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Abstract of the Dissertation

Study of formation of binary black holes, their interactions with surroundings and their mergers

by

Taeho Ryu

Doctor of Philosophy

in

Physics

Stony Brook University

2018

Black holes have existed since the collapse of the first stars in the early Universe, and
play a fundamental role in its evolution. In particular, binary black holes are a natural
outcome as a result of dynamical interactions among themselves and with surrounding stars.
Goal of this dissertation is to investigate the formation of binary black holes, their dynamics
and mergers, with a focus on their global-scale observational imprints, from low to high
redshift. To this aim, we developed a multi-purpose N -body code. The code is designed
to include many physical effects relevant for each different model, including gravitational
attraction up to 2.5-order post-Newtonian terms, dynamical friction, force from a static or
dynamically evolving background potential, mass growth via accretion. This code has been
used to perform the studies presented in this dissertation. We provide a full description of
the code in §2. We present a study of the formation of Population III X-ray binaries and
their X-ray output in §3. Using N -body simulations, we estimate their formation rates and
hence discuss the effects of their X-ray heating on the early intergalactic medium, along
with the observational implications for the 21 cm line detection. In §4, we investigate
the growth of Population III remnant black holes to intermediate-mass and supermassive
black holes via accretion at a very rapid rate (“hyper-Eddington accretion”). We suggest
this rapid accretion as a viable mechanism for the formation of massive black holes at the
galactic nuclei. Furthermore, we find that natural outcomes of the rapidly growing black
holes are extreme mass ratio inspirals (EMRI), one of the main gravitational wave sources
of the planned eLISA. Finally, we study the evolution of supermassive black hole binaries
in massive galaxies at 0 < z < 4 in §5. We model their mergers in a dynamically evolving
galaxy model and infer their merger rates and the stochastic gravitational wave background
from their mergers. We also compute the shape of the gravitational wave signal and the
effects of high eccentricities on the spectrum, which is relevant for future detections with the
Pulsar Timing Array (PTA).
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1 Introduction

Black holes have played a pivotal role in shaping the Universe, from small to large scales
since the collapse of the first stars in the early Universe. In this dissertation, we study
the formation of binary BHs, their dynamics and their observational imprints (X-ray and
gravitational wave emission), from stellar-mass BH binaries to supermassive BH binaries
across the history of the Universe.

1.1 The first star remnant black holes and their binary formation

1.1.1 Multiplicity of the first (Pop III) stars and the primordial initial mass
function

In the standard ΛCDM cosmological model, large structures are built hierarchically via
mergers of smaller objects. Those smaller structures, which consist of dark matter (DM),
form as a result of gravitational instabilities from small fluctuations of the primordial density
field. These fluctuations are further amplified by gravity. Once the mass of the gravitationally
bound DM object becomes larger than the cosmological Jeans mass MJ, pressure gradients
can no longer balance against the gravity of the DM. This results in collapse of the DM along
with infall of gas. When a virial equilibrium state with a virial temperature Tvir < 104 K
is reached, a “mini dark matter halo” is formed. The first stars, also known as population
III stars or pop III stars, are expected to form in these first mini DM halos with MDM '
105−6 M� at z ∼ 20 − 50 where cooling through ro-vibrational transitions of hydrogen
molecules H2 is effective (Haiman et al., 1996; Tegmark et al., 1997). The characteristic
mass of the DM halo with sufficient amount of H2 is determined by the condition that the
cooling time scale is shorter than the dynamical time scale (Rees & Ostriker, 1977; Silk,
1977). See Figure 1 of Bromm (2013).

The density of the gas keeps increasing until most of the hydrogen molecules are destroyed
by collisions (n > 1016 cm−3, where n is the number density). The gas becomes adiabatic and
this point is typically identified as the formation of protostars. It has been found in numerical
simulations that the mass of the protostars at their formation is around 10−2 − 10−1 M�,
but subsequently they grow rapidly via accretion at a rate of Ṁacc ∼ 10−2 M� yr−1 (Abel et
al., 2002). 1

If no fragmentation occurs so that only one protostar forms and subsequently grows at
such a high rate, it is expected that the mass of the first stars would reach more than 100 M�.
This picture of “a single massive star per halo” was suggested in numerical simulations (e.g.

1Such high accretion rate can be understood by estimating the rate at which a Jeans mass accretes on
the protostar on its free-fall time scale tff (Shu, 1977),

Ṁacc '
MJ

tff
' c3s
G
∝ T 3/2. (1)

Considering higher temperature of the gas cloud in the mini halo (T > 200 K, a characteristic temperature
with n ∼ 104 cm−3 for efficient H2 cooling) than that of star forming gas clouds in the local universe, typical
accretion rates in the mini halo are higher roughly by two orders of magnitude that those in nearby star
forming gas clouds.

1



Abel et al., 2000, 2002; Bromm et al., 2002). If such massive stars in the halos survive until
death, one can expect that the masses of the remnant BHs are also very high. Generally
speaking, black holes can form from the collapse of non-rotating, metal-free star with masses
between ∼ 25− 140 M� and > 260 M� (Heger et al., 2003; Zhang et al., 2008). 25− 40 M�
stars go though significant mass losses when they collapse, so the BH remnants end up with
∼ 40% of the progenitor mass (Zhang et al., 2008). The stars within the rest of the mass
range (i.e. 40 M�− 140 M� or > 260 M�) directly collapse to a BH with a mass comparable
to that of its progenitor star. On the other hand, stars with masses outside of this range
(i.e., ≤ 25 M� and 140− 260 M�) do not leave behind a BH remnant.

Within this ”single massive star” picture, it appears that the likelihood of formation of
binaries is inevitably low unless fragmentation occurs. These studies find that instabilities
can not lead to fragmentation of the gas. The chemothermal instabilities are suppressed
since the crossing times in the collapsing core are short. In other words, media with different
temperatures are efficiently mixed so the fluctuations never grow significantly (Abel et al.,
2002; Yoshida et al., 2006; Turk et al., 2009). Furthermore, Abel et al. (2002) claim that
rotational support is not strong enough to halt the collapse, based on initially small angular
momentum of the infalling gas compared to the mean value (' 0.1%) and effective angular
momentum transport by shock waves.

However, recent studies, using improved hydrodynamics simulations with higher resolu-
tion, suggest that fragmentation of gas can continue to occur even in the presence of the
star which first formed prior to the others (Turk et al., 2009; Stacy et al., 2010; Greif et al.,
2012). Contrary to the findings in the earlier studies, the angular momentum of the gas is
not negligible, leading to the formation of protostellar disks near the core. As the accre-
tion rates inside these rotationally supported disks (Ṁ . 10−2 M� yr−1, Bromm 2013) are
lower than the gas infalling rates into the halo, the disks become gravitationally unstable,
ultimately leading to fragmentation and hence, a multiple stellar system. These new finding
opens up the possibility of the formation of binaries or higher-order hierarchical structures
(triple, quartet and so on) as well as interactions between those in-situ stars. The typical
number of the stars found in each halo upon fragmentation is generally less than 6− 10 (see
Figure 10 in Susa et al. 2014).

As multiple stars can coexist and survive, it now becomes more complicated to determine
what the final masses of the stars would be, or the primordial initial mass function (IMF).
Determining the IMF for Pop III stars is particularly important because it is closely cor-
related with their remnant BH masses and their ionizing radiation power (e.g., Eddington
luminosity ∝ BH mass). Furthermore, the mass of the stars will significantly influence the
orbital parameters of stable bound systems as dynamical interactions between the stars are
unavoidable for such multi stellar system. If two stars with a comparable mass happen to
form in a halo with other less massive stars, the two stars would dominate the dynamics
between the stars, likely ejecting all other smaller ones. If the masses of the stars in a halo
are comparable, they go through more chaotic interactions.

The initial mass function can be affected by a number of factors, such as different assump-
tions on feedback regulating accretion rates (Hirano et al., 2014), viscosity in the protostellar
disc (Hirano & Bromm, 2017), the first magnetic fields (Machida & Doi, 2013), etc. Overall,
it has been suggested that it should be a flat top-heavy function. The IMF is generally
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expressed by a power law,

dN

dM
∼M−α. (2)

Many authors have tried to statistically determine α. Greif et al. (2011) find the mass
functions, based on their five independent realizations, to be relatively flat (α ' 0) within a
range of 0.1 M� to 10 M�. In Stacy & Bromm 2013, they find a power law fit to their mass
distribution with α ' 0.17, extending from 0.5 M� to 40 M�. And Stacy et al. (2016) find
a somewhat higher α ' 1 − 1.13 with a similar mass range as the other studies. Note that
α = 2.35 for the Salpeter IMF frequently used for present-day stars.

1.1.2 Role of X-rays in the reionization era and HMXBs

The appearance of the first luminous objects marks the end of the cosmic dark ages and
the ionizing UV, Lyman α and X-ray photons produced from them lead to the onset of the
reionization era. In particular, among those photons, it is expected that X-rays could make
a significant contribution to partial reionization and, more importantly, pre-heating of the
early intergalactic medium (IGM) (Haiman, 2011; Venkatesan et al., 2001). The thermal
history of the IGM can be measured through 21 cm line detection.

X-ray photons have long mean free path. Note that the comoving mean free path of an
X-ray photon λX−ray with energy E increases as E3, i.e., λX−ray ∝ E3 (See Equation 116 of
Furlanetto 2006). This means that they can escape freely from where they are created and
heat a wider spatial range than UV photons. The energy dependence of the mean free path
also implies that X-rays behave somewhat differently depending on whether they are soft or
hard. Soft X-rays (a few 0.1 keV < E < 2 keV) possibly dominate heating on small scales,
whereas hard X-ray photons (2 keV < E) propagate further out and influence the global
evolution of the thermal history of the IGM. The fraction of the total radiation energy from
a source in soft/hard photons clearly depends on its spectral energy density function, which
is typically assumed to follow a power low of E−β with β = 1 for a non-thermal component
from ‘ultraluminous’ X-ray sources in nearby galaxies (Kuhlen & Madau, 2005).

Broadly speaking, X-ray heating has two impacts on the subsequent evolution of structure
formation (Oh, 2001). On one hand, as the IGM heats up, it is more difficult for gas to
collapse to form new stars (or increase the Jeans mass). This can provide negative impact
on the formation of dwarf galaxies (Benson & Madau, 2003) and the growth of massive BHs
(Tanaka & Haiman, 2009). On the other hand, X-rays can promote cooling by enhancing
the formation of H2, which is the main coolant in this era. Whether the net effect of X-ray
heating is negative or positive still remains uncertain. For example, Hummel et al. (2015)
study the impact of a cosmic X-ray background on the formation of the first stars. They find
that X-ray heating becomes more important at n < 1 cm−3 whereas the net effect is more
likely cooling by H2 at n > 102 cm−3. But the overall star formation rate is found to be
less sensitive to the strength of the X-ray background. Jeon et al. (2012, 2014), focusing on
X-ray emission from accreting BHs, show that the net feedback on star formation is positive,
but mild.

One of the important X-ray sources in the local Universe are high-mass X-ray binaries
(HMXBs). HMXBs are a class of binaries consisting of a compact object (BH or neutron
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star) and a massive companion star (typically > 10 M�). They are important objects to un-
derstand nucleosynthesis, binary stellar evolution, accretion and energy emission. Generally
speaking, from their spatial distribution and metallicity, we can get information about the
evolution history of their host galaxies. Given the relatively short evolutionary time scale
(∼ 3 Myr, the main sequence life time of a vary massive star) of Pop III stars, the X-ray
luminosity from HMXBs can be used as a star formation rate (SFR) indicator (Lewin et
al., 1997; Shtykovskiy & Gilfanov, 2007). In the local universe, it has been observed that
hard X-ray luminosity within a 2− 10 keV band has a linear proportionality with the SFR
(Grimm et al., 2003; Mineo et al., 2012) such that,

Llocal
2−10 keV ' α× 1039 × SFR

M� yr−1
[ erg s−1], (3)

where α varies in different observational studies. For example, α = 2.6 (Mineo et al., 2012)
and 6 (Grimm et al., 2003).

Combining the possibility of multiple Pop III star formation and their generally high
masses, it may be natural to consider that Pop III X-ray binaries would be abundant, hence
being dominant X-ray sources in the early Universe. Several authors (Jeon et al., 2012;
Fragos, Lehmer, Tremmel, et al., 2013; Fragos, Lehmer, Naoz, et al., 2013) have suggested,
based on their numerical simulations, that X-ray emission by HMXBs dominate over other
possible X-ray sources (e.g. active galactic nuclei and low mass X-ray binary) at z & 2.5−7.
Despite such an important role as X-ray sources in the reionization era, many parameters
relevant for HMXBs remain poorly-constrained. One of those parameters is their formation
rate. This has been left as a free parameter in many studies (e.g. Xu et al., 2013). Therefore,
finding the rate from physically motivated initial conditions is necessary to more accurately
gauge the effects of their X-rays. In §3, we infer the formation rate of HMXBs, based on our
N -body simulations.

1.2 Formation of intermediate-mass and supermassive black holes
- growth from Pop III remnant BHs

Observations of quasars indicate that almost every nearby massive galaxy hosts a supermas-
sive black hole (SMBH) in its center (Kormendy & Ho, 2013). The 14th data release of the
Sloan Digital Sky Survey Quasar Catalog (SDSS, Pâris et al., 2017) contains around half
million quasars at 0.1 < z < 6.5, including Sgr A∗, the nearest known SMBH believed to be
residing in the center of our Galaxy. Thanks to advancement of observational techniques,
more distant (high z) quasars have been increasingly found. In the updated PAN-STARRS1
survey data (Bañados et al., 2016), more than 100 quasars in the redshift range 5.6 . z . 6.7
have been registered.

The formation of such massive monsters is a fundamental open question in Astrophysics.
The observations of quasars at z ≈ 6 − 7 (e.g Fan et al., 2001; Willott et al., 2003, 2010;
Mortlock et al., 2011; Venemans et al., 2013; Bañados et al., 2018) indicate that SMBHs with
masses of ∼ 109 M� had managed to form in less than a Gyr after the Big Bang. A SMBH
with a mass of 8×108 M� at z = 7.5 was recently reported (Bañados et al., 2018). To explain
the origin of SMBHs at the centers of galaxies, a number of possible growth scenarios has
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been proposed. They can be broadly divided into three categories: 1) Growth from Pop III
star remnants, 2) Collapse from very massive stars with a mass of ' 104 − 105 M� (“Direct
collapse model”) and 3) Dynamical formation in dense stellar clusters.

Among those scenarios, in this dissertation, we focus on the first one (item 1. Growth
from Pop III star remnants). We present in §4 the results of our study on the formation
of IMBH/SMBH from Pop III star remnants in atomic cooling halos via “hyper-Eddington”
accretion.

This scenario 1) assumes the growth of Pop III remnant BHs via accretion and mergers.
Considering accretion rates limited to the Eddington accretion rate with a radiative efficienty
η, then a seed BH with a mass of MBH,0 will grow exponentially over time,

MBH(t) = MBH,0e
4πG
ηcκ

t = MBH,0e
t

tSal , (4)

where κ is the opacity of the accreting material. Here, tSal is an e-folding time, also known
as the Salpeter time. For a typical value of η = 0.1, tSal ' 45 Myr. Therefore, it takes
around 0.7 Gyr for the mass of a seed BH to grow from MBH,0 = 100 M� to MBH = 109 M�.
Hence if near-Eddington accretion continues and the seeds form early in time, it is apparent
that there would be a marginally sufficient time to grow the most massive BHs. Such
a continuous growth at the Eddington rate, on the other hand, is not always favorable
considering other circumstances, such as depletion of gas due to accretion itself or less efficient
gas replenishment. Mergers may be able to provide additional mass increase. But growing
BHs can be lost due to dynamical ejections or merger kicks. Furthermore, details on the mass
of the seed BHs, the duty cycle, the radiative efficiency, negative feedback due to radiation,
gas inflow and outflow at galaxy mergers and etc. add more uncertainties to this picture.

One way to circumvent this issue is the growth of a BH at a rate much higher than the
Eddington accretion rate (Begelman, 1979; Volonteri & Rees, 2005; Wyithe & Loeb, 2012).
For a BH embedded in a dense and optically thick gas medium, as the diffusion time scale of
photons becomes longer than the free-fall time of the gas, the outgoing photons are trapped
in the inflowing gas flow and advected inward. While the accretion luminosity is limited to
the Eddington luminosity, the accretion rate can exceed the Eddington rate as the gas outside
where photons are trapped remains unaffected by the radiation from the inside (Begelman,
1979).

Ideally, this “super-Eddington” (or “hyper-Eddington”) accretion may be valid under the
assumption of spherically symmetric accretion of the gas onto the BH. Many studies have
suggested that this is an acceptable assumption for the BHs at the centres of high-redshift
galaxies. When the gas arrives near the central region, it ends up with little angular mo-
mentum as a result of efficient angular momentum transport, and the cold flow is nearly
pressure-supported (Wise et al., 2008). The angular momentum loss can be achieved by
several mechanisms, such as gravitational instability (i.e. “bar within bar” instability Shlos-
man et al., 1989), turbulence (Wise et al., 2008) or merger (Levine et al., 2008). Even if a
disc inevitably forms in zero-metallicity halos with a virial temperature Tvir & 104 K, it is
likely to be fat and dense (Oh & Haiman, 2002). And if the disc scale height is larger than
the accretion influence radius (or, “Bondi radius”) and the disk has a sufficiently low spin
parameter, this can be treated as a plausible mechanism.
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As BHs grow in mass and their host halos evolve over time, the assumptions of spherical
symmetric accretion and of photon trapping become no longer valid for massive BHs (e.g.
> 105 M� BHs within ' 1010 M� galaxies, see Figure 3 in Wyithe & Loeb 2012). In other
words, it is unlikely that the duration of such rapid growth does not last long enough to
grow stellar-mass BHs all the way up to SMBHs at the galactic centers. However, a dramatic
increase in mass of seed BHs via super-Eddington accretion to a few 102 − 103 M� would
allow the subsequent Eddington-limited growth to explain the origin of SMBHs observed at
z ' 7. We will test this scenario in §4, using N -body simulations.

