the deep inelastic
scattering cross section only: �⇤

total=(�CC+NC
⌫ + �

CC+NC
⌫̄ )/2. In the energy range of 106.2

GeV< E⌫ < 107 GeV, the measured total cross section is the deep inelastic scattering
cross section and the Glashow Resonance cross section with the electron antineutrino flux
fraction factor: �⇤

total=(�CC+NC
⌫ + �

CC+NC
⌫̄ )/2 + ⇠

2
�GR.

7.4.2 Comparison with Neutrino-Nucleon DIS Cross Section
Calculations

The cross section measurement result of this analysis is shown in Fig. 7.8 alongside
with several neutrino-nucleon DIS cross section calculations [62], [120], [121], [122], [123]
and one previous IceCube cross section measurement result [117]. The black error bars
are the statistical uncertainty and the grey error bars are the statistical and systematic
uncertainty added in quadrature.

In the energy range of this measurement (6 TeV to 10 PeV), the neutrino-nucleon DIS
cross section has not been directly measured in the Earth-based accelerators. However, it
can be calculated using the parton distribution functions (PDFs) within the framework
of the Standard Model. In Ref. [120] (CTW), the neutrino-nucleon DIS cross section for
E⌫ > 104 GeV region has been calculated using the MSTW 2008 next-to-leading-order
(NLO) PDFs [124] using a leading-order treatment of the coe�cient functions. In Ref.
[62] (CSMS) the calculation in the similar energy range was done with the more up-to-
date PDFs from HERA [125]. The fit used the next-to-leading-order (NLO) DGLAP
formalism [126], [127], [128], [129]. Even though the calculated cross section values of
the CTW calculation and the CSMS calculations are consistent, due to the more precise
PDFs at very low x, the uncertainty of the calculated cross section at very high energy
(E⌫ > 109 GeV) in the CSMS calculation is much smaller compared to the uncertainty in
the CTW calculation. In IceCube simulations, the CSMS cross section is used to estimate
the probability of neutrino interactions.

Ref. [121] (BDH) imposes a constraint that the neutrino-nucleon DIS cross section sat-
isfies the saturated Froissart bound [130], [131], [132], [133] at ultra high energies (very
low x). Therefore this model is only valid for E⌫ > 106 GeV.

Ref. [122] (AHW) is another calculation that goes beyond pQCD. It combines the Frois-
sart bound with the dipole model framework [134], [135], [136], [137], [138], [139] of the
nucleon in the attempt to account for the potential parton saturation e↵ect [140]. Below
108 GeV, the calculated cross section in Ref. [122] is consistent with the pQCD calculated
results [62], [120]. Above 108 GeV, it is consistent with the results from Ref. [121]. If we
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Figure 7.8: The cross section measurement result of the unblinded data with its
statistical and the systematical uncertainty in comparison with neutrino-nucleon in-
teraction cross section calculations [62], [120], [121], [122], [123] and one previous Ice-
Cube cross section measurement result [117]. The measured cross section includes all
neutrino interactions. In the energy range of E⌫ < 106.2 GeV and E⌫ > 107 GeV,
the measured total cross section is the deep inelastic scattering cross section only:
�⇤

total=(�CC+NC
⌫ + �CC+NC

⌫̄ )/2. In the energy range of 106.2 GeV< E⌫ < 107 GeV,
the measured total cross section is the deep inelastic scattering cross section and the
Glashow Resonance cross section with the electron antineutrino flux fraction factor:
�⇤

total=(�CC+NC
⌫ + �CC+NC

⌫̄ )/2 + ⇠
2
�GR.

were able to collect data that is statistically significant in the energy range of E⌫ > 108

GeV, the gluon saturation e↵ects could potentially be confirmed or excluded.

Ref. [123] presents a scenario of new physics, where the cross section is enhanced due to
the low-scale quantum-gravity e↵ect. This is an e↵ect that can be potentially observed
at the energy range of multi-TeV to PeV, which overlaps with the energy range of this
measurement. One of the scenarios: large extra dimensions from the ADD scenario [141],
[142], [143] is shown in Fig. 7.8. In this scenario the increase of the cross section above
106 GeV is much more drastic than the Standard Model cross section.