1.3 Formation of supermassive black hole binaries and their merg-
ers

1.3.1 Observation of supermassive binaries and their mergers

Over the last decade, the number of SMBH binary candidates observed at z < 3 galaxies
has increased (e.g Gitti et al., 2013; Tsalmantza et al., 2011; Tremblay et al., 2016; Bansal
et al., 2017)2. Among those, sub-parsec SMBH binary candidates have also been identified
(e.g Boroson & Lauer, 2009; Liu, Li, & Komossa, 2014; Liu, Shen, et al., 2014; Kharb et
al., 2017). Examples are a 107.3 − 108.9 M� SMBH binary, separated by 0.1 pc at z ' 3.8
(Boroson & Lauer, 2009) and a binary black hole with 3.63 × 107 M� separated by 0.35 pc
in the Seyfert galaxy NGC 7674 at z ' 0.03 (Kharb et al., 2017).

Observations of such small binaries, if they are finally confirmed as true SMBH binaries,
are of particular interest since whether SMBH binaries can successfully decay to sub-parsec
scales remains theoretically uncertain (“final parsec problem”, see §1.3.2 below). SMBH
binary detections have been made using a number of techniques, including image and pho-
tometry analysis from X-ray or radio sources or velocity shifts between narrow and broad
emission lines (e.g Decarli et al., 2013). Given limited resolution power, direct imaging
searches are restricted to observe somewhat wide binaries in nearby galaxies. Detecting ve-
locity offsets of broad emission lines can be used to identify sub-parsec SMBH binaries (Liu,
Li, & Komossa, 2014). However, considering alternative scenarios for velocity displacements,
such as radiation from gas in the accretion disk (Strateva et al., 2003) or a recoiled BH due
to merger kicks (Bogdanović et al., 2007; Shields et al., 2009), observations of sub-parsec
SMBH binaries may not be the smoking gun for the existence of very compact binaries or
possible merger events in the near future.

Another important observation in the coming years is detecting gravitational wave sig-
nals from mergers of SMBH binaries using the Pulsar Timing Array (PTA). This has been
considered as a very promising way to confirm mergers between SMBHs. We discuss this in
detail in §5.7.

2Some of those reported candidates are found to be separated typically by ∼ kpc and assumed not bound,
which are also known as “duals” (e.g Chornock et al., 2010; Comerford et al., 2013).
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1.3.2 Formation of supermassive black hole to its merger - brief review of dy-
namics

The journey of a binary from its formation to its coalescence can be divided into three stages.
Note that the spatial scale given in the title of each stage is an approximate estimate and it
varies depending on details of the binary and its surroundings.

1. Stage 1. Dynamical friction (r ' a few pc− kpc)

When two galaxies merge, the black holes which have been residing in the progenitor
galaxies spiral into the merged galaxy due to dynamical friction. It is expected that
unless the masses of the infalling BHs were small, they would make it to the core
regions in less than a Hubble time. One can estimate the time for a BH with a mass
MBH to get sufficiently close to the center from a distance r. Assuming a singular
isothermal profile for the host galaxy, the infalling time scale tinfall can be expressed as
follows (Binney & Tremaine, 1987),

tinfall ' 3 Gyr

(
6

ln Λ

)(
r

5 kpc

)2 ( σhost

200 km s−1

)( MBH

108 M�

)−1

, (5)

where ln Λ is the Coulomb logarithmic, which measures a spatial range within which the
background medium contributes to the frictional force on the BH. And σhost refers to the
one-dimensional velocity dispersion of the background stars. In a more realistic picture
of a merging galaxy, the infalling BH is surrounded by stars when it is sufficiently far
from the center. As its orbit decays, the stars bound to the BH will be stripped off
due to the tidal forces from the host galaxy. Considering a higher effective mass of the
BH and the stars bound to it, the infalling time would become even shorter. When the
mutual gravitational potential between the two BHs is dominant over the background
potential from the stars, they will become bound to each other and form a binary.

As Equation 5 implies, the infalling times for less massive BHs can exceed a Hubble
time (tinfall ∝ M−1

BH). This means that we can expect that a population of wandering
satellite BHs outside the core regions exists (Bellovary et al., 2010).

2. Stage 2. Three-body stellar encounter ( r ' 10−2 pc - a few pc)

As the orbit further decays, the surrounding stars start to feel the effect of the binary
when the binding energy of the binary becomes comparable to the typical kinetic
energy of the stars. Three-body interactions between the binary and each individual
star become more important in the subsequent evolution of the binary. The stars take
a certain amount of energy from the binary via the slingshot mechanism, resulting
in hardening of the binary. However, in this process, surrounding stars are easily
ejected. Unless the stars with low angular momentum are replenished faster than
they are depleted, the BH binary may experience a lack of stars to interact with. A
conical region in parameter space occupied by a population of stars with low angular
momentum which can scatter with the binary is called “loss cone”. If the loss cone is
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not efficiently refilled by e.g., diffusion of stars into the loss cone by 2-body relaxation,
the hardening rate of the binary will become constant.

This is likely to be the slowest evolution. Whether or not BHs would be able to coalesce
would be mostly determined by this “bottleneck” stage. For a spherically symmetric
potential, the time scale for the binary to decay until GW takes over is expected to
exceed a Hubble time in many cases (Yu, 2002; Begelman, 1979). The characteristic
semi major axis ah of a “hard” binary at this stage is often defined as (Merritt & Wang,
2005),

ah =
q

(1 + q)2

rin

4
' 5

q

(1 + q)2

(
Mbin

108 M�

)( σ

200 km s−1

)−2

pc, (6)

where q is the binary mass ratio (≤ 1) and rin is the influence radius at which the
enclosed mass of stars around a BH is comparable to the BH mass. Here, σ corresponds
to the velocity dispersion of the stars beyond rin. The hard radius ah is roughly a
∼ pc scale. Thus this is often referred to as the “final parsec problem” (Merritt &
Milosavljević, 2005).

3. Stage 3. Gravitational radiation (r ≤ 10−2 pc)

When the binary separation decays down to a distance at which gravitational wave
emission becomes significant, the binary will merge on a short time scale (Peters &
Mathews, 1963; Peters, 1964),

tGW ' 10−2 1

q(1 + q)

(
a

10−2 pc

)4(
MBH,1

108 M�

)−3

(1− e2)7/2 Myr. (7)

When the BHs finally merge, the merged remnant BH gets imparted a recoil kick
from anisotropic GW emission and goes through mass loss (Bekenstein, 1973; Fitchett
& Detweiler, 1984; Favata et al., 2004). The magnitude of the recoil kick depends
on the configuration of the binary, including its spin, and on the orientation of the
orbital plane with respect to the spins and on their mass ratios. Recent relativistic
simulations found that kick velocities can be larger (& 5000 km s−1) than galactic
escape velocities due to non-linear spin-orbit coupling, such as partial alignment of
the black hole spins with the orbital angular momentum (“hang-up” kick Lousto &
Zlochower, 2011; Lousto et al., 2012) or anti-alignment of the spins of the two BHs on
the orbital plane (“superkick” Brügmann et al., 2008; González et al., 2007). However,
it is still unclear what the final configuration of the spins and the angular momentum
will be since spin alignment is subject to torques from the accretion disk (Bogdanović
et al., 2007) and to relativistic spin precession (Kesden et al., 2010).
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1.3.3 Other mechanisms for mergers: multi-BH interactions and more

Many authors have suggested a number of different hardening mechanisms to bypass the pos-
sible bottleneck. For the wet (gas-rich) merger case, it is natural to consider a circumbinary
disk around the central binary. It has been shown using hydrodynamical simulations that
tidal torques play a role in decaying the orbit of the binary (e.g Mayer et al., 2007; Lodato et
al., 2009; Mayer, 2013; Tang et al., 2017). In the presence of the gas disk, the secondary BH
migrates on a reasonably short timescale. For example, for a secondary BH massive enough
to open a gap in the disk, the BH migrates on a viscous timescale (e.g. 107 yr for a binary
with masses 5×108 M� and 107 M� from 0.1 pc to merger in Armitage & Natarajan, 2002).

In a gas-poor environment, it has been suggested that BH binaries can go through more
interactions with stars in a non-spherical potential (i.e., axisymmetric or triaxial). In this
geometry where the angular momentum of each star is no longer conserved, stars can get
arbitrarily close to the central binary during their oscillating motions along the axes of the
potential. This results in enhancing hardening rates of the binary (Yu, 2002; Gualandris et
al., 2017). Indeed, it has been shown that galaxy merger remnants would maintain triaxiality
(Gualandris & Merritt, 2012a) stably for a long time (Poon & Merritt, 2002, 2004). Other
than the galaxy geometry, BH mergers can be facilitated by rotation of stellar components.
Considering that the vast majority (' 80%) of early-type galaxies are found to be rapidly
rotating (Emsellem et al., 2011), understanding the effects of interactions with stars in a
rotating potential on the evolution of SMBH binary is important. It appears that depending
on whether the host galaxy is counterrotating or cororating with respect to the binary orbit,
the eccentricity of the BH binary evolves differently. In a spherical corotating potential,
encounters with counterrotating stars tend to increase the eccentricity whereas those with
corotating stars are more inclined to circularize the orbit. In general, stars are more likely
to be ejected when they are on prograde orbits with the binary. This can be attributed to
smaller relative velocities, hence larger cross sections (Iwasawa et al., 2011). Therefore, stars
approaching the binary on retrograde orbits and subsequently escaping on prograde orbits
will take some angular momentum from the binary more efficiently (Sesana et al., 2011).
Holley-Bockelmann & Khan (2015) studied the effects of stellar encounters in a rotating
flattened potential and found a similar trend for the eccentricity evolution and additional
increases in the hardening rate of SMBH binaries than galaxy geometry alone.

None of those mechanisms above may serve as a solution for the“empty loss cone”problem
in a gas-free spherical galaxy. However, one very plausible scenario is multi-body interactions
between BHs. If BH binaries fail to merge, one possibly inevitable outcome of continuous
galaxy mergers is the formation of a cluster of BHs in the cores. In this case, BH coa-
lescences will be facilitated by two effects: 1) chaotic interactions between the BH binary
and other BHs and 2) dramatic increases in the eccentricity by the Kozai mechanism when
a hierarchical triple forms (Kozai, 1962). As the central binary goes through encounters
with other BHs, its eccentricity tends to grow (Heggie, 1975; Valtonen & Karttunen, 2006;
Valtonen & Mikkola, 1991) (such that the values of e2 become equally likely). The binary
becomes more compactly bound by ejections of less massive BHs carrying some energy from
the binary. Along with satellite BHs which keep orbiting since the galaxy mergers and BHs
recoiled via GW kicks, the ejected BHs via three-body interactions will constitute the popu-
lation of inter and intragalactic BHs outside the cores. If they form a hierarchical triple, the
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Kozai-mechanism causes periodic exchanges between the eccentricity and the inclination of
the inner binary. This allows for an initially low e inner binary to loose its energy through
GW emission more effectively at every closest approach, ultimately leading to a short merger
time (Hoffman & Loeb, 2007). This scenario with more than three BHs in the cores is a very
promising scenario in a sense that this is a natural outcome of the “final parsec” problem and
a possible solution for it at the same time. The observation of a triple candidate in SDSS
J150243.09+111557.3 at z ' 0.39 (Deane et al., 2014) may add more plausibility to this
scenario. Using N -body simulations, we investigate this scenario along with a full loss cone
case by following galaxy merger trees with a realistic galaxy model in §5. We suggest these
multi-SMBH interactions as a“mechanism of last resort” for solving the final parsec problem.

1.4 General overview of multi-body interactions

In stellar dynamics, one important mechanism leading to the formation and hardening of
binaries is multi-body interactions, i.e., instantaneous interactions between more than three
bodies (N ≥ 3). Those are also one of the dominant mechanisms for the formation of
compactly bound binaries or even BH mergers in the studies presented in this dissertation.
Several other studies have investigated few-body interactions (N ≤ 6), mainly focusing
on statistical properties of the end products using numerical scattering experiments with
different initial conditions. This approach has proved very powerful and efficient due to
enormously increasing computational power.

In general, when two (or more) groups of stars 3 run into each other, depending on their
relative impact parameter (or how far their closest distance is), different types of encounters
can occur. With a sufficiently small impact parameter, chaotic interactions will ensue. For
the encounter between a binary and a single star, depending on the energy changes in the
initially bound pair, the interaction can lead to “ionization” (disruption of the binary), “exci-
tation” (softening of the binary), “de-excitation” (hardening of the binary) and “‘resonance”
(no ejection of stars) (see Figure 7 in Heggie 1975). During the course of interactions, hard-
ening of binaries can be caused by the slingshot mechanism. As less massive stars are ejected,
carrying some energy from the remaining sub-stellar system, initially unbound stars can be-
come bound with another star, and bound systems get hardened. If they were chaotically
interacting, until stable bound systems and the rest of the unbound in the system are well
isolated, binary formation (sometimes binaries with different members after ionization, also
called “exchange”) and ionization continuously occur. It is likely that soft binaries, defined
as binaries whose orbital velocities are less than the typical velocities of surrounding stars,
get disrupted by encounters with other stars, whereas hard binaries get hardened further
(Heggie, 1975; Hills, 1975). On the other hand, for large impact parameters, the encounters
are not accompanied by chaotic interactions, but can lead to binding energy and eccentricity
variations 4. As an example, when a supermassive black hole binary is still wide and it is
moving through a background stellar medium, the collective effect of a large number of dis-

3I refer to stars here, but the general considerations of this section similarly apply to BH-star and BH-BH
interactions.

4Heggie & Rasio (1996) show that the change in eccentricity of an initially circular binary due to a distant
encounter with a third star on a hyperbolic or parabolic orbit follows a power-law δe ∝ (a/rp)5/2 where a is
the semimajor axis and rp is the periastron distance of the encounter.
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tant (and weak) encounters between each BH and stars, also known as “dynamical friction”,
operates to decay the binary orbit (i.e., negative energy variations).

Whether or not the eccentricity of a binary increases is determined by relative changes
of orbital energy and angular momentum. Generally speaking, if angular momentum loss
per orbit is dominant over orbital energy loss, the eccentricity grows while the binary keeps
shrinking. This can be understood using an “impulse approximation”, i.e., an encounter with
a perturber causes an impulsive kick with only a velocity variation ∆v, not a position varia-
tion, of the subject star. In this approximation, the specific energy and angular momentum
changes can be approximated as ∆E ' v∆v and ∆L ' r∆v, respectively. For the same ∆v,
the angular momentum loss ∆L (the energy loss ∆E) dominates near apocenter (pericen-
ter), resulting in increases (decreases) of e. For example, gravitational wave emission leads
to circularization of orbits as the radiation power becomes more enhanced at pericenter.

Considering possibly frequent ionizations and exchanges of members during chaotic inter-
actions, this analytic reasoning based on the impulse approximation may not directly apply
for chaotic interactions. It is known that chaotic gravitational encounters tend to excite
the eccentricities of outcome binaries. The binary eccentricity distribution formed during
three-body interactions follows a thermally-averaged density function (Heggie, 1975),

f(e) ' 2e, (8)

with a median value ∼ 0.7 for 0 < e < 1. This is what is typically found for the binary ec-
centricity distributions formed during three-body scattering experiments (e.g Mikkola, 1983;
Valtonen & Karttunen, 2006). Interestingly, this trend is also found at least for the 2+1+1
outcome during binary-binary scatterings (Ryu et al., 2017a). However, we emphasize cau-
tion in concluding from this that a thermal distribution applies to all four-body scatterings.
This tendency to produce high eccentricities can make significant differences in the evolution
of BH binaries and their gravitational wave emission, which will be shown in §5.
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2 Methdology

I developed a N -body code designed to perform standard scattering experiments (see §2.6)
and to study more specific astrophysical systems (see §3, 4 and 5). In this section, we describe
the numerical scheme implemented in the code and useful algorithm tools.

2.1 Code description

The code can solve the equations of motion in 3-dimensional space, using 4th-order & 5-stage
Runge-Kutta-Fehlberg methods (RKF45 method, Erwin 1969) with adaptive time steps. The
RKF45 is a very precise and stable integration method among the large class of Runge-Kutta
schemes, particularly by adapting the Butcher tableau for Fehlberg’s 4(5) method.

To ensure numerical precision, our computational scheme varies the value of each subse-
quent time step analytically, so that numerical errors for each variable in the simulation do
not exceed a certain fraction y of the size of the variable. Typically y = 10−10 − 10−13. In
some cases, however, this method leads to excessive computational effort for calculating rel-
atively trivial interactions. For example, near the pericenter of hyperbolic or highly elliptical
encounters, the time steps become increasingly small in a runaway fashion to compensate
for the steep rise in acceleration and associated errors. In order to avoid such situations, we
implement the following two numerical shortcuts to keep computation times tractable.

The first shortcut is to use analytic approximations for very close 2-body encounters.
This is justified in cases where pairs of stars are sufficiently close to each other and isolated
from the other stars in the simulation, so that the gravitational pull from the other stars
and the background potential are negligible compared to the mutual gravitational pull of
the pair. The code employs analytic solutions for any close stellar pairs that satisfy this
condition. In cases where the orbital phases are not important, the code can simply replace
the binary into one object moving at the center of mass velocity. The code reverts to the
RKF algorithm when the conditions stop being satisfied. Different conditions can be added
depending on problems of our interest.

Whether two bodies are well isolated from other objects is determined based on a certain
fraction, the so called tidal tolerance parameter δ. The relative force Frel and the tidal force
Ftid,? on the ith binary at apocenter are:

Frel =
Gmi1mi2

[a(1 + e)]2
, (9)

Ftid,? =
∑
j

2Gmimj

r3
ij

a(1 + e) . (10)

Hence, the condition for the tidal tolerance parameter can be written:

Ftid,?

Frel

< δ. (11)

We generally take δ = 10−9 for the studies presented in this paper. This parameter is also
used in termination criteria and binary-tree algorithm, which will be explained later.
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Because we are dealing with systems with more than three bodies of different masses,
particles frequently form hierarchical triple systems whose motions are affected by the Kozai
mechanism (Kozai, 1962). Since our analytic solutions above do not account for such changes
in mutual inclination, we limit the use of these solutions to situations where τouter < τKozai,
where τouter is the dynamical timescale for the outer pair in the hierarchical triple, and τKozai

is the time scale for the Kozai mechanism,

τKozai ∼
m1

m2

P 2
1,2

P1,3

(1− e2
1,2)1.5. (12)

The subscript 1 above indicates the primary star of the inner compact binary along with the
satellite star denoted by the subscript 3, while the hierarchical tertiary star is indexed by
the subscript 2, and P is the orbital period.

Our second shortcut for keeping the simulation runtimes manageable is to set a minimum
value for the time step. We choose a physically motivated value, 10−6×τdyn,min, where τdyn,min

is the smallest value of the dynamical time between any two stars in the simulation (that
are not being treated by the analytic shortcut above) at a given time step. This procedure is
necessary when there are three or more stars interacting at small separations, in which case
the analytic approximations above cannot be used.

2.2 Binary tree algorithm

The code can classify all hierarchical structures which exist in the system from unbound
systems at each time step. The classification is achieved only based on the relative energies
between the objects. The code first identifies the most compactly bound system. The code
then iteratively finds a bound system with the next highest relative energy assuming the
most compactly bound system as a single object. During this process, the information of
all existing bound systems are stored. If there is no bound system, all objects are identified
as singles. This binary tree algorithm is not exactly the same as the one implemented in
FEWBODY code, specifically designed for scattering experiments (Fregeau et al., 2004), but
our tree algorithm follows the same logic of the tree algorithm implemented in FEWBODY
code. In addition, the code can calculate the times at which each single star is ejected during
chaotic interactions. This is done by evaluating the time-step at which the relative energy
between a single particle and the remaining substellar system (binary or triple) becomes
positive.

2.3 Dynamical evolution of background potential

The code can handle the dynamical evolution of a background potential as long as the
potential is integrable. If a model assumes dissipative mechanisms or energy variations in
a background medium such as frictional forces, tidal captures or core collapse, the code
implicitly estimates the energy changes due to those mechanisms at each time step, then
evolves the potential accordingly. In our study on the formation of SMBH binaries and their
mergers, presented in §5, we take into account widening of a background potential due to
an energy loss from binaries, also known as “scouring effect”. In Figure 24, we show how
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the background potential evolves differently with (solid lines) and without (dotted lines) the
scouring effect.

2.4 Equation of motion

The code can integrate the equations of motion with various forces and masses of particles
which evolve in time. Forces that can be integrated in the code include the following: (i)
aN +aPN: their mutual gravitational attraction including post-Newtonian terms up to 2.5th
order, (ii) adf : dynamical friction from the surrounding medium, (iii) abg: the gravitational
pull of the background matter and (iv) amg: the deceleration due to BH mass increase with
momentum conserved. The resulting equation of motion for the ith BH includes the sum of
the five forces:

a i = aN,i + aPN,i + adf,i + abg,i + amg,i (13)

We next describe each contribution in detail.

1. Mutual gravitational forces between particles
We calculate the standard Newtonian gravitational force aN as well as post-Newtonian
terms aPN,

agr = aN,i + aPN,i

= −
∑
j 6=i

G MBH,j
∂ Φ(rij)

∂ rij

r i − rj
rij

+ a1PN,i + a2PN,i + a2.5PN,i, (14)

where G is the gravitational constant, Φ is the pairwise gravitational potential, ri is the
displacement of the ith particle from the center, and rij ≡ |ri − rj|. In our numerical
implementation, we adopt the Plummer softening kernel (Binney & Tremaine, 1987).

We include post-Newtonian terms aPN up to order 2.5, which account for the loss of
orbital energy and angular momentum via gravitational waves, but do not account for
spin-orbit or spin-spin coupling. The full expressions for these terms can be found in,
e.g., Kupi et al. (2006).

2. Dynamical friction from background matter
When an object moves through a medium, it induces an overdensity of the medium,
or wake, behind it. The gravitational force due to the overdense region acts as a
dissipative drag on the object’s motion. In this study, we consider dynamical friction
due to both dark matter (DM) and stars.

For collisionless medium, we adopt the standard Chandrasekhar formula (Binney &
Tremaine, 1987),

adf,i = −4π ln Λ f(Xi)
G2Mi

v3
i

ρ(ri) v i, (15)
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with

f(Xi) ≡ erf(Xi)−
2√
π
Xi exp

(
−X2

i

)
, (16)

where Xi ≡ vi/(
√

2σv).

On the other hand, for a collisional medium (i.e. gas medium), dynamical friction is
generally smaller than that for a collisionless medium whereas it becomes enhanced as a
result of resonance of a body moving at a transonic or supersonic speed with respect to
the medium. It is because for the collisional medium, sound waves can propagate both
downwind and upwind, resulting in a symmetric distribution around the moving body.
This ultimately decrease the efficiency of the gravitational drag. On the other hand, for
M & 1, the drag becomes stronger as the downwind sound waves resonantly interact
with the perturber. To account for this, we adopt the modified formula for collisional
medium derived by (Tanaka & Haiman, 2009). This prescription incorporates behaviors
found in numerical simulations for subsonic and supersonic regimes (Ostriker, 1999a;
Escala et al., 2004). The specific drag force vector always points opposite to the
direction of motion, and is given by:

a
(coll.)
df,i = −4π G2 Mi ρ(~ri)

1

v2
i

× f (coll.)(Mi), (17)

with

f (coll.)(Mi) =



0.5 ln Λ
[
erf
(
Mi√

2

)
−
√

2
π
Mi exp

(
−M2

i

2

) ]
0 6Mi 6 0.8;

1.5 ln Λ
[
erf
(
Mi√

2

)
−
√

2
π
Mi exp

(
−M2

i

2

) ]
0.8 6M 6Meq;

1
2

ln
(

1− 1
M2

i

)
+ ln Λ

Mi >Meq.

(18)

Above,Mi ≡ vi/cs is the Mach number, and cs is the sound speed. Meq is determined
such that the second and the third equations are continuous for a given choice of lnλ.

Note that the expressions for dynamical friction given above (collisional + collisionless)
are based on the assumption of non-accelerated motion in a medium with a uniform
density distribution. In a system with BH/stars chaotically interacting and forming
bound systems, this assumption may not be justified. However, a more accurate treat-
ment of dynamical friction which takes into account the nonlinear evolution of the
overdense region and all the acting forces at each time step is beyond what a few-body
code is able to handle. On the other hand, since several studies of dynamical friction in
a nonuniform medium or for perturbers on nonlinear trajectories (e.g Sánchez-Salcedo
& Brandenburg, 2001; Just & Peñarrubia, 2005; H. Kim & Kim, 2007; W.-T. Kim,
2010) show that those trajectories are well described by the Chandrasekhar formula,
we will use the formulas above.
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3. Gravitational force of the background matter
The background media exert an additional gravitational force on the particles. For a
spherically symmetric density profile, this force points toward the centre of the poten-
tial. It can be expressed as

abg,i = −G Men,i(r ≤ ri)

r3
i

ri, (19)

where ri is a vector pointing from the centre to the i-th particle and Men(r ≤ ri) is the
enclosed mass inside r = ri..

4. Deceleration due to mass growth
When the masses of particles increase, we take into account the decrease in velocity
accordingly. Assuming particles grow in mass in a spherically symmetric fashion, the
i−th particle decelerates through conservation of linear momentum,

amg,i = −M
′
i −Mi

M ′
i∆t

v i , (20)

where M ′
i is the increased mass estimated and ∆t is the time step.

Each of the forces above can be freely included or excluded in integrating the equations
of motion according to specific models of interest. Given the solutions of the equation of
motion at every time step, we update the positions and velocities for each particle.

2.5 Code tests

2.5.1 Comparison with numerical results from another code - Outcome fraction

We performed systematic comparative checks between our code and the publicly available
N -body code “FEWBODY”5 during our first study of the background potential (Ryu et
al., 2017a), and we confirmed that both codes give statistically consistent results. Here we
are presenting a further test. In this test, using our code, we first performed numerical
experiments of encounters between two identical binaries (a = 1 AU, e = 0 and each stellar
mass=1 M�) in a homogeneous background potential for various number densities (hence
same background potential model described in described in 2.6.1). Taking the same initial
conditions as used in Leigh et al. (2016), we explored the nearly-zero total energy range by
changing the density (slightly positive total energy at high density to slightly negative total
energy at low density). As a consistency check, we ran simulations without the background
potential (i.e. number density n = 0) and reproduced the results from Leigh et al. (2016),
especially the outcome fractions at E ' 0 in Figure 4 of their paper.

Figure 1 shows the outcome fractions of 2 + 2 encounters with/without the background
potential. As the total energy goes from positive to negative (zero at n = 106 cm−3), the
fractions of the 1 + 1 + 1 + 1 outcomes drop to zero and the outcome fractions converge to

5http://www.ascl.net/1208.011
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Figure 1: The outcome fractions of 2 + 2 encounters with/without the background potential.
The total energy is zero at n = 106 cm−3 and becomes positive at n > 106 cm−3 to negative
at n < 106 cm−3. As the total energy becomes negative (smaller n), the fractions of the
1 + 1 + 1 + 1 outcomes drop to zero and all the outcome fractions converge to those from
Leigh et al. (2016) at n = 0 (blue squares denoted by “FEWBODY”, 2 + 1 + 1, 2 + 2, 3 + 1
from top to bottom) for the same total energy.

those from Leigh et al. (2016) at n = 0 (blue squares denoted by “FEWBODY”, 2 + 1 + 1,
2 + 2, 3 + 1 from top to bottom) for the same total energy.

2.5.2 Comparison with analytic solution

As a further test of our code, and to gain a better physical insight, we next compare the results
from a numerical binary-binary scattering with an analytic solution for the distributions of
the outcome products. In Ryu et al. (2017d), we derived an analytic formula relating the
angle between the velocity vectors of the two ejected single stars and the orbital separation
of the remaining binary, both in isolation and in a homogeneous background potential. Two
single stars and one binary is a generally frequent outcome of the four possible outcomes
when two binaries scatter. In deriving the formula for the outcomes in the presence a
background potential, several approximations are made. However, for interactions without
the background potential, one can derive an exact solution for the momentum p’s of all of
the outcomes and their relative angles assuming momentum conservation,
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Figure 2: The speeds of the final binaries vb (left panel), their semimajor axes a (right
panel) expected from our analytic formulae 21 and 23 (solid/thick dotted lines) for equal
values of the initial velocities (vs,1, vs,2) in units of km s−1. The data points (dots) show
the results of our numerical binary-binary scattering simulations performed using the code.
For the simulated data points, the final speeds of the ejected stars are constrained to be
within ∼ 5% of the speeds shown in the plots. The solid lines for vb and a are estimated
using the median values of the speeds of the ejected stars. For each combination of speeds,
we show the upper and lower limits (thin dotted lines) around the median values (solid lines
and thick dotted lines), adopting the same colors as for the dots. Furthermore, we fill the
regions between the two limits with the same color.

ps,2 =
√
p2

s,1 + p2
b + 2ps,1pb cos Ψ, (21)

cos Ψ = − ps,1 + ps,2 cos ξ√
p2

s,1 + p2
s,2 + 2ps,1ps,2 cos ξ

, (22)

and the semimajor axis a of the binary assuming conservation of the total energy defined as
follows,

Etot = KEs,1 +KEs,2 +KEb + Ebind

=
1

2
ms,1v

2
s,1 +

1

2
ms,2v

2
s,2 +

1

2
mbv

2
b −

Gmb,1mb,2

2a
, (23)

where the subscripts s, 1 and s, 2 indicate the two ejected singles and b the remaining binary.
ξ is the relative angle between the two ejected single stars and Ψ the relative angle between
one ejected star and the binary. The angle between the other ejected single star and the
binary (denoted by Φ) is automatically determined since ξ + Ψ + Φ = 2π.

In Figure 2, we show the speeds of the final binaries vb (left panel), the correspond-
ing semimajor axes a (right panel), given by our analytic formulae (Equations 21 and 23,
solid/dotted lines) for equal values of the ejected single star speeds (vs,1, vs,2) in unit of
km s−1. To compare, we mark via the data points the results of the numerical experiments
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of binary-binary scatterings (2+1+1 outcome) performed using the code. For the simulated
data points, the final speeds of the ejected stars are constrained to be within 5% of the speeds
shown in the plots. The lines for vb, a are estimated using the median values of the speeds of
the ejected stars. Hence the actual combinations of the speeds for the estimates are slightly
different from those indicated in the plots. For the analytic calculations, we assume the
same total initial energy and masses for the stars as adopted in the simulated data. For each
combination of the single star ejection speeds, the lines and dots share the same color. All
of the parameters vb and a calculated from our analytic formulae show excellent agreement
with the numerical simulations. See Ryu et al. (2017d) for more comparisons for various
combinations of vb, a and Φ.

2.6 Applications of the code − binary-binary scattering experi-
ment

2.6.1 Scattering experiments in a background potential

T. Ryu, N. Leigh, R. Perna The Monthly Notices of the Royal Astronomical Society, Vol.
467, 4447 (2017)

Using the N -body code presented above, we perform scattering experiments between two
binaries in a background potential. Our primary goal of these experiments is character-
ize the effects of a continuous background potential on the time evolution of binary-binary
interactions. To this end, we present the results of a large suite of numerical N -body simu-
lations of binary-binary scatterings in a background potential. For simplicity, we model the
background potential as an uniform (natal or star-forming) gas medium.

We perform 103 scattering experiments of two identical binaries with the same initial
semimajor axis for every given set of simulations. The number of simulations for each
set is sufficiently large to ensure that all data statistically converge (the overall Poisson
uncertainties . 3 − 4%). In total, we consider three discrete values of the semimajor axis
(a0 = 1 AU, 10 AU and 100 AU). We first generate two identical binaries with initially
circular orbits (the eccentricities are zero, or e = 0). Each binary consists of two point
particles, each with a mass of 1 M�. Then we give an initial separation and relative velocity
between the centre of mass of the two binaries, such that they collide head-on at the origin
(i.e., with impact parameter b = 0) with nearly zero total energy (more precisely, slightly
negative to positive depending on the number density of the gas medium). However, the
mutual inclinations between the binary orbital planes, as well as their initial phases, are
randomly chosen.

In order to choose the value of the initial relative velocity vrel between the centres of mass
of the two binaries, we define the critical velocity vcri as the relative velocity between the
centres of mass of the two binaries at infinity for which the total encounter energy is zero.
In this paper, vrel will be presented in units of vcri, unless otherwise stated. More explicitly,
in the case of binary-binary encounters, the total initial energy Ei at infinity is written as
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follows:

Ei =
1

2
µv2

rel −
Gm11m12

2a1

− Gm21m22

2a2

. (24)

In this equation, the first subscript for the particles mass m, along with the binary semimajor
axis a subscript, corresponds to each binary, whereas the second subscript for m corresponds
to each component of the binary. For example, the masses of the two stars in the 1st binary
with semimajor axis a1 are m11 and m12. Here, µ in the first term on the right hand side is the
reduced mass of the two binaries, i.e., µ = (m11 +m12)(m21 +m22)/(m11 +m12 +m21 +m22) =
1 M�. The second and third terms are the orbital energies of the two binaries. Note that
the gravitational potential between the two binaries is zero at infinity. Therefore, the critical
velocity at Ei = 0 is,

vcri = vrel(Ei = 0) =

√
2

µ

(Gm11m12

2a1

+
Gm21m22

2a2

)
. (25)

In this study, we take vrel = 1 to explore the zero-energy limit.
In the presence of a background gas medium, the condition vrel = 1 does not necessarily

imply that the total encounter energy is exactly zero. Instead, we achieve the zero-energy
limit by adjusting the initial separations between the binary centers of mass. In order
to explain how we determine the initial distance between the two binaries, we first need
to introduce the background potential adopted in this study, corresponding to a constant
density gas medium.

We assume a uniform (i.e. constant) density ρ (n is the gas number density) for this
potential, with a limiting outer boundary rbg set by our chosen total background mass Mgas

such that

ρ =

{
nmH r ≤ rbg ;

0 r > rbg ,
(26)

where mH is the mass of a hydrogen atom. For simplicity, we take a mean molecular weight
of unity. The mass of gas enclosed in a spherical volume of radius r can be written as

Men,gas(r) =

{
4π
3
ρr3 r ≤ rbg ;

4π
3
ρr3

bg = Mgas r > rbg .
(27)

We consider a range of densities, motivated by the values typical of gaseous astrophysical
environments, most notably giant molecular clouds and star-forming regions. In this case,
the gravitational force imparted by a uniform gas medium of constant density on a given
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star particle at r follows the analytic formula:

fbg(r) = −GmMen,gas(r)

r3
r

=

−
4
3
πGmρ r r ≤ rbg ;

−4
3
πGmρ

(
rbg
r

)3

r r > rbg ,
(28)

where m is the mass of the star and r is the vector pointing from the system center of mass
(CM) to the star. Accordingly, the background potential has the following form:

Vbg(r) =

{
2
3
πGmρ(r2 − 3r2

bg) r ≤ rbg ;

−GmMgas

r
= −4

3
πGmρ

r3bg
r

r > rbg .
(29)

And the total energy E(t) of four stars in the system at t, including the contribution from
Vbg(r), can be written as,

E(t) =
4∑
i=1

1

2
miv

2
i −

4∑
i,j=1
(i>j)

Gmimj

|ri − rj|
+

4∑
i=1

Vbg(ri) , (30)

where mi is the mass of each star and vi is the velocity of each star with respect to the
system CM.

In order to determine the initial separations r12 between the centres of mass of the two
binaries (located at initial distances r1 and r2 from the system CM), we use the monopole
approximation for the binaries (i.e. a point particle with a mass of 2 M�) in equation 30
to evaluate both of the gravitational potential energies (between the two binaries and from
the background medium). Under the presence of a background potential, this approximation
allows us to derive r12 by solving one simple equation for a given total energy. More explicitly,
the initial total energy for the two binaries in the background potential becomes:

E0 =
1

2
µv2

rel −
Gm11m12

2a1

− Gm21m22

2a2

+
2

3
πGm1ρr

2
1 +

2

3
πGm2ρr

2
2 −

Gm1m2

r12

=
1

2
µv2

rel − 2
Gm11m12

2a1

+
4

3
πGm1ρ

(r12

2

)2

− Gm1m2

r12

. (31)

In the second equality, we simplified the equation using the fact that the two binaries are
identical and the CM of the two binaries coincides with the origin initially, i.e. r1 = r2 =
r12/2. Here, the gravitational potential energy between the two binaries (the last term)
should not be ignored because the two binaries are initially separated by a finite distance
in our simulations. Since we take vrel = 1, the first two terms on the right hand-side of the
second equality (corresponding to Ei in equation 24) always cancel out, regardless of a1 (and
a2 = a1). Hence, in the limit of E0 ' 0, r12 is determined by the requirement that the last
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two terms cancel each other. Once r12 and the relative position of each star with respect to
the center of mass of each binary are decided, so are the position and velocity vectors of the
four stars.

In our experiments, we fix r12 such that E0 ' 0 (but slightly positive) when n = 102 cm−3.
In order to explore the effects of the background potential, we run suites of simulations with
a range of densities, i.e., n = 10, 102, 103 and 105 cm−3 (default set). For this default set,
we take Mgas = 1010 M� so that the width of the potential (rbg) is large enough for all
particles to remain within the spherical volume defined by this critical radius throughout the
duration of the interaction. For comparison, we run additional simulations with even higher
number densities and larger semimajor axes. As we will show, the background potential
resets the zero-point of the total system energy. In particular, the stellar dynamics are
significantly affected by the background potential when the stars become trapped in the
potential, oscillating with a short period around the system CM. This leads to repeated
scattering events that would not otherwise occur without the influence of the background
potential.

The simulations terminate when no further scatterings will occur. To begin, we use the
same criteria as described in Fregeau et al. (2004). These criteria consist of four conditions:
1) All single stars and bound hierarchies in a system are moving away from one another. 2)
The total energy of the single stars and bound hierarchies are positive (without including
the orbital energies of any bound hierarchies). 3) Hierarchies such as triples are dynamically
stable. Finally, 4) the relative force between stars in a bound system should be larger
at apocenter than the tidal force from all other stars (i.e., bound hierarchies as a whole, if
formed) by a tidal tolerance parameter δ. We take δ = 10−9, which is a value small enough to
allow us to precisely classify the outcomes and explore the effects of the background potential

at large distances. For more details, see Fregeau et al. (2004). 5) v ≥ vesc =
√

2GMen(r)
r

if
r ≥ rbg,
where Men(r) is the total mass of gas and stars enclosed in a spherical volume of radius r and
vesc is the velocity required by a star at r to escape from the gas medium to spatial infinity.

We classify the final end products of binary-binary scatterings according to the four
outcomes:

1. a binary and two single stars (2+1+1)

2. two binaries (2+2)

3. a triple and a single star (3+1)

4. four single stars (1+1+1+1)

Henceforth, we will refer to each outcome by what is given in the accompanying parentheses.
Figure 3 shows each outcome probability as a function of gas density for each semimajor

axis. The error bars indicate the Poisson uncertainties for each simulation set. The line
types differentiate between the different semimajor axes: the solid, dot-dashed and dotted
lines correspond to, respectively, a0 = 1 AU, 10 AU and 100 AU. The different point types
indicate the different outcomes: the triangles, circles, down-pointing triangles and squares
correspond to, respectively, 2+1+1, 2+2, 3+1 and 1+1+1+1.
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Figure 3: The fraction of each outcome as a function of gas density for three discrete values
of the semimajor axs. The different line types correspond to the different semimajor axes:
the solid line, dot-dashed line and dotted line represent, respectively, a0 = 1 AU, 10 AU and
100 AU. The different point types indicate the different encounter outcomes: the triangles,
circles, down-pointing triangles and square dots correspond to, respetively, the outcomes
2+1+1, 2+2, 3+1 and 1+1+1+1. The outcome fractions at n = 0 cm−3 and E0 = 0 in Leigh
et al. (2016) (see Figure 4 in their paper assuming a virial ratio k ' 1) are marked as blue
dots, and those for our simulations where the semimajor axis is randomly generated in the
range of a0 = 1− 100 AU are marked as red dots. The bright green dots near n = 10 cm−3

represent the fractions for an additional experiment with n = 10 cm−3 and a0 = 1000 AU.
The setup details are described in the text.
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1. Exploring the E0 = 0 neighborhood

Figure 3 shows that the outcome fractions of our numerical study at n = 10−102 cm−3

are almost the same as for the equivalent scattering experiments without a background
potential (i.e., with n = 0). As n increases from n = 102 cm−3 to n = 103 cm−3,
the total energy becomes positive and the 1+1+1+1 outcome begins to appear for all
semimajor axes. To ensure that we have correctly calculated the outcome fractions at
this critical energy limit, we run two more sets of simulations: 1) Instead of assuming
discrete values for the semimajor axes, we generate two binaries with the same semi-
major axis, but randomly generated within the range a0 = 1 AU−100 AU. The results
of this experiment (marked with red hollow dots at n = 102 cm−3 in the figure) are
consistent with those found adopting discrete values for the semimajor axis; 2) we per-
formed experiments with a density between the two critical densities, or n ' 300 cm−3

(log[n/ cm−3] = 2.5) for both a0 = 1 AU and 10 AU. As expected, the outcome
fractions for n ' 300 cm−3 fall between those for n = 102 cm−3 and n = 103 cm−3

in all cases. We do not show them to avoid overcrowding the figure. Therefore, both
experiments show that the outcome fractions and their dependences on the gas density
are consistent with the ranges and values physically allowed by the total energy (e.g.,
the 1+1+1+1 outcome only occurs for positive total energies).

We compare our results with the outcome probabilities at n = 0 cm−3 and E0 = 0
given in Leigh et al. (2016) (see Figure 4 at virial ratio k ' 1). These are marked as
blue hollow dots using the same shape for each outcome. To avoid overlapping with
other data points, these points are marked off the E0 = 0 line (the vertical dotted
line at n = 102 cm−3). Note that the numerical scattering experiments in Leigh et
al. (2016) agree with those shown here for a0 = 1 AU since all assumptions are the
same, including the semimajor axis (a0 = 1 AU), the eccentricity (e = 0), the stellar
mass (M = 1 M�) and the total initial energy (E = 0). Additionally, we find that the
outcome fractions in our study at n = 10−102 cm−3 are still comparable to those found
in Leigh et al. (2016), even for our other choices of the semimajor axis (a0 = 10 AU and
100 AU). It is because the gravitational forces between stars dominate, and hence the
stellar dynamics should remain the same as in the absence of the background potential.

However, as the density increases, the final encounter outcomes and their probabilities
change, due to the effect of the background potential, which acts to reset the zero-point
of the total system energy. The fractions, especially for a0 = 100 AU, diverge slightly
from the results for the other semimajor axes as n increases. We start to see that
the ejected stars return toward the system CM. Consequently, the stars take part in
repeated scattering events that would not have occurred in the absence of a background
potential. This leads to discrepancies in the final outcome probabilities relative to the
no background potential case. This regime is different from the case where stellar
interactions dominate.

Interestingly, just above the zero-energy limit, the fraction of 2+1+1 outcomes de-
creases by about the same amount that the 1+1+1+1 outcome increases, whereas the
fractions of the other two outcomes (3+1 and 2+2) remain the same. The probability
of having a 1+1+1+1 outcome appears to be determined by whether or not all four
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stars are promptly ejected. In other words, if the stars are ejected one at a time, then
a 1+1+1+1 outcome does not occur. This is because once a single star is ejected with
positive kinetic energy, then the left-over system should have a negative total energy,
which can never end up fully ionized (by energy conservation). Note, however, that
if the initial total energy is positive and sufficiently large, it is possible that after an
ejection event the remaining subsystem still has a positive total energy, and so can be
reionized into single stars later on. If n = 103 cm−3, then the total energy is much
smaller than the typical kinetic energies of ejected single stars (estimated as vesc ∼ vcri).
Thus, we expect that the prompt ejection of all four stars is the only channel for full
ionization. As the 1+1+1+1 outcome begins to appear, the fractions of all other out-
comes decrease (by what appears to be a roughly constant fraction). Since the 2+1+1
outcome probability is the highest, its decrease looks especially significant.

One other point to note in the density range n = 10 cm−3 to n = 103 cm−3 is that the
increase we find in the probability of having a 1+1+1+1 outcome (i.e., from 0 to 0.2)
is relatively large compared to the results of other scattering experiments (Mikkola,
1983; Fregeau et al., 2004). This discrepancy is most likely due to the presence of the
background potential, but the different choices for the impact parameter and eccen-
tricity could also contribute. In our study, we only consider initially circular orbits
and zero impact parameters (i.e., head-on collisions). However, other studies draw the
eccentricity and impact parameter from specified distributions. For instance, when two
binaries collide head-on there is a higher probability of full ionization occurring relative
to encounters with non-zero impact parameter, since all four stars are more likely to in-
teract strongly at the first encounter such that the two binaries would both be (at least
temporarily) fully ionized. Therefore, initial configurations such as head-on collisions
can increase the fraction of 1+1+1+1 outcomes. Meanwhile, the background potential
serves to enhance the effects of gravitational focusing, drawing all stars toward the
system CM.

2. Exploring the strong-background potential, positive-energy regime

The outcome probabilities become different for each semimajor axis. This is different
from the cases with n = 10 − 103 cm−3 in which each outcome probability for all
the semimajor axes consistent within one or two standard deviations as long as n is
same. More explicitly, for a0 = 1 AU, these probabilities are almost the same as for
n = 103 cm−3. Since for this value of a0 the gravitational forces between the stars
still dominate over the background potential. the outcome probabilities are expected
to remain the same as those for n = 0. Since the cross section for each outcome does
not vary much Sweatman (2007) from n = 103 cm−3 to n = 105 cm−3 (0 - 0.04 in the
unit of Eb(a = 1 AU)), these outcome probabilities are reasonable. Notice that the
units shown along the upper x-axis of the figure correspond to Eb(a = 100 AU). For
a0 = 10 AU, the outcome probabilities start to differ, similar to the cases for n = 102

and 103 cm−3 cases with a0 = 100 AU.

Interestingly, for a0 = 100 AU, the outcome probabilities for 2+1+1 and 1+1+1+1
reverse and all other outcomes (3+1 and 2+2) are completely suppressed. For the
cases with the 2+1+1 outcome, we find that subsequent stellar scatterings continue,
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but more frequently due to the stronger potential and hence higher accelerations, until
two single stars are completely ejected from the system. Once a compact binary forms
with sufficiently large binding energy, it survives successive encounters, becoming more
and more compact via the slingshot mechanism. This also implies that it is more likely
that a wide binary or triple will be ionized (i.e., the complete suppression of the 2+2
and 3+1 outcomes). In the presence of a deep potential, a single star has to gain a
higher escape velocity for complete escape, necessarily leading to a hardened binary.
Recall that vesc ∼ √ρ (see the additional termination criteria 6). As a result, we see
a shift of the binding energy distribution towards the higher energy range. Otherwise,
like the cases with the 1+1+1+1 outcome, two binaries should be first ionized into
four stars in order to escape.

3. Additional experiments

We performed one additional experiment to more clearly understand the effects of the
background potential on the subsequent stellar dynamics for negative total energies.
In this experiment, we assume a0 = 100 AU and n = 107 cm−3.

For this particular experiment, we set Mgas = 40 M�(rbg = 6600 AU). This choice for
the total gas mass is such that stars can escape from the background potential well
and the effects of the background potential should be significant. In this experiment
the only end product is 2+1+1 (cf. 2+1+1 and 1+1+1+1 in the simulation for E0 > 0
with n = 105 cm−3 and a0 = 100 AU). It is possible that two binaries are fully ionized
but given the total energy budget available to all four single stars, they cannot have
sufficiently high escape velocities (or kinetic energies) to meet the criterion for all four
single stars to pass the outer potential boundary.

In summary, we find that one of the important roles of the background potential (for
any non-zero number density) is to reset the zero-point of the total system energy. This in
turn affects the types of objects formed during the encounters in addition to the outcome
probabilities. In particular, for higher n and less tightly bound systems (i.e., larger semimajor
axes), stars often become trapped in the background potential, oscillating with a short period
around the system center of mass. This results in fewer triples and wider binaries and the
preferential survival of compact binaries, since subsequent scatterings continue until two
single stars escape at very high ejection velocities.

2.6.2 Formation of runaway stars

T. Ryu, N. Leigh, R. Perna The Monthly Notices of the Royal Astronomical Society, Vol.
470, 2049 (2017)
T. Ryu, N. Leigh, R. Perna The Monthly Notices of the Royal Astronomical Society, Vol.

470, 2 (2017)

Runaway stars are a population of fast-moving stars, characterized by speeds & 30 km s−1.
They are generally of the O and B spectral type, and are often found at some distance from
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Mass (binary 1, binary 2) [39 M� + 16 M�], [19 M� + 16 M�]

Initial separations r12 1000 AU

Relative velocity vrel 2 km/ s

Eccentricity e f(e) ∼ e

emin, emax 0, 0.99

Impact parameter b f(b) ∼ b2

bmin, bmax 2, 220− 230 AU

Semimajor axis (a1, a2) ∼ 3.2 AU, ∼ 1.6 AU

Code termination time t = 4 Myr (for runs with Vbg)

Stellar radii (binary 1, binary2)
[16 R� + 6 R�], [11 R� + 8 R�]

(only for runs without Vbg)

Density ρ 1ρ̄, 103ρ̄

Total background mass Mbg 3× 103 M�, 104 M�

Table 1: The initial conditions of our scattering experiments. The masses and radii of
the four stars are chosen assuming them as proxies for ι Ori, AE Aur and µ Col. These
runaways are believed to have formed during encounters in the Trapezium cluster. Note
that in simulations with a background potential we do not take into account the stellar
radii and physical collisions, while in those without the background potential we explore
the frequency of the physical collisions between stars, given the stellar radii shown above.
ρ̄ = 1.66× 10−10 g cm−3 = 2450 M� pc−3.

star-forming regions (Blaauw, 1961; R. C. Stone, 1979). However, velocity measurements
and reconstruction of trajectories for a number of these stars have shown that they likely
originated in stellar clusters, and hence they were ejected from them at high speeds (i.e.
Hoogerwerf et al. 2000).

In this study, we examine the hypothesis of the dynamical ejection scenario, namely,
dynamical formation as a result of scattering in a close encounter between stars in a star
cluster (e.g. Poveda et al., 1967; Gies & Bolton, 1986). We choose the parameters of the
initial binaries to match the observed properties of ι Ori binary and two runaway stars (AE
Aur and µ Col), which are believed to have formed during a binary-binary encounter in the
Trapezium cluster. Furthermore, we focus on one particular case where the end products
of the encounters are a binary consisting of ι Ori A and ι Ori B and two single stars. We
assume one of the binaries (binary 1) consists of two stars with masses m11 = 39 M� (a proxy
for ι Ori A) and m12 = 16 M� (AE Aur), while the other binary (binary 2) is composed of
two stars with masses m21 = 19 M� (ι Ori B) and m22 = 16 M� (µ Col). These specific
couplings and the masses of the initial binary components are motivated by Gualandris et
al. (2004) (see their Table 2).

We consider two different choices for the stellar radii, zero-size (point particles, or stellar
radii R? = 0) and finite-sized spherical particles. In the simulations with a background
potential we only consider point particles, whereas we consider both cases in the simulations
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without a background potential. The stellar radii are taken from Table 2 in Gualandris et al.
(2004), i.e., R?,11 = 16 R�, R?,12 = 6 R�, R?,21 = 11 R� and R?,22 = 8 R�. Gualandris et al.
(2004) found that their results have a weak dependence on the choice of the stellar radii. In
the finite-size case, we take into account physical collisions between stars. We assume that
a physical collision happens when the radii of the stars overlap. Collisions are done in the
“sticky star” approximation. Here, stars are treated as rigid spheres with radii equal to their
stellar radii. When the radii of two stars overlap, they are merged together with no mass
loss and assuming conservation of linear momentum. After the collision, we assume that the
radius of the product is equal to the sum of the colliding stars’ radii.

We conservatively take the initial separation of the two binaries to be r12 = 1000 AU and
a relative initial velocity of vrel = 2 km/ s, which is the mean observed dispersion velocity
in the Trapezium cluster (Herbig & Terndrup, 1986). The impact parameter b is randomly
drawn from a distribution f(b) ∼ b2 within the range [bmin, bmax] = [0, 220 − 230 AU],
while the eccentricities of the binaries are randomly generated from a thermal distribution
f(e) ∼ 2e. The mutual inclinations between the binary orbital planes, as well as their initial
phases, are randomly chosen.

We adopt the same background potential model in §2.6.1. We consider direct encounters
of two binaries with different masses but the same binding energy in the presence/absence
of a background potential. We define the ratio of binding energies of the two initial binaries
as α = Eb,1/Eb,2, where Eb,1(Eb,2) is the binding energy of the more (less) massive initial
binary. This choice is motivated by Gualandris et al. (2004), who find that the distributions
of velocities and semimajor axes do not change significantly for α ≤ 3. They also find that
the formation of the ι Ori binary considered in this study is favored by such low ratios
of α. We consider two values for the density of the background potential (ρ = 1 and 103

in units of ρ̄, Pfalzner 2009) and two values for the total mass of the background matter
(Mbg = 3 × 103 M� and 104 M�). These chosen values are typical for young star cluster
cores ( Portegies Zwart et al. 2010 and references therein), such as e.g. 30 Doradus cluster.

Given the masses above, the total energy of the whole system, Epresent, is estimated from
the observed velocities and the relative positions of the four stars (ι Ori binary, AE Aur and
ι Ori B, Turon et al. 1992), Epresent ' −(2 − 4) × 1048 erg. In calculating the total energy,
we include the contribution of the background potential Vbg (Equation 29) with total mass
Mbg and with its origin coinciding with the center of mass frame of the four stars. Finally,
by energy conservation, the total initial energies in the CM of the four stars can be written
as follows,

Epresent =
1

2
µv2

rel −
Gm1m2

r12

+ Eb,1 + Eb,2

+
2

3
πGρ[m1(r2

1 − 3r2
bg) +m2(r2

2 − 3r2
bg)] , (32)

where µ is the reduced mass of the two binaries, µ = 55× 35/(55 + 35) M� ' 21.3 M� and
Eb,1(Eb,2) is the binding energy of binary 1 (binary 2). Also, r1 (r2) in the last term (the
background gravitational potential for the two binaries) is the distance from the origin to
binary 1 (binary 2). In the CM frame, r1 = m2/(m1 + m2)r12 and r1 + r2 = r12. Given
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the estimated binding energy reservoir, the semimajor axes of the two binaries are chosen
such that their binding energies are equal, a1 ' 3.2 AU and a2 ' 1.6 AU. Most of the
contribution to the total energy comes from the total binding energy Eb (= Eb,1 + Eb,2) so
that the semimajor axes for the two binaries have weak dependences on ρ and r12. Each
simulation is run for 4 Myr. This time is chosen to be comparable to and within the
estimated uncertainties of the age of a young cluster (e.g. the age of the Trapezium cluster
is ∼ 2.5− 3 Myr). The initial conditions of our scattering experiments are given in Table 1.
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In the simulations without the background potential, we use the same initial conditions
described above except that r12 is set to be larger by a factor of a few. We refer to this
set of simulations as Model 0. We consider three sets of simulations with a background
potential given different choices of Mbg and ρ (or, simply, the escape velocity vesc). We refer
to these as Model 1, Model 2 and Model 3. The specific parameters for each of these models
are summarized in Table 2. In addition to those four main models, we run simulations
with different stellar sizes (Model 0-1) and binding energy ratio (Model 1-1 and 1-2) for
investigative purposes. However, in order to avoid adding complexity in interpreting our
results, we concentrate on the four main models (without “-1” or “-2”) when it comes to the
orbital parameters of the interaction.

Based on the results from our scattering experiments, focusing on the formation of the
most massive binaries (which will be denoted by [S11 + S21] binary) and two ejected single
stars (S12 and S22), we describe the statistical properties of the simulated final binaries and
single stars.

Figure 4 shows the distributions of the semimajor axes a for the [S11 + S21] binaries.
In the plots for Model 1 to Model 3, we show three different distributions with different
line types: those for the binaries which have escaped from the potential before t = 4 Myr
(dotted blue line), those which have not escaped and remain bound to the potential (thick
red solid line), and the overall distributions (thin black solid lines) as the sum of the two
distributions. The vertical gold lines indicate an observed value of a ' 0.7 AU or a period
of 29 days (Gualandris et al., 2004).

We can see how, in going from Model 1 to Model 4, the population of final binaries splits
into two separate populations, i.e., E-binaries and NE-binaries. The NE-binary population
gradually emerges. This is because, as the background potential becomes deeper, the escape
velocity increases and hence it gets harder for the stars to escape. The two populations
become comparable in size in Model 3, hence contributing equally to the overall distribution.
Given the different values in the peaks of the two populations, the overall distribution (thin
black solid line) becomes broader. The median values of a for Model 0 are amedian = 1.27 AU.
Those for (NE,2E) case (from Model 1 to Model 3) are amedian = 1.17 AU, 1.17 AU and
0.94 AU and for (E,2E) case and amedian = 1.73 AU, 1.62 AU and 1.41 AU. We present the
all of the median values for the distributions for the binaries and the single stars in Table 3.

We also notice that the distributions of NE-binaries (red thick solid line) are located at
larger a than those of E-binaries. This can be understood in terms of conservation of energy
along with the escape velocity. In general, when two single stars are ejected, the recoiled
binary carries some kinetic energy. As the recoil velocity of the binary increases, given a
fixed total energy, a larger reservoir of negative energy is left for the binary itself, implying a
tighter binary. Correspondingly, the fact that binaries could not escape from the background
potential means that the instantaneous velocities (or the kinetic energies) of the binaries at
the last ejection event were not sufficiently high. Therefore, with smaller energy reservoirs
given to the binaries, their semimajor axes are distributed at larger a.

In Figure 5, we present the distributions of the relative angle ξ as a function of the speeds
v for Model 0 to Model 3. Here, we define the relative angle ξ as the relative angle between
the velocity vectors of the two stars. In the first two circular plots, the distributions for ξ
are projected on to the (v, ξ) plane with the median values (magenta pentagon dots). The ξ
values for the single stars (the binaries) are marked in the left-half (right-half) of the circle.
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Model (Figure) 0 1 2 3

a [AU] (4) 1.27 1.73 / 1.17 1.62 / 1.17 1.41 / 0.935
vbinary [km s−1] 22.5 2.24 / 22.8 2.52 / 22.7 5.81 / 25.5
vfast [km s−1] 84.1 35.2 / 92.7 50.4 / 92.2 64.7 / 113
vslow [km s−1] 40.9 28.6 / 46.5 31.1 / 41.8 33.9 / 58.3
vfast/vslow 1.86 1.20 / 1.78 1.39 / 1.96 1.71 / 1.89
vfast/vbinary 3.72 18.4 / 3.92 21.7 / 4.14 10.8 / 4.52
vslow/vbinary 1.83 14.9 / 1.97 14.4 / 1.98 5.41 / 2.30
ξfast,slow [◦] 111 109 105 89.1
ξfast,binary [◦] 156 154 156 156
ξslow,binary [◦] 105 108 112 120

log[tbg, fast/yr] - 3.88 4.04 3.02
log[tbg, slow/yr] - 4.16 4.37 3.19

log[tbg, binary/yr] - 4.45 4.59 3.39
log[tbg, slow−fast/yr] - 3.77 3.94 2.59

log[tbg, binary−fast/yr] - 4.29 4.44 3.11

Table 3: The median values of the distributions for the binaries and the single stars. For the
models with the background potential (Model 1 to Model 3), we present the median values
for (NE, 2E) before “/” and (E, 2E) after “/”, separately. Each row (from top to bottom)
represents as follows: [Row 1] model name, [Row 2] the semimajor axis a, [Row 3-5] the
speeds of the binaries, Sfast and Sslow, [Row 6-8] the speed ratios of Sfast to Sslow, Sfast to
the binary and Sslow to the binary, [Row 9-11] the relative angle ξ between two single stars,
between Sfast and the binary and between Sslow and Sfast, [Row 12-16] the escape time tbg

in log10-scale of Sfast, Sslow and the binary and the escape time of Sslow and the binary with
respect to Sfast.
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Figure 4: The distributions of the semimajor axes a for the [S11 +S21] binaries. The vertical
gold lines indicate an observed value of a ' 0.7 AU or a period of 29 days. In the plots
for Model 1 to Model 3, we show three different distributions with different line types:
those for E-binaries (dotted blue line) and NE-binaries (thick red solid line) and the overall
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Figure 5: The distributions of the angle ξ between the two stars (single/binary stars) as a function of the speeds v for
Model 0-3 (see the definition in the text). In the first two circular plots, the distributions are projected on to the plane (v, ξ)
with their median values (magenta pentagon dots). In particular, in the left panel, we present ξ of Sslow and the binaries with
respect to Sfast (so v represents the speeds of Sslow) while in the middle panel, we present ξ of Sfast and the binaries with
respect to Sslow. And ξ of the single stars (the binaries) are marked in the left-half (right-half) panel. Each dotted circular
grid (from the inner circle to the outer circle) indicates velocities of 25, 50, 100 and 250 km s−1. The radial grids (from north
to south) show ξ separated by 45◦ from 0◦ to 180◦. In the right panel, we show the distribution functions f(ξ) for ξ. We have
used the same colors for the same type of angles in all three panels. In these plots for Model 1-3 (from second low below), we
make a distinction between the cases where the binaries have escaped (E, marked with the black circles) and where the binaries
have not escaped (NE, marked with the red squares).
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In particular, in the left panel, we present ξ for Sslow and the binaries with respect to Sfast (so
v represents the speeds for Sslow and the binaries) while in the middle panel, we present ξ for
Sfast and the binaries with respect to Sslow (so v = vfast and vbinary). Each dotted circular grid
(from the inner circle to the outer circle) indicates velocities of 25, 50, 100 and 250 km s−1.
The radial grids (from north to south) show ξ separated by 45◦ from 0◦ to 180◦. In the right
panel, we show the distribution function f(ξ) for ξ. We have used the same colors for the
same types of angles in all three panels. For example, the blue dots in the left panel refer to
ξ between Sfast and the binaries, which corresponds to the distribution with the blue line in
the right panel.

In these plots for Model 1-3 (from the second row below), different from Model 0, we
make a distinction between cases where the binaries have escaped (E, marked with the black
circles) and cases where the binaries have not escaped (NE, marked with the red squares).

There are several characteristic features found from the distributions for ξ in both Fig-
ure 5.

1. The relative angles between Sfast and the binaries (blue solid lines and blue dots) are
densely distributed at ξ & 120◦ − 135◦ with peaks near ξ ' 160◦.

2. For cases with NE-binaries in Figure 5, the relative angles between the two single stars
are more concentrated at higher ξ (red square dots). In addition, as the escape velocity
vesc increases (from Model 1 to Model 3), the red dots spread out over a wider range
in ξ.

3. The relative angles ξ for Sfast and the binaries with respect to Sslow are broadly dis-
tributed (black/green dots and lines) compared to the distribution for ξ between Sfast

and the binaries (blue lines and dots), but more biased toward higher values of ξ with
peaks at ξ ' 110◦ − 120◦.

Those features above can be understood in terms of the relation between the recoil veloc-
ities of the binaries and the relative angle between the two single stars. If the two single stars
are ejected with a wider angle (large ξ), it is more likely that the binary gets a smaller recoil
kick. As an extreme case, when two single stars are ejected at the same speed in opposite
directions (or ξ = 180◦), the final recoil velocity of the binary sums to zero (as a result of the
two kicks in opposite directions) so that it remains where the last ejection event occurred.

We find feature 1 in our simulations as a result of the fact that kicks from more rapidly-
moving stars tend to contribute more to the final recoil velocity of the binary than slowly
moving stars. In order to better understand this feature quantitatively, we use Equation 27
from Ryu et al. (2017b) (with rej ' 0), which relates the speeds of the binary to the relative
angle between the two single stars in a harmonic potential. The equation gives the relative
angles ξfast,slow between vfast and vslow at the outer boundary of the potential as follows,

Pbinary =
√
P2

fast + P2
slow + 2PfastPslow cos ξfast,slow , (33)

where Pi = mi

√
(1/2)v2

esc + v2
i (i=binary, Sfast or Sslow) 6. However, in deriving this equation,

the binary and the ejected single star are only distinguished by their masses. Therefore, the

6Here, vi is the speed at r = rbg.
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relative angles between Sfast and the binary ξfast,binary can be estimated by exchanging Pbinary

with Pslow. Expressing ξ in terms of the momenta,

cos ξfast,binary =
P2

slow −
[
P2

fast + P2
binary

]
2PfastPbinary

. (34)

We can first see that ξ ≥ 90◦ since the numerator is negative. Note that the case for vesc = 0
corresponds to Model 0. In particular, for binaries and single stars which have escaped from
the background potential, and given the velocity distributions for the binaries and the single
stars and their ratio, we can roughly estimate that ξfast,binary ' 140◦ and ≥ 90◦.

In order to interpret feature 2, we introduce the maximum angle ξmax between two single
stars required to give a sufficiently high recoil kick to a binary that the binary can escape to
infinity. In other words, if two single stars are ejected with ξ > ξmax at their given speeds,
the final binary will not gain enough kinetic energy to completely escape. Therefore, we
expect that ξfast,slow for the NE-binary cases should be distributed at ξ > ξmax. We note that
ξmax is a function of the speeds of the two single stars (vfast, vslow) and the escape velocity
vesc, namely, ξmax = ξmax(vfast, vslow, vesc).

Using ξmax, we can understand feature 2 and try to provide useful insight from an obser-
vational perspective. Using Equation 33 (or Equation 36 in Ryu et al. 2017b with rej ' 0),
we impose the condition that at r = rbg and ξ = ξmax, vbinary = vesc. More explicitly,√

P2
fast + P2

slow + 2PfastPslow cos ξmax =

√
3

2
mbinaryvesc . (35)

Again, the term on the left-hand side represents the final momentum of the binary at the last
ejection event and the term on the right-hand side the minimum momentum of the binary
necessary to travel from the origin to the outer boundary of the potential, and subsequently
to spatial infinity.

In the upper panel of Figure 6, we estimate ξmax (using Equation 35) as a function of vslow

in units of vesc for various ratios of vfast/vslow. As shown in the figure, ξmax increases rapidly
at vslow/vesc . 5. It reaches 120◦ − 140◦ at typical velocities for Sslow found in Model 1 and
2 (median velocities of vslow/vesc ∼ 3) for all speed ratios, which explains well the feature 2.
However, considering smaller values for vslow/vesc . 2 in Model 3, it is hard to read ξmax from
the upper panel. Hence we additionally provide a plot (bottom panel), which shows ξmax as
a function of vesc assuming vslow ∼ 45 km s−1. We can see that for vesc = 20 km s−1 in Model
3 (indicated with the downward arrow), ξmax decreases down to 40◦ − 120◦, which accounts
for the wide range of dots in Figure 5, or feature 2.

From an observational perspective, we expect that the analytic relations above (as derived
in the analytic paper) and the statistical properties of the relative angles found from our
simulations can help restrict the region in parameter space where we need to look in order
to find an unknown related object given observations of some other runaway stars. Note
that, in the derivation of the above relation, the three bodies are only identified by their
masses, meaning that the relation can be applied to any kind of isolated system that evolves
to produce 3-body outcomes (two ejected systems and one left-over system), not necessarily
only to the 2+1+1 outcome.
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3 Formation, disruption and energy output of Popula-

tion III X-ray binaries

T. Ryu, T. Tanaka, R. Perna The Monthly Notices of the Royal Astronomical Society, Vol.
456, 223 (2016)

Abstract
The first astrophysical objects shaped the cosmic environment by reionizing and heating the
intergalactic medium (IGM). Particularly, X-rays are very efficient at heating the IGM before
reionization is complete. High-mass X-ray binaries (HMXBs) in early stellar populations are
prime candidates for driving the thermal evolution of the IGM at redshifts z ∼> 20; however,
their formation efficiency is not well understood. Using N -body simulations, we estimate
the HMXB formation rate via mutual gravitational interactions of nascent, small groups
of the Population III (Pop III) stars. We run two sets of calculations: (i) stars formed in
small groups of five in nearly Keplerian initial orbits and (ii) collision of two such groups (an
expected outcome of mergers of host protogalaxies). We find that HMXBs form at a rate of
one per ∼> 104 M� in newly born stars, and that they emit with a power of ∼ 1041 erg s−1

in the 2 − 10 keV band per star formation rate (SFR). This value is a factor ∼ 102 larger
than what is observed in star forming galaxies at lower redshifts; the X-ray production
from early HMXBs would have been even more copious, if they also formed in situ or via
migration in protostellar disks. Combining our results with earlier studies suggests that early
HMXBs were highly effective at heating the IGM and leaving a strong 21 cm signature. We
discuss broader implications of our results, such as the rate of long gamma-ray bursts from
Population III stars and the direct collapse channel for massive black hole formation.

3.1 Introduction

A major outstanding goal in cosmology is to piece together the history of the Universe be-
tween Cosmic Dawn, the emergence of the first stars and galaxies, and the end of reionization,
when the radiation from these objects had ionized the intergalactic medium (IGM). Advances
in numerical techniques, combined with exquisite measurements of the “initial” conditions
(at a redshift z ≈ 1000; Hinshaw et al. 2013, Planck Collaboration et al. 2015), have led
to remarkable simulations (e.g. Abel et al., 2002; Turk et al., 2009; Stacy et al., 2010; Greif
et al., 2011; Bromm & Yoshida, 2011) of the conditions leading up to the former milestone,
occurring at z ∼> 30, when the Universe was ≈ 100 Myr old. However, reconstructing the
subsequent several hundred Myr of cosmic history has proved far more challenging, due to
the difficulties in reliably modeling the numerous forms of feedback from the first astrophys-
ical objects (e.g. Springel, Di Matteo, & Hernquist, 2005; Stinson et al., 2006; Sijacki et al.,
2007).

In particular, X-rays from the first galaxies can act as a powerful source of feedback
(Venkatesan et al., 2001; Machacek et al., 2003) that exerts influence over a wide range of
distance scales. Because hard X-rays (energies ∼> 1 keV) have mean free paths comparable
to the Hubble horizon, they can isotropically heat and partially reionize the early IGM (Oh,
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2001; Venkatesan et al., 2003; Ricotti & Ostriker, 2004a; Pritchard & Furlanetto, 2007). In
fact, they are expected to be the dominant agent in heating the IGM. Such heating may
suppress star formation (Ripamonti et al., 2008) and massive BH growth (Tanaka et al.,
2012a) inside low-mass dark matter haloes by raising the Jeans and filtering masses of the
IGM (Gnedin, 2000; Naoz & Barkana, 2007). On galactic and circum-galactic scales, soft
X-rays (∼ 0.1 − 1 keV) can affect the formation of stars and possibly massive black holes
(BHs) by promoting the formation of molecular hydrogen via electron-catalyzed reactions
(Haiman et al., 1996; Kuhlen & Madau, 2005; Latif et al., 2015; Inayoshi & Tanaka, 2015).

In addition to their suspected roles in early galaxy evolution, X-rays are important also
because they can leave an observable signature that can be exploited to probe the cosmologi-
cal epoch in question (Pritchard & Loeb, 2008). Their thermal impact on the early Universe
should be measurable through the redshifted 21 cm transition line of neutral hydrogen, which
is observed in emission or absorption depending on the relative temperature of the IGM with
respect to that of the cosmic microwave background (CMB). Several studies have investi-
gated how forthcoming observations of the sky-average amplitude and power spectrum of the
relic 21 cm line (Bowman et al., 2008; Burns et al., 2012; van Haarlem et al., 2013; Voytek
et al., 2014) could be used to constrain the astrophysical agent (or agents) responsible for
heating the early IGM.

There are sound reasons to expect that the first galaxies produced X-rays in abundance,
and rapidly heated the IGM. There are two dominant X-ray sources in present-day galaxies—
both powered by gas accretion onto BHs, and both plausibly prominent shortly after Cosmic
Dawn: gas feeding massive BHs shining as active galactic nuclei (AGN), and X-ray binaries,
powered by a stellar-mass BH gradually cannibalizing a companion star. Estimates of the
mass accumulated by nuclear BHs prior to z ∼ 6 (Shankar et al., 2009; Salvaterra et al.,
2012), the existence of very massive BHs at z ∼> 6 (Fan et al., 2001; McGreer et al., 2006;
Willott et al., 2007, 2009; Mortlock et al., 2011; Venemans et al., 2013; Bañados et al., 2014),
as well as the observed (Shen et al., 2007) and theoretically expected (Shankar et al., 2009;
Tanaka, 2014) increase in their duty cycles toward higher redshifts, all hint that X-ray AGN
may have been much more common during this epoch. Likewise, high-mass X-ray binaries
(HMXBs) dominate the X-ray emission of star-forming galaxies; the low metallicity and rapid
baryonic mass accretion of the earliest galaxies both lend credence to the notion that they
were rife with HMXBs. Theoretical models suggest that either type of X-ray source could
heat the IGM to above the CMB temperature as early as z ∼ 30, and that this transition
should be measurable by the planned 21 cm experiments.

At present, there are too many theoretical uncertainties to determine from the future
data which type of X-ray source—AGN or HMXBs—was responsible for driving the thermal
evolution of the z ∼< 30 IGM. Modeling the early AGN X-ray emission is particularly difficult,
because the conditions for triggering AGN activity are not fully understood even at low
redshifts (Hopkins & Quataert, 2010; Treister et al., 2012); because of the uncertainty in the
fraction of X-ray photons that is released into the IGM as opposed to being trapped inside
the accretion flow or reprocessed into the infrared (Madau et al., 2014; Pacucci, Ferrara,
et al., 2015); and because the epoch, initial masses, and birthplaces of the massive BH
“seeds” are not yet constrained by observations (Volonteri, 2010; Haiman, 2013; Tanaka &
Li, 2014). Similarly, studies usually estimate the X-ray contribution from early HMXBs
by simply inferring empirical relations between X-ray luminosity and star formation rate

39



(SFR) in local galaxies (and modeling the SFR using a semi-analytic cosmological model),
or combining such relations with one or more free parameters (Mirabel et al., 2011; Tanaka
et al., 2016).

The goal of this study is to alleviate the uncertainties in the formation rate and X-ray
output of HMXBs in the early Universe, by using N -body simulations of nascent groups of
the first (or Pop III) stars. We choose the properties of the star groups in our simulations to
reflect those found in hydrodynamical simulations of Pop III star formation at z ∼ 20 (Greif
et al., 2012; Stacy & Bromm, 2013). We follow the formation and dynamical evolution of
compact binaries over thousands to millions of years, including the effects of the background
gravitational potential and dynamical friction. This allows us to compute the fraction of
Pop III stars that form stable, compact binaries, and eventually undergo an X-ray bright
phase. The end result is an estimate of the formation rate of HMXBs in the first protogalax-
ies, as well as the amount of X-rays they generate per unit star formation. To our knowledge,
this is the first published estimate of this type.

We derive a HMXB energy output (normalized to the star formation rate) that is a factor
∼ 10−150 higher than in present-day star-forming galaxies, if the HMXB duty cycle is similar
to the one in the local Universe. We find that the X-ray output does not change significantly
within the wide variety of simulation setups considered—such as different orientations for
collisions between star groups, and ambient gas density—and submit that this is a robust
estimate.

The findings of this study can be used as model inputs in estimating the 21 cm global
signature and power spectrum, but have wider applications. As stated above, the X-ray
output of the first galaxies are also of interest for studying feedback on smaller scales, such
as subsequent star formation and massive BH formation.

Our work is also relevant for predicting the rates of long-duration gamma-ray bursts
(LGRBs) from Pop III stars. LGRBs are important probes that can shed light on the
Universe out to z > 10 (Toma et al., 2011). According to the collapsar model (MacFadyen
& Woosley, 1999), progenitors of LGRBs require rapid rotation of the He core and removal
of the H envelope. Both criteria are satisfied by Pop III HMXBs, and it is plausible that
massive Pop III stars in binary systems are dominant LGRB progenitors in the early Universe
(Bromm & Loeb, 2006). Our results on HMXB formation rates can therefore be used to
predict and interpret observations of high-redshift LGRBs.

The paper is organized as follows. We start in §3.2 by discussing the problem to be
solved—beginning with the equations of motion, followed by the description of our N -body
code, our choices for the initial conditions, and how the data is interpreted for HMXB
formation. We present our results in §3.3. In §3.4, we discuss the implication of our work for
the X-ray output of the first galaxies, as well as for other topics such as LGRBs and SMBH
formation. We conclude with a summary of our findings in §3.5.

3.2 Stellar Dynamics

Here, we provide an overview of our simulations—namely: the equations of motion that
are solved to simulate the dynamical evolution of the star groups; the numerical scheme
we use to solve the equations; the different types of initial conditions we adopted, as well
as the reasoning behind our choices; and finally, how the results are interpreted for HMXB
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formation.

3.2.1 The equations of motion

Our N -body code computes the motion of N objects with (generally different) masses mi,
moving under their mutual gravitational influence, a dissipative dynamical friction force, and
a background gravitational potential. We numerically integrate the equations of motion

d2

dt2
~ri = ~ag,i + ~adf,i + ~abg,i. (36)

The first term on the right-hand side of equation (36) is the specific force due to Newto-
nian gravity,

~ag,i = −
∑
j 6=i

G mj
∂ S(rij)

∂ rij

~ri − ~rj
rij

, (37)

where G is the gravitational constant, ~ri is the displacement of the ith star from the center
of the host dark matter halo, and rij ≡ |~ri − ~rj|.

We adopt the Plummer softening kernel S(rij) (Binney & Tremaine, 1987),

S(rij) = − 1√
r2
ij + ε2

, (38)

where we take ε = R�.
The second term on the right-hand side of equation (36), ~adf,i, is the specific drag force

due to dynamical friction. For collisionless systems, the standard Chandrasekhar formula
for dynamical friction is (Binney & Tremaine, 1987),

~ai = −4π ln Λ f(Xi)
G2mi

v3
i

ρ(ri) ~vi, (39)

where

f(Xi) ≡ erf(Xi)−
2√
π
Xi exp

(
−X2

i

)
, (40)

vi is the speed of the ith star with respect to the background, Xi ≡ vi/(
√

2σv), σ is the
velocity dispersion, ln Λ is the Coulomb logarithm and ρ(~ri) is the local gas density.

We adopt the modified formula for gaseous medium used in Tanaka & Haiman (2009).
This prescription incorporates behaviors found in numerical simulations for subsonic and
supersonic regimes (Ostriker, 1999b; Escala et al., 2004). The specific drag force vector
always points opposite to the direction of motion, and is given by:

a
(gas)
df,i = −4π G2 mi ρ(~ri)

1

v2
i

× f (gas)(Mi), (41)
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with

f (gas)(Mi) =



0.5 ln Λ
[
erf
(
Mi√

2

)
−
√

2
π
Mi exp

(
−M2

i

2

) ]
0 6Mi 6 0.8;

1.5 ln Λ
[
erf
(
Mi√

2

)
−
√

2
π
Mi exp

(
−M2

i

2

) ]
0.8 6M 6Meq;

1
2

ln
(

1− 1
M2

i

)
+ ln Λ

Mi >Meq.

(42)

Above, Mi ≡ vi/cs is the Mach number, and cs is the sound speed. We use ln Λ = 3.1 and
the corresponding value of Meq ≈ 1.5.

In our simulations, the motion of the stars with respect to the background gas is super-
sonic. In this regime, the characteristic dynamical friction timescale, for a circular Keplerian
orbit of two bodies with for m1 � m2 and v2 � cs, is

τdf ∼
Eorb

Pdf

∼ 1

80

√
m3

1

m2
2G

1

ρ(r2)r
3/2
12

, (43)

where Pdf is the frictional dissipation power (m2adf,2v2), andEorb the orbital energy (Gm1m2/2r12).
The third and last term, ~abg,i, is the specific force due to the background potential, which

is dominated by gas. The background potential provides an additional inward force whose
functional form depends on the density profile. For simplicity, here we use a constant density
and explore different values in our simulations. The force due to the background potential
is then

~abg,i = −4πGρ~ri, (44)

where here ~ri is the vector pointing from the center of the halo to the i-th star.
The equation of motion is solved iteratively, with the positions, velocities and acceler-

ations of each star updated at every time step. We describe our computational method
below.

3.2.2 Numerical technique

We implement the following two numerical shortcuts, more specific to this study, to keep
computation times tractable.

The first shortcut is to use analytic approximations for very close 2-body encounters.
This is justified in cases where pairs of stars are sufficiently close to each other and isolated
from the other stars in the simulation, so that (i) the gravitational pull from the other stars
and the background potential are negligible compared to the mutual gravitational pull of
the pair, and (ii) the orbital motion is supersonic and the dynamical friction force can be
treated as a linear perturbation to the 2-body Keplerian problem. The code employs analytic
approximations for any close stellar pairs that satisfy these conditions, and reverts to the
RKF algorithm when the conditions stop being satisfied.
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We derived the following approximations for the semi-major axis and the eccentricity:

a(t) =

[
a(t0)−3/2 + β ρ

√
G

µ̃w(q)
(t− t0)

]−2/3

, (45)

e(t) =

√
1− a(t)

a(t0)
(1− e(t0)2) . (46)

Above, µ̃ is the reduced mass, a(t0) and e(t0) are respectively the semi-major axis and the
eccentricity at t = t0, β is a dimensionless constant, and w(q) is a function of the mass ratio
that is symmetric about q = 1. Note that the variable a with subscript indicates the specific
force, while without subscript it represents the semi-major axis. To derive the analytical
expression for the time-evolution of the orbital distance in equation (45), we integrated the
equation of the motion of a star under the influence of a dynamical friction torque. Equation
(46) then follows from the definition of orbital eccentricity in terms of orbital energy and
angular momentum. Note that as the radial distance decreases, the eccentricity increases.
Here, β and w(q) are free parameters and we use β = 0.035 and w(q) = q1.4 + (1/q)1.4.
The stellar coordinates and velocities are recovered as functions of a and e using standard
expressions for Keplerian orbits (Binney & Tremaine, 1987).

Our second shortcut for keeping the simulation runtimes manageable is to set a minimum
value for the time step. We choose a physically motivated value, 10−6×τdyn,min, where τdyn,min

is the smallest value of the dynamical time between any two stars in the simulation (that
are not being treated by the analytic shortcut above) at a given time step. This procedure is
necessary when there are three or more stars interacting at small separations, in which case
the analytic approximations above cannot be used. We note that such situations are rare
compared to the places where the analytic shortcut is applicable.

3.2.3 Determining HMXB formation

It is assumed that a HMXB has formed if both of the following criteria are satisfied:

1. One of two stars forming a binary turns into a compact object (CO). In order to
determine which stars turn into COs, we need to compare the typical lifetime (τlife) of
a massive star with the time (trun) in the simulation (taken to coincide with the time at
which stars are born). If τlife > trun, the star is marked as a CO in the simulation. For
main-sequence stars, it is possible to estimate this lifetime from the mass-luminosity
relation, that is Estar ∼ m and Lstar ∼ mp, leading to τlife ∼ m1−p with 2 < p < 3.
However, due to the uncertain value of p for Pop III stars, we rather prefer to use here
the nuclear time scale of Pop III stars estimated by Schaerer (2002) and Marigo et al.
(2003). They calculate the H-burning nuclear time scale for these stars with a stellar
evolution code. We assume that a CO forms if the stellar mass is greater than 8 M�.

2. The two stars are close enough so that the accretion occurs through Roche-lobe overflow
(RLOF). This criterion is simply written as Rstar ≥ RRL, where Rstar is the stellar
radius, and RRL is the Roche-lobe radius of the most massive star calculated from the
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center of the star to the inner Lagrange point. An approximate analytic formula to
the Roche-lobe radius of star 1 for a wide range of the mass ratio is (Eggleton, 1983),

RRL,1

r
=

0.49q2/3

0.6q2/3 + ln(1 + q1/3)
, (47)

where r is the orbital distance and q = m2

m1
is the mass ratio. Although the above

expression was derived in a study of binaries in circular orbits, Regös et al. (2005)
found that the Roche lobe radius does not differ very much for eccentric binaries. We
therefore apply equation (47) to all binaries found in our simulation.

If a binary satisfies these two criteria, the binary is marked as a HMXB. Since the two
criteria are independently checked at every time step, which criterion is satisfied first is not
important.

3.2.4 Setup and Initial Conditions

We design our simulations with the 20 ∼< z ∼< 30 Universe in mind. This is the redshift
range where the dark matter haloes reach virial temperatures ∼ 1000−2000 K, the expected
condition for Pop III formation, at the highest rates.

The lifetimes of the stars are several Myr, which is comparable to the timescales on which
the host haloes undergo mergers with other Pop III forming haloes (Tanaka, 2014).

The initial positions of the stars are generated quasi-randomly via a Monte Carlo real-
ization as follows, motivated by the assumption that they formed inside a shared Keplerian
gas disk at the center of the host dark matter halo. Their initial radial positions in the disk
plane are chosen randomly from a uniform distribution whose amplitude depends on the
characteristic size scale of the star-forming cloud (see below). Their azimuthal distribution
is chosen to be nearly uniformly distributed, so that the azimuthal angular position of the
n-th star is given by 360◦(n/N)±5◦, where N is the total number of stars in the group. This
choice is made to minimize the radial gravitational pull between the stars, so that they do
not immediately fly apart. Naturally, the azimuthal positions do not remain evenly spaced,
but become mixed quickly. Finally, we allow the stars to be displaced out of the plane of the
disk. Their positions perpendicular to the plane are chosen randomly, so that their vertical
displacement out of the disk plane is no more than 5% above or below their initial radial
displacement from their shared center of mass. The initial velocities of the stars are assigned
to be circular, parallel to the disk plane, and Keplerian at the instant the simulation begins.

For this study, we investigated two different size scales of star forming regions.

1. Large scale: Following the results from Stacy & Bromm (2013), where Pop III proto-
stars are formed inside star-forming regions with a size of a few thousand AU, we have
performed simulations where the stars are placed inside a region of size ∼ 2000 AU.

We explore two different values of uniform, constant gas density, 106 cm−3 (denoted n6

hereafter) and 104 cm−3 (n4).

For gas of primordial composition, the molecular weight µ can vary between 0.6 and
1.2, depending on the ionization fraction. We adopt µ = 1 for simplicity; this choice
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does not qualitatively affect our results, since our values for n are selected arbitrarily
with the goal of exploring the qualitative dependence on n.

Each simulation is run for 5 Myr. The masses of the stars follow the initial mass
function (IMF) they provide with α = 0.17 ( dN

dM
= M−α), Mmax = 140 M� and

Mmin = 0.1 M�. For these simulations, we consider N = 5 stars.

2. Small scale: In the simulations by Greif et al. (2012), multiple protostars formed several
AU apart from each other. We therefore run a second set of simulations, where stars
form within a 10 AU radius. Since Greif et al. (2012) do not provide a slope for the
IMF, we use α = 0.17 as above. That study found that more than half of the mass
accreted during the protostar phase goes to the most massive protostar in the group.

To mimic this behavior, we first generate a star with Mmax = 200 M�, then generate
each subsequent star with Mmax = 200 M�− [the sum of the masses of the previously
generated stars].

Just as with the large-scale case, we run simulations with number densities n6 and
n4. Because this case is the more relevant one for forming HMXBs, we explore several
different configurations: cases with a star group of N = 5 stars, a star group of N = 10
stars, and collisions between two groups of N = 5 stars. The last case is motivated
by the fact that Pop III-forming minihaloes undergo frequent mergers, which suggests
that the nascent star groups themselves undergo close encounters.

3.3 Results

Here, we summarize the findings of our N -body simulations, focusing in particular on the
properties of the most compact binaries found for each set of runs.

3.3.1 Large scale

We ran 20 simulations for n6 and 23 for n4.
For n6, in 12 out of 20 runs, the two most massive stars (S1 and S2, where Si is the

i-th most massive star) form the most compact binary—we denote such a binary with the
notation B12. Similarly, binaries of type B13 (i.e. made up of the most massive star S1 and
the third most massive star S3) form the most compact binary in 6 of the runs.

The left panel of Figure 7 shows a sample set of stellar trajectories for one of the large
scale n6 runs. Throughout the simulation, the compact binary tends to remain near the
center of the halo, as less massive stars repeatedly undergo 3-body interactions with the
binary. The fact that they do not stray far from the center of the halo is a combined effect
of the background potential and the gravitational potential of the massive binary. It is these
3-body encounters that cause the most compact binary in the simulations to end up as type
B12 or B13. In two of the runs, the most compact binaries after 5 Myr consist of less massive
stars.

The average value of the semimajor axis after t = 5 Myr in the large scale, n6 runs
is 〈at=5 Myr〉 = 270 AU, and the minimum value of a across the 20 runs is 60 AU. These
values for a are much larger than that necessary for RLOF to take place, ∼ 0.07 AU. Their
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Large scale n6 n4

number of runs 20 23

P (B12) [P (B12 + B13)] 0.60(0.90) 0.56(0.74)

〈at=5Myr〉[AU] 270 340

Table 4: Summary of the large scale calculations for n = 106 cm−3 (n6) and n = 104 cm−3

(n4). P (B12) denotes the fraction of the simulations in which the most compact binary
consists of the two most massive stars. We also list P (B12 + B13), the fraction where the
most compact binary consists of the most massive star paired with either the second or third
most massive star. Also shown is the average semi-major axis of the most compact binary
at t = 5 Myr.

characteristic dynamical friction time scales are roughly 1013 yrs, which is much longer than
their lifetimes (see equation 47 when RRL = Rstar and equation 43). We therefore conclude
that in systems of N = 5 stars and n ∼ 106 cm−3, with the stars initially separated at
hundreds of AU, HMXBs are unlikely to form.

For the n4 case, the fraction of runs where the most compact binary after 5 Myr is type
B12 or B13 are similar to the n6 simulations: 13/23 for B12, and 17/23 for B12 or B13.

However, the dynamical evolution is quite different, as can be seen by the right panel
of Figure 7. The lower gas densities lead to weaker forces due to dynamical friction and
background potential, and stars (especially less massive ones) tend to be scattered farther
from their initial position, as far as ∼> 1 pc. This also results in less frequent three-body
interactions in general, and may explain the larger average value of the semi-major axis after
5 Myr, 〈at=5Myr〉 = 340 AU. The formation of HMXBs appears even more intractable for
the n4 case.

Sample stellar trajectories for the n6 and n4 large scale cases are shown in Figure 7, and
a summary of the results is given in Table 4.

3.3.2 Small scale

For the small scale case, we performed 86 runs of 5-body simulations for each of the number
density values n6 and n4. Due to the smaller initial separations of the stars, we run the
simulations for a shorter amount of time.

We run each simulation for a minimum of 1000 yr, but stop the run if a stable binary
forms, and if no further significant dynamical changes are observed. If such a binary does
not form, we run the simulations to a maximum duration of 5000 yr.

In order to properly compare the results from the n6 calculations with those from the n4

calculations, we use the same initial conditions for each set of runs.
In the n6 calculations, the most common scenario is that S1 always forms the most

compact binary almost immediately, while stellar scatterings are most common during the
first few years to about 40 years. Thereafter, a multiple system usually survives and stabilizes,
while less massive stars are ejected. A difference between the large-scale and the small-scale
scenarios is that, whereas most cases in the large-scale calculations end up with one binary
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Figure 7: Left: Sample trajectories for large scale calculations with the high number density
n = 106 cm−3 (case n6). As shown in the figure, stars tend to stay near the center of the
halo and their overall motions are oblate-spheroidal in shape. Right: Sample trajectories
for the low number density n = 104 cm−3 (n4). Even though stars including binary systems
remain within a certain distance range, they are not as close as the stars in the higher density
calculation, leading to less frequent three-body interactions. Furthermore, one can notice
that a few stars (blue line and purple line) are kicked off.
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Figure 8: Evolution of the semi-major axis of a typical binary in a system. The sharp
variations are due to stellar scatterings, which mostly result in a hardening of the binary.
After the multiple system gets stabilized and isolated (which happens after ≈ 10 years), the
decrease rate of the semi-major axis depends on dynamical friction alone.
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Small scale n6 n4

runs 86 86

〈at=500yr〉 [AU] 1.37 1.42

τdf [yr] ∼ 1013 ∼ 1015

Companion stars 3rd massive star, 11 ∼ 12 M�

PHMXBc 0.070 0.070

FHMXB [10−4 M−1
� ] 4.6 4.6

Table 5: Summary of results for simulations of 5-body groups forming on small scales.
〈at=5000 yr〉 indicates the semi-major axis at t = 5000 yr, while τdf represents the dynamical
friction timescale required for at=5000 yr to shrink to aRL (see equation 43). PHMXBc is the
fraction of runs in which a HMXBc forms, and FHMXB is the number of HMXBc formed
across all simulations, normalized by the total mass of the stars in the simulations.
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Figure 9: Left: Pericenter distance - eccentricity distribution plot for n6. Two HMXB
candidates (HMXBc) have been produced. Right: The same distribution plot for n4. The
circled points indicate HMXBc whose mass transfer via RLOF may occur periodically due
to their eccentric orbits. The elliptically-circled point indicates an HMXBc whose semimajor
axis is smaller than aRL, so the mass transfer will be steady. There are a couple of binaries
with pericenter distance smaller than RRL, but they are excluded because M2 < 8 M�.
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and unbound single stars (in 15 out of 20 cases), in the small-scale runs a multiple system
such as triple or quartet (rather than a simple binary) forms (in 59 of 86 cases) Less massive
stars take some energy from the multiple system and convert it into their kinetic energies
while causing the binary to harden.

As an example, Figure 8 shows the evolution in the semi-major axis of a compact binary
in one of the runs. One can easily notice the quick decrease in the semi-major axis during
violent stellar interactions (before 10 years), which clearly indicates the hardening. After a
couple of stars are cast away and the multiple system is stabilized and isolated (after about
10 years), dynamical friction plays the main role in the decrease of the semi-major axis; after
this point, we do not expect further dramatic hardening of the binary. In our 86 runs, the
last surviving binary is typically of type B13 (pairing of the most massive and third most
massive stars). with total mass of 130 M� and 〈MS3〉 = 11 M�. 〈at=5000 yr〉 = 1.87 AU and
the minimum semi-major axis is 0.2 AU. The corresponding dynamical friction time scale
(equation 43) is ∼ 1013 yr. The ejected stars have speeds of (10− 100) cs , and cs ∼ 4 km/s.
Six of the HMXB candidates (HMXBc hereafter) have been formed in all runs (PHMXBc

= 0.070). For later use, let us define FHMXB as the number of HMXBc formed across all
simulations, normalized by the total mass of the stars. Then FHMXBc = 4.6×10−4 M−1

� (This
term will be used to estimate the X-ray luminosity and is one of the primary results of our
study).

The outcomes of the n4 simulations are quite similar: a triple or higher multiple forms in
65 of 86 runs, and 〈at=5000 yr〉 = 1.42 AU. Furthermore, due to the same number of HMXBc,
PHMXBc and FHMXBc are the same. One notable difference is that for n4, the dynamical
friction time scale is longer by 2 orders of magnitude compared to n6, because this quantity
is inversely proportional to the number density.

Interestingly, there are four runs (for each density value) in which the most compact
binary is eccentric, and inside the requisite separation for RLOF at pericenter but outside it
at apocenter. We consider only two of them as HMXBc and rule out the other two binaries
since the mass of the more massive star is smaller than 8 M� (Heger et al., 2003). We
present the distribution of eccentricity for pericenter distance in Figure 9. In particular,
the left panel shows the distribution for n6 calculations and the right panel for n4. The
circled point indicates HMXBc with distance at pericenter shorter than the corresponding
Roche-Lobe radius.

How accretion proceeds in a highly eccentric binary system under these conditions re-
mains an unsettled issue to date, as studies have claimed that the orbital semimajor axis
and eccentricity can either increase or decrease depending on the binary properties at peri-
center (Sepinsky et al., 2007, 2009). If the RLOF does induce circularization, then accretion
proceeds normally (i.e. steadily). However, if the RLOF instead increases the eccentricity
of the system, then, whether accretion can proceed steadily rather than intermittently will
depend on the relative timescale between the disk lifetime τdisk (on the order of the viscous
timescale), and the orbital period of the binary torb. We computed these timescales for
all the eccentric binaries in our simulations (for which the Roche-Lobe radius straddles the
pericenter and apocenter), and found that τdisk > torb in all cases but one.

This implies that the fraction of binaries whose eccentricities cause intermittent RLOF
is small, and that as a global average, RLOF is steady to a good approximation.

The magnitude of the gas density considerably influences the characteristics of the dy-
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Figure 10: Trajectories up to t = 2000 yr for 5-body simulations with identical initial con-
ditions but different densities: n4 (left panel) and n6 (right panel). Despite having the same
starting point, the trajectories of the 5 stars evolve quite distinctly in the two backgrounds
due to the different magnitudes of dynamical friction. The two simulations for different bound
systems: a binary for n4 (black+yellow line) and a quartet for n6 (black+red+blue+yellow
lines).
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Figure 11: Trajectories of two 5-body simulations with identical initial conditions but
different ambient gas densities. The simulations have formed triples with the identical stars
(black+yellow+purple lines; contrast with 10) at t = 1000 yr, despite differences in the
trajectories of each star and the center of mass.
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Figure 12: Changes with time in the three forces per unit mass (gravity from other stars,
dynamical friction and background gravity) acting on star4 (the light blue color line in
Figure 11). We run two simulations with identical initial conditions but different ambient gas
densities n4 and n6. During the early phases of the interaction, the gravitational force (agr)
dominates by several orders of magnitude over dynamical friction (adf) and the background
force (abg). Note that agr,n6 (black line) and agr,n4 (green line) synchronize at early times
because the motion of the star is very close to Keplerian and r ∼ 1/v2. After the star is
ejected at 10 yr for n6 (later for n4), agr monotonically decreases and abg increases (abg ∼ r
where r is the distance from the center of the halo). During the same time, adf barely changes
since the star moves in the supersonic regime and the speed decreases very slowly.

51



namical interactions. While on the one hand 40% of the simulations end up forming the same
triples for both density values, on the other hand their trajectories and the center of mass
movements differ significantly. Figure 10 shows two sample trajectories of 5 stars with low
number density (left panel) and high number density (right panel) after 1000 yr. They were
given identical initial conditions for the run, but their trajectories have developed differently.
In Figure 11, at 800 yr, even though the same stars form a triple and the same star is ejected
for both number densities, their trajectories are clearly different.

As can be seen in Figure 12, which shows the change of forces per unit mass exerted on
a typical kicked-off star, adf and abg are negligible compared to agr before about 5 years.

Note that adf and abg are synchronized at early times because the motions of the stars
are close to the Keplerian motion, r ∼ 1/v2. The star in Figure 12 is ejected at t ≈ 10 yr for
the high number density (and at 60 . t . 80 yr for the low number density). This can be
understood from the fact that agr monotonically decreases and abg increases (abg ∼ r where
r is the distance from the center of mass). At the same time, adf barely changes since the
star moves in the supersonic regime and the speed decreases slowly.

There is no noticeable difference in the overall results between the n4 and n6 runs—
quantities such as 〈at=5000 yr〉, the dynamical friction time scale τdf , the total mass of the
most compact binary (or which star forms the compact binary with S1) as summarized in
Table 5. For both number densities, the companion star of the binary is typically the third
most massive star S3.

To sum up, we find that PHMXBc ∼ 7% of our simulations form HMXBc, regardless of
the gas density value. Normalized to the total stellar mass in the simulations, the number
of HMXBc formed per stellar mass is FHMXB ≈ 4.6× 10−4 M−1

� .

3.3.3 10-body simulations

We now explore several different configurations for the star group, and run several sets of
simulations with 10 stars (instead of 5) with n = 106 cm−3. These are: (1) 10-body version of
the small scale calculation presented above; (2) head-on crash of two star groups containing
5 stars each; (3) a close encounter and subsequent inspiral and merger of two star groups
containing 5 stars each. The latter two scenarios are motivated by the fact that the merger
timescales and mass accretion timescales of Pop III host haloes, as well as the lifetimes of
the massive Pop III stars themselves, are of the same order, ∼ 10 Myr. This suggests that
merging haloes will be continuously forming new stars (perhaps Pop II instead of Pop III)
as they merge with other haloes, and that close interactions and mergers of nascent star
groups may be relatively common. We generate stellar masses in the same way as for the
5-body case, but with a larger value for the parameter Mmax = 300 M�. We have run each
simulation for 500 yr. The results of these simulations are summarized in Table 6. We briefly
discuss each one, as follows.

1. Scenario 1: 10-body group in isolation

We set up the simulations as in the 5-body calculations, but with 10 stars.

We find that 〈at=500yr〉 = 1.0 AU. Interestingly, there are 18 out of 54 cases in which
a < aRL. There is a large difference in scale between aB12 and arest, where aB12 is
the semi-major axis of B12 (binary made up of the two most massive stars) and arest
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Scenario 1 2 3 4A 4B

runs 54 30 30 30 30

〈at=500 yr〉 [ AU] 1.0 1.1 0.90 1.8 1.6

〈aB12〉 [ AU] 1.6 1.5 1.8 2.4 2.0

〈arest〉 [ AU] 0.72 0.15 0.42 1.2 0.23

PHMXBc 0.33 0.33 0.27 0.13 0.27

FHMXBc [10−4 M−1
� ] 15 11 9.0 4.2 8.4

Table 6: Summary of the results from 10-body simulations. We have considered five different
scenarios. Scenario 1 simulated the 10-body version of the 5-body calculation, i.e. an isolated
star group. The other scenarios all involve collisions of two 5-body star groups. Scenario 2
is a head-on collision of two coplanar, co-rotating star groups. Scenario 3 also collided two
groups of stars with co-rotating orbital planes, but with an impact parameter comparable to
the sizes of the groups, which results in an inspiral and eventual merger. Scenarios 4A and
4B are similar to scenario 3, except that the orbital planes of the colliding star groups had
mutual inclinations of 45◦ and 135◦, respectively.

is the semi-major axis of the binary stars other than S1 and S2. This is a common
feature of the 10-body simulations: they often end up with triples whose inner binary
is Brest while the outer binary is B12. Our simulations yield 〈arest〉 = 0.72 AU and
〈aB12〉 = 1.6 AU. Also note that, in 14 out of 18 HMXBc, the binary is Brest (i.e. it is
not made up of the two most massive stars).

Since the compact binaries in these simulations form quickly and we only follow them
for 500 years, it is technically possible that they will be disrupted before one of the
stars turns into a CO. However, our simulations for the 5-body scenario showed that
compact, quasi-steady binaries are unlikely to be disrupted, and for practical purposes
we extrapolate this qualitative result to the 10-body case.

We find that a HMXBc forms in a larger fraction of these simulations than in the 5-body
case, PHMXBc = 0.33, for the obvious reason that there are more stars. Per unit stellar
mass in the simulations, the number of HMXB candidates is FHMXB = 1.5× 10−3 M−1

� ,
which is a factor ≈ 3 higher than we found for the 5-body case.

2. Scenario 2: Collision between two 5-star groups – head-on collision

Two groups of 5 stars are set up with random initial conditions, in the same manner
as for the previous simulations of 5-body groups. The two groups are then arranged
to collide head-on, as follows: they are placed at a separation of two to three times
their sizes and their disks are aligned so that the mutual inclination is zero. The initial
relative speed of the groups is roughly the speed of sound and the center of mass of
one group is set to move directly toward the center of mass of the other group.

We find that prior to colliding, each group forms a compact binary of type B12 (the
most and second-most massive star). When the two groups collide, those two binaries
that existed before the collision were broken and the two most massive stars of each
group form a new compact binary with high chances.
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Figure 13: 10-body head-collision (scenario 2). In these sample trajectories, five stars in
each group are in nearly Keplerian motion. The groups move towards each other with a
relative velocity of ∼ cs (left panel). At t ≈ 8 yr (middle panel), the two haloes begin to
merge. During the merger, all ten stars undergo stellar scatterings (right panel). One triple
(black+dark blue+red lines) has been formed and it is moving in -y direction. In these
head-on collisions, it is likely for multiple systems that existed before merging to be broken,
while a few new multiple systems are formed.
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Figure 14: 10-body spirally merging case (scenario 3). As with scenario 2, two groups of 5
stars are set on a collision cours. However, in this scenario the impact parameter is ∼ 2− 3
times the size of groups, whereas in scenario 2 it is set to be zero. The groups are approaching
each other at the relative velocity of cs (left panel). At t = 8 yr, the groups are about to
merge (middle panel). After some time (right panel), two binaries are ejected (red and purple
lines in the x-direction and black and blue lines in the y-direction). In this sample case, the
most compact binary is the one ejected in the y direction (black+blue lines) with a = 0.8 AU
at t = 100 yr. A difference between this scenario and the head-on collision is that compact
systems are more likely to survive the merger.
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Figure 15: Trajectories for scenario 4A, a collision between two 5-body groups, each on
quasi-Keplerian orbits, but with the orbital plane of the two groups tilted with respect to
each other at an inclination i = 45◦. The setup is the same as scenario 3, except for the
mutual inclination of the orbital planes of the colliding star groups. The left panel shows the
two groups on a collision course. At t = 4 yr, the halos are about to merge (middle panel).
After t = 10 yr (right panel), a triple having the most compact binary are ejected [black and
blue lines (inner binary) and brown line].