The green curve in Fig. 7.8 is the combination of the Standard Model DIS cross sec-
tion calculated in Ref. [62] and the Glashow Resonance cross section [64] assuming the
astrophysical neutrinos are produced in the pp process.
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The first experimental neutrino-nucleon cross section measurement in the multi-TeV neu-
trino energy range was done in Ref. [117]. It was conducted with one year of the up-going
⌫µ sample in the IceCube data. Due to the nature of the sample, it only measured the
charged-current neutrino-nucleon DIS interaction cross section. A likelihood fit was per-
formed on the data to find a scaling factor of the CSMS cross section using the Earth
absorption e↵ect. The measured scaling factor is for the entire energy range of the sam-
ple, therefore it does not have neutrino energy dependence. In Fig. 7.8, the plotted
result from Ref. [117] assumes the same scaling factor for the charged-current interaction
and the neutral current interaction. The uncertainty is the statistical and systematic
uncertainty added in quadrature.

The result from this analysis shows consistency with both the Standard Model cross sec-
tion calculations and the previously published IceCube result within the uncertainties.
At the multi-PeV energy region, the unique nature of this analysis shows the potential
for probing the Glashow Resonance by the Earth absorption e↵ect. With more statistics
collected in the future, and the assumption that the enhancement of the neutrino inter-
action cross section in the multi-PeV energy range from the DIS cross section is only due
to the Glashow Resonance but not other new physics e↵ects, the fraction of the electron
antineutrinos in the total astrophysical neutrino flux could be identified through with this
analysis which will indicate the astrophysical neutrino generation process at the source
(pp or p�).

7.4.3 P-Value

P-value is the probability of observing the data when the given null hypothesis is true. In
this analysis, there are two questions are of interest: 1. can we reject the Standard Model
with the observed data, 2. can we rule out the existence of the Glashow Resonance with
the observed data? In this section, we will show the calculation of the p-value of both
cases and the interpretation of the results.

7.4.3.1 The P-Value of the Standard Model DIS Cross Section

In this test, the null hypothesis is that the increase of the DIS interaction cross section
with the increase of the neutrino energy follows the CSMS [62] calculation which was done
within the Standard Model framework. The simulated neutrino datasets were generated
with the CSMS cross section, thus are used for this hypothesis testing. The lifetime used
to calculate the expected number of events in the reconstructed down-going and up-going
region in each reconstructed energy bin is the same as observed in the experimental data
in order to include the statistical uncertainty.

100,000 samples were generated according to the Poisson distribution with means equal
to the expected number of events from the Monte Carlo simulation. Each sample is
treated with the same procedure as data to get the ratios of the down-going events to
the up-going events in the neutrino energy bins. The probability distribution function
of the ratios from the 100,000 samples in each neutrino energy bin is shown in Fig. 7.9
(left) with the ratio from the experimental data indicated by the vertical black lines. The
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p-value of each neutrino energy bin is calculated as the integral of the probability from
the ratio from the experimental data to the closer tail of the distribution:

p =

Z
1

ratiodatai

P (r)dr (7.8)

p-valuebini
= min(p, 1� p) (7.9)

We calculate the summed p-value over the four neutrino energy bins as:

p-valuesum =
4X

i=1

log
10
(p-valuebini

) (7.10)

p-valuesum is calculated for all the 100,000 samples and the distribution is shown in Fig.
7.9 (right) with the vertical red line indicating the p-valuesum for the experimental data.
As constructed in Eq. 7.9, the maximum p-value for individual neutrino energy bin is
0.5, therefore the maximum p-valuesum is 4log

10
(0.5) ⇡ 1.2. The greater the p-valuesum

the more likely to observe the observed data. The overall p-value is calculated as:

p-value =

Z
p-valuesum,data

�1

P (p-valuesum)dp-valuesum (7.11)

The overall p-value for measuring the cross section from the observed data given hypoth-
esis of the Standard Model holds with only statistical uncertainty is 0.04. This result
only includes statistical uncertainty and is seemingly low. Especially in the first two en-
ergy bins, the p-value in the individual energy bin being low a↵ects the overall p-value.
The hypothesis shall not be rejected based on the p-value calculated with only statistical
uncertainty. The systematic uncertainties also need to be taken into consideration.

To include the systematic uncertainty in the p-value calculation, the systematic uncer-
tainty on the ratio from the experimental data is needed. The probability distribution
function of the ratios of the 100,000 samples in each neutrino energy bin alongside with
the ratio from the experimental data with the systematic uncertainty is shown in Fig.
7.10 (left). The p-value including the systematic uncertainty in each energy bin is calcu-
lated as the maximum p-value among all the p-values calculated using ratios within the
systematic uncertainty range. The equations can be expressed as:

p(R) =

Z
1

R

P (r)dr (7.12)
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Figure 7.9: Left: the distribution of the ratio (Ndown�going/Nup�going) from the simu-
lation resampling in each neutrino energy bin and the ratio from the experimental data
indicated by the vertical black lines. The p-values of individual neutrino energy bins
are marked in the plot. Right: the summed p-value distribution from the simulation
resample and the summed p-value from the experimental data indicated by the vertical
red line.

p-valuebini
= max

R2[ratiolow,i,ratiohigh,i]
(min(p(R), 1� p(R))), (7.13)

where ratiolow,i and ratiohigh,i are the lower end and the upper end of the systematic
uncertainty range of the ratio from the experimental data in neutrino energy bini as
indicated by the vertical black dotted lines in Fig. 7.10 (left).

After the calculation of the p-value in individual neutrino energy bins, the summed p-
value and the overall p-value can be calculated using Eq. 7.10 and Eq. 7.11 respectively.
The overall p-value for measuring the cross section from the observed data given the
hypothesis of the Standard Model holds with both statistical and systematic uncertainty
is 0.87 (as shown in Fig. 7.10 (right)). This shows the measured result is consistent with
the Standard Model DIS cross section.

7.4.3.2 The P-Value of the Glashow Resonance Cross Section

Since the cross section for the Glashow Resonance peaks at 6.3 PeV [64] (c.f.Sec. 1.3.2),
the calculation of the p-value only involves the last energy bin. To conduct this calcu-
lation, three sets of samples were generated. One set uses the Poisson distribution with
the expectation of only neutrino-nucleon DIS interactions. The second set uses the Pois-
son distribution with the expectation of neutrino-nucleon DIS interactions and electron
antineutrino-electron Glashow Resonance. In the second set, the flux of the astrophysical
neutrino is assumed to be originated from the pp astrophysical sources which means the
neutrino flavor ratio is (1:1:1) and the neutrino to antineutrino flux ratio of each flavor
at Earth is 1:1 [30]. The third set uses the Poisson distribution with the expectation of
neutrino-nucleon DIS interactions and electron antineutrino-electron Glashow Resonance
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Figure 7.10: Left: the distribution of the ratio (Ndown�going/Nup�going) from the
simulation resampling in each energy bin and the ratio from the experimental data
indicated by the vertical black solid lines. The systematic uncertainties of the ratio
from the experimental data are indicated by the vertical black dotted lines. The p-
values of individual neutrino energy bins are marked in the plot. Right: the summed
p-value distribution from the simulation resample and the summed p-value from the
experimental data indicated by the vertical red line.

as well. In the third set, the flux of the astrophysical neutrino is assumed to be origi-
nated from the p� astrophysical sources which means the neutrino flavor ratio at Earth
is (1:1:1). The electron neutrino to electron antineutrino flux ratio is 14:4, the muon
neutrino to muon antineutrino flux ratio is 11:7 and the tau neutrino to tau antineutrino
flux ratio is 11:7 [30].

100,000 samples corresponding to the lifetime of the experimental data were generated
for each set. The ratio distributions for the three sets of samples in the last energy
bin are shown in Fig. 7.11. The ratio from the experimental data with the systematic
uncertainty is shown in the plots as well. Since only one energy bin is involved in the
calculation of the p-value, Eq. 7.12 and 7.13 were used. The p-value of the measurement
with the assumption that all neutrino interactions are neutrino-nucleon DIS interactions
is 0.16. The p-value of the measurement with the assumption of the existence of both
DIS interactions and the Glashow Resonance (pp process) is 0.23. The p-value of the
measurement with the assumption of the existence of both DIS interactions and the
Glashow Resonance (p� process) is 0.20.

It is not unexpected that the three p-values are similar. As shown in Fig. 7.11, in the
highest energy bin the systematic uncertainty range is much smaller compared to the
spread of the ratio distributions of the samples. This indicates that at this energy range
the dominant uncertainty is the statistical uncertainty. Due to the limited statistics, the
bin size is rather large. With a falling spectrum, the majority of the events in the bin are
concentrated in the energy range below the peak of the Glashow Resonance. Therefore
with the current statistics, it is hard to distinguish between the ratio distributions with
and without Glashow Resonance, let alone the di↵erence among the astrophysical neutrino
generation processes in the case of the existence of the Glashow Resonance.
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Figure 7.11: Left: the distribution of the ratio from the simulation resampling in the
[106.2 GeV, 107 GeV] energy bin with Glashow Resonance (pp process) and without the
Glashow Resonance. Right: the distribution of the ratio from the simulation resampling
in the [106.2 GeV, 107 GeV] energy bin with the Glashow Resonance from pp process
and p� process. The ratio from the experimental data is indicated by the vertical black
solid lines, and the systematic uncertainty of the ratio from the experimental data is
indicated by the vertical black dotted lines in both plots.