The average 〈at=500 yr〉 is 1.1 AU, but 〈aB12〉 = 1.5 AU and 〈arest〉 = 0.15 AU, meaning
that the most compact binaries are not formed from the most massive stars. The shorter
average separations may be a result of a larger number of early 3-body scatterings,
which act to harden the group as a whole.

HMXBc form in 10 out of 30 runs, and they are not of type B12. However, we find a
rate of HMXB formation per stellar mass FHMXB = 1.1× 10−3 M−1

� ; this is higher than
in the 5-body case and comparable to Scenario 1 above. Sample trajectories for one of
the simulations of scenario 2 are depicted in Figure 13.

3. Scenario 3: Collision between two 5-star groups – spirally merging case

We have used the same input parameters for the two groups as in Scenario 2, except
that we now set the impact parameter to be of order the size of the group, whereas it
was set to zero in Scenario 2.

The groups are given opposite velocities of ∼ cs along the x-direction, and are offset
by a displacement along the y-direction that is ∼ 2 − 3 times the typical size of the
star group (∼ 20 AU) so that they merge with a spiral motion.

We find that 〈at=500 yr〉 = 0.90 AU, 〈aB12〉 = 1.8 AU and 〈arest〉 = 0.42 AU.

The average separation lies between what we find in Scenarios 1 and 2. This can be
interpreted as being due to the fact that these simulations (in which the two groups
merge gradually via inspiral) have more close 3-body interactions than in Scenario 1 (in
which 10 stars in quasi-Keplerian orbits evolve in isolation) but fewer such interactions
than in Scenario 2 (in which the two groups merge head-on).

HMXBs form in 8 out of 30 runs and, as with Scenarios 1 and 2, none of the HMXBs
are made up of the two most massive stars. We find a similar HMXB formation rate per
stellar mass, FHMXB = 9.0×10−4 M−1

� . Sample trajectories from one of the simulations
for Scenario 3 are shown in Figure 14.
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Figure 16: Trajectories for scenario 4B—the same as scenario 4A (Figure 15), but with the
two groups nearly counter-rotating with respect to each other (i = 135◦). At t = 4 yr,
the groups are about to merge (middle panel) and after t = 10 yr (right panel), a quartet
containing the most compact binary is ejected toward the upper right of the panel [black+blue
lines (inner binary), brown and thick purple lines].

4. Scenarios 4A and 4B: Collision between two 5-body groups – spirally merging case with
inclinations of 45 degrees and 135 degrees

In these two scenarios, we again set two groups of five stars each on a collision course.
The difference is that the orbital plane of one star group is tilted, so that the two stellar
disks have a mutual inclination i. We set the inclination at i = 45◦ (nearly co-rotating)
for scenario 4A, and i = 135◦ (nearly counter-rotating) for scenario 4B. The groups are
initially placed at a separation of two to three times their sizes, and set in motion at
the same speeds as for the inspiral case (scenario 3).

We find that 〈at=500 yr〉 = 1.8 AU, 〈aB12〉 = 2.4 AU, and 〈arest〉 = 1.2 AU for scenario
4A. In scenario 4B, we find 〈at=500 yr〉 = 1.6 AU, 〈aB12〉 = 2.0 AU, and 〈arest〉 =
0.23 AU. In 70% of the runs for both scenarios, the two most massive stars form the
most compact binary. Stellar binaries end up with somewhat closer separations in the
nearly counter-rotating case, due to the fact that the net angular momentum of the
merged star group is smaller. Indeed, we find a total of four HMXBc across all the
i = 45◦ simulations, and eight in a same number of i = 135◦ simulations.

For the same reason, we find a larger fraction of HMXB candidates per stellar mass
simulated in the nearly counter-rotating case (FHMXB = 8.4 × 10−4 M�) compared to
the nearly co-rotating case (FHMXB = 4.2 × 10−4 M�). The overall formation rate of
HMXB candidates is lower for both cases than the cases in which all the stellar orbits
were nearly coplanar (Scenarios 1, 2 and 3), plausibly due to the additional degree of
freedom in the stellar orbits. Still, the value of FHMXB is within a factor of a few for
all of our simulations.

Sample trajectories from runs for scenarios 4A and 4B are depicted in Figure 15 and
Figure 16, respectively.
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3.4 Discussion

3.4.1 Binary evolution and formation of HMXB candidates

Our large-scale simulations show that the if Pop III stars form hundreds of AU apart, as in
the simulations of Stacy & Bromm (2013), then the timescales required to make HMXBs via
stellar scatterings are simply too long. On the other hand, if protostellar clouds fragment
and form stars in close groups on scales of ∼> 10 AU, as in Greif et al. (2011), then a small
fraction of groups can form HMXBs. We briefly discuss the dynamics of HMXB formation
in our simulations, then move on to discuss the astrophysical implications of our findings.

The simulations indicate that, as expected, scatterings play a major role in making a
compact binary. The background potential and the dynamical friction play a secondary role,
by allowing the most compact binary (or triple) to remain near the center of mass of the
halo and for other stars to return and scatter again and again.

We find that on average, the number of HMXB candidates formed per stellar mass,
FHMXB, is a function of the number and orientation of close 3-body encounters. Our results
indicate that FHMXB may be somewhat higher in configurations that result in fewer ejections
of stars, and if the interactions are coplanar. While we are able to interpret this, as well as
trends in the average separation between stellar pairs, in terms of the initial kinematic setup
of the various scenarios simulated (see §3.3.3 above), the value of FHMXB does not vary by
more than a factor ≈ 3. We interpret this lack of a significant variation in FHMXB, for such
a diverse set of initial conditions and ambient gas densities, to mean that our values are not
far from the one that results from similar stellar encounters in nature.

3.4.2 The effect of migration on the formation of HMXBs

Another way in which a nascent stellar group could harden is migration through a gaseous
disk. The migration could occur as the protostars form—Greif et al. (2012) found significant
accretion from the protostellar disk onto the most massive protostar, and did not follow the
evolution of the system beyond this stage. (It could also occur to a lesser degree in a vestigial
gas disk, after the stars are in place.)

We evaluate the possible role of disk migration on the separation of Pop III stars by
considering a steady, geometrically thin disk with an α viscosity (Shakura & Sunyaev 1973;
see also Frank et al. 2002). We adopt a disk with α = 0.01 and an accretion rate ṁ ∼
10−3 M� yr−1, following Tan & McKee (2004) and Tan & Blackman (2004), who considered
the structure of accretion disks around Pop III stars at high redshifts.

We estimate the migration timescale τmig following Syer & Clarke (1995). We take a
binary system with primary mass M1 = 120 M� and secondary mass M2 = 11 M�, based
on the mean values found across our simulations. For these masses and disk parameters, the
secondary is able to clear a gap around its orbital path (Syer & Clarke, 1995; Seager, 2010;
Lubow & Ida, 2010), by satisfying both of the following two conditions:

(1)
H

R
≤
( q
α

)1/2

, (48)

(2)
H

R
≤
(q2

α

)1/5

. (49)
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where R is the distance of the secondary from the primary, H is the scale height of the
disk at that location, and q = M2/M1 ∼ 0.1 is the binary’s mass ratio. If condition (1) is
violated, the gap will be closed by the radial pressure gradient. Condition (2) relates the
gap width and the Roche radius of the secondary; this ensures that the secondary acts to
transfer orbital angular momentum through the disk, rather than accreting mass via RLOF.
We find that inside R ∼ 15 AU, for the disk properties stated above, H/R is smaller than
the right-hand side of equation (48) by a factor ∼> 80, and smaller than the right-hand side
of equation (49) by a factor ∼> 8, indicating that the secondary is easily able to open a gap.

The migration timescale of the secondary depends on the dimensionless parameter (Syer
& Clarke, 1995)

B ≡ 4πΣ0R
2

M2

, (50)

where Σ0 is the local surface density of a steady-state disk around the primary, in the absence
of perturbations by the secondary. For B > 1, the gas in the disk is able to dynamically
dominate over the gravitational influence of the secondary, and the secondary is pushed
inward on the viscous diffusion timescale of the disk,

τmig,0 ∼ α−1
(H
R

)−2

Ω−1 . (51)

For B < 1, Syer & Clarke (1995) found that the migration timescale is longer,

τmig,1 ∼
1

B7/17
τmig,0 . (52)

In Figure 17, we plot the local disk mass near the secondary, 4πΣ0R
2, alongside the

typical secondary mass, 11 M� (the numerator and denominator, respectively, for the ratio
B). For R ∼< 15 AU, B < 1 and the migration timescale is expected to slow. We plot the
two migration timescales τmig,0 and τmig,1 in Figure 18.

Both of these timescales are shorter than both the typical lifetimes of protostellar disks,
as well as the lifes of the stars themselves7. This suggests, along with findings that the disks
may be able to survive even under radiation feedback (Stacy et al. 2012; Hosokawa et al.
2015), that disk migration could lead to initial stellar separations smaller than what we have
assumed, making the formation of HMXBs via stellar scatterings more favorable.

We submit that the HMXB formation rates inferred from our simulations be taken as a
conservative estimate, with possible additional contributions from channels other than stellar
scattering.

3.4.3 X-ray output

As discussed in §3.1, HMXBs are believed to be a major source of X-rays in the early
universe. Observations of nearby star-forming galaxies suggest that their X-ray luminosities
(which are dominated by HMXBs) scale linearly with their star formation rate (Grimm et
al., 2003; Gilfanov et al., 2004; Persic et al., 2004; Mirabel et al., 2011). Mineo et al. (2012)

7Note that, if the adopted value of α were higher, e.g. ∼ 0.1 − 1 as suggested by recent simulations of
Pop III protostellar disks (Clark et al., 2011), the migration timescale would become even shorter.
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find many studies support a linear proportionality between the X-ray luminosity of HMXBs
and the star formation rate (SFR) (Grimm et al., 2003; Gilfanov et al., 2004; Persic et al.,
2004; Mirabel et al., 2011) ). In the linear regime, the X-ray luminosity of the local universe
is given by Mineo et al. (2012),

Llocal
2−10 keV = 3× 1039 × SFR

M� yr−1
[ erg s−1], (53)

where SFR is the star formation rate.
How the ratio of X-ray luminosity to SFR evolves with redshift is a key question in

evaluating the properties of galaxies and young stellar populations, and in linking the earliest
galaxies (most of which should be actively forming stars, based on their mass accretion rates)
with their X-ray luminosities. The question is as yet unresolved by current observations
(Dijkstra et al., 2012; Basu-Zych et al., 2013), and is often treated as a free parameter in
studies estimating the X-ray production of the first galaxies (Furlanetto, 2006; Fialkov et
al., 2014; Tanaka et al., 2016).

In the following, based on the results of our simulations, we are going to quantitatively
evaluate the relation between X-ray luminosity and SFR, and compare it with equation (53).
We can write the X-ray luminosity as

L2−10 keV = LEdd × fEdd × f2−10 keV

× tacc × fsur × fesc × FHMXB × SFR . (54)

Below, we discuss each quantity in equation (54).

1. LEdd, the Eddington luminosity, which scales with the typical mass of the CO engine
MCO as 1.3 × 1038(MCO/ M�) erg s−1. Note that, for stars which leave behind a
BH remnant (M & 25M�), we use the stellar mass as a proxy for the BH mass for
simplicity, due to the theoretical uncertainties in evaluating the mass loss due to winds
and during the transition to a BH. Any significant mass loss (e.g. simulations by
Zhang et al. 2008 suggest that the BH remnants of massive metal-free stars end up
with ∼ 40% of the progenitor mass) would be directly translatable to the estimated
X-ray luminosities reported in Table 7. For stars with M . 25M�, we consider two
limiting cases: one in which all the stars form BHs, and one in which all the stars
form NSs, for which we assume a typical mass value of 1.4 M� (Lattimer & Prakash,
2005). The simulations by Zhang et al. (2008) for massive metal-free stars show that,
depending on the explosion energy (and hence the amount of fallback) the compact
remnant can be either an NS or a BH. However, this uncertainty plays a very small role
for our results due to the fact that the number of HMXBs with a star of M < 25 M�
is a small fraction of the total. In particular, we find that there is only one star with
M < 25 M� in a HMXB for each of the 5-body simulations (n6 and n4) and 4 stars for
scenario 1, and none for the other cases. The total X-ray luminosities, when assuming
an NS remnant for any star with M < 25 M�, are smaller by at most a factor of 4%
with respect to the values given in Table 7, calculated assuming a BH remnant for all
the stars.
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2. fEdd, the typical ratio of the total radiative power emitted by HMXBs (the bolometric
luminosity) to LEdd. If the typical luminosity of a HMXB during an active phase is
Eddington, then fEdd is effectively the mean duty cycle. Other studies have adopted
values ranging from 0.1 to 0.5 (Mirabel et al., 2011; Belczynski et al., 2008; Salvaterra
et al., 2012); we take as our fiducial value fEdd = 0.1.

3. f2−10 keV, the fraction of the bolometric luminosity that is emitted between 2 and
10 keV. Observational estimates vary between 0.1 and 0.8 (Sipior et al., 2003; Migliari
& Fender, 2006). Because the BH masses in Pop III HMXBs are expected to be higher
than in present-day populations, and the peak energies of accretion disks scale with the
mass of the central engine as M

−1/4
BH , their characteristic spectra could be somewhat

softer. We do not expect this to significantly affect our estimates here.

4. tacc, the time that a massive binary spends as a HMXB, with the less massive star
donating mass to the CO companion. If the two stars form simultaneously and form
a compact binary before the more massive member dies to become a CO, then this
is simply t2 − t1, the difference in the lifetimes of the stars. We use this (somewhat
arbitrary) estimate. However, because the lifetimes of the less massive star (t2 ∼>
10 Myr for stars with masses ∼< 10 M�) are comparable to the expected specific star
formation rate in galaxies at this redshift, we argue that any prescription that satisfies
tacc ∼< t2 is a reasonable order-of-magnitude estimate.

5. fsur, the fraction of HMXB candidates identified in our simulations that actually survive
to become HMXBs. This quantity accounts for possible disruptions of binaries, due
to (a) the merger of the stars during main sequence and post-main sequence evolution
(Power et al., 2009); (b) the more massive star getting kicked following a supernova
explosion (Repetto et al., 2012; Janka, 2013); and (c) subsequent disruptions by stellar
scatterings that were not captured by our simulations. (Our simulations follow the
evolution of star groups until the formation of a stable compact binary, but not until
stellar death millions of years later.) Theoretical estimates typically yield ∼ 0.2− 0.3
(Jeon et al., 2014; Artale et al., 2015)

6. fesc, the fraction of X-rays that escape the galaxy. Unless the environment of the
HMXBs are Compton-thick, which is unlikely for the low-mass galaxies of interest, we
expect fesc ∼< 1.

7. FHMXB, the number of HMXBs formed per stellar mass. This is the main output of our
simulations. (Note that FHMXB has units M−1

� ; we use the capital letter to distinguish
it from the dimensionless fractions represented by f including the mass fractions such
as fHMXB from Hummel et al. (2015).) Whereas previous theoretical works had arrived
at this value by extrapolating the locally observed value with an assumed redshift
evolution, or with free parameters, here we provide an estimate based on suites of N -
body simulations whose initial conditions are motivated by cosmological simulations of
Pop III star formation. For example, Hummel et al. (2015) estimated the early X-ray
background and its effect on baryonic infall into minihalos. Those authors arrived at a
value of fHMXB that is a factor of a few smaller than ours. This discrepancy is likely due
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to two factors. First, they adopted a flat IMF, whereas our top-heavy IMF produces
more massive stars, & 0.7 of which turn into BHs. Second, because more massive
binaries are more likely to survive three-body interactions, the compact binaries at the
end of our simulations have an even larger fraction of their masses in BHs. A higher
mass fraction in BHs should result in more X-ray production per unit star formation,
and a more pronounced effect on the IGM kinetic temperature and greater thermal
feedback on early galaxy formation and evolution (cf. Ripamonti et al. 2008; Tanaka
et al. 2012a).

Across all of our small-scale simulations—varying the number of stars in the group,
whether groups evolved in isolation or through several different orientations of mutual col-
lisions, and exploring two values for the ambient gas density separated by two orders of
magnitude—we find FHMXB ∼ 10−3, varying by less than a factor of 4 between the lowest
and the highest values (see Table 7).

Finally, we can write L2−10 keV as follows :

L2−10 keV

SFR
= 0.33× MBH

M�
× fEdd

0.1
× f2−10 keV

0.1
× tacc

Myr

× fsur

0.5
× fesc

0.5
× FHMXB

10−3 M−1
�

× 1039 erg s−1

M� yr−1
. (55)

Based on our choices of the factors, fEdd = 0.1, f2−10 keV = 0.1, fsur = 0.5 and fesc = 0.5,
we can estimate the normalized X-ray luminosities per SFR, L2−10keV/SFR. We report this
quantity for each of our models in Table 7. It varies from a minimum of 37 to a maximum
of 450 among the studied scenarios.

These LX-to-SFR ratios are ∼ 40−150 higher than what is observed in the local Universe.
This result is qualitatively consistent with the findings of Basu-Zych et al. (2013) and Kaaret
(2014), who find an increase in the LX-to-SFR ratios toward z ∼> 4. Our high LX-to-SFR
values stem from the large mass of the HMXBc primary, and the relatively low mass of the
secondary. The former leads to a higher Eddington luminosity compared to typical stellar-
mass BHs (∼ 3 M�) in the local Universe, and the latter results in long stellar lifetimes,
which in turn leads to longer tacc.

3.4.4 Implications for the thermal history of the IGM and the 21cm radiation

A higher LX-to-SFR ratio implies that IGM heating will occur earlier