Within the current statistics, the existence of the Glashow Resonance cannot be rejected,
and the DIS only assumption cannot be rejected either. In the future, when more data is
available, this analysis has the feasibility to test the existence of the Glashow Resonance
using the Earth absorption e↵ect. Furthermore, with an increase in the precision of the
measurement, one may probe the process of astrophysics neutrino generation.
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Chapter 8

Summary and Outlook

In this dissertation, we have presented a novel analysis method to directly measure the
neutrino interaction cross section in the energy range of 6.3 TeV to 10 PeV with astro-
physical neutrinos. The neutrinos sample used are the cascade events (primarily electron
neutrinos and tau neutrinos) from the IceCube data collected from May 2011 to May
2016. A dedicated event selection was developed for the purpose of this analysis and
other analyses that are performed with cascade samples. The event selection applies a
machine learning (Boosted Decision Tree) classifier for the events with cascade recon-
structed energy below 60 TeV (low energy) [88] and applies straight cuts on the events
with cascade reconstructed energy above 60 TeV (high energy). The final sample con-
tains 4803 events among which 654 events are in the cascade reconstructed energy range
of 6.3 TeV to 10 PeV. This event selection has a 30% higher signal e�ciency compared to
the last generation cascade events selection [87] and is also background free in the high
energy region. In the low energy region, it is a factor of 10 more e�cient while keeping
the sample purity above 90% [88]. The high energy part of the event selection is also the
first one in IceCube cascade selection that does not exclude the dust layer in the detector.
It has led to the discovery of one of the most energetic cascade events in IceCube. With
a reconstructed energy of 770 TeV, there are only three other cascade events having a
higher reconstructed energy. Due to the special optical properties in the dust layer, the
conventional reconstruction method yields a significant bias. A regressor based on the
Boosted Decision Tree has been developed to reconstruct the deposited energy for these
events, and it has been proven to be consistent with another independent computational
expensive reconstruction method (DirectFit).

The analysis method for the neutrino interaction cross section measurement utilizes the
Earth absorption e↵ect. The final level sample is divided into two groups in each neu-
trino energy bin: the down-going group and the up-going group. With the increase in
the cross section, more up-going neutrinos get absorbed by the Earth while the number
of down-going neutrinos remains unchanged. By calculating the ratio of the down-going
events to the up-going events in each neutrino energy bin, the corresponding cross section
can be calculated. The result is largely independent of the neutrino flux since the flux
factor cancels when doing the ratio. The unfolding method was applied to map from
the reconstructed energy and zenith distribution to the neutrino energy and true zenith
distribution. Markov Chain Monte Carlo was used to estimate the statistical uncertainty.
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A true coverage test has proven the chosen uncertainty range corresponds to the 68%
confidence interval. Systematic e↵ects associated with the ice optical property, the detec-
tor response, the atmosphere, and the astrophysical neutrino flux have been evaluated.
The final cross section measurement result is consistent with the Standard Model cross
section. It is also consistent with other neutrino cross section measurements using Ice-
Cube data. The p-value of observing the result when assuming the Standard Model is
0.87. In the last energy bin (1.6 PeV to 10 PeV), the measured cross section is the com-
bination of the neutrino-nucleon DIS cross section and the electron antineutrino-electron
GR cross section with a scaling factor. The scaling factor is correlated to the fraction of
the electron antineutrino in the total neutrino flux which is an indicator of the generation
process of the astrophysical neutrinos (pp or p�). The p-value for assuming pp process
and p� process are 0.23 and 0.20 respectively, which means with the current statistics we
cannot identify the astrophysical neutrino generation process.

Many di↵erent theories have predicted the Beyond Standard Model e↵ects to happen
in the neutrino energy range of EeV and above. If enough statistics are obtained in
that energy region, this analysis will test the existence of new physics by measuring the
neutrino interaction cross section at ultra-high energies. The planned next-generation
upgrade of IceCube (IceCube Gen2) [144] will have a target e↵ect volume ⇠ 100 times
more than the IceCube detector at EeV energies. With more statistics in the PeV region,
when assuming the Standard Model physics holds, the fraction of the electron antineutrino
in the total neutrino flux can also be calculated to a precision so that the astrophysical
neutrino generation process can be determined. An exciting future awaits!
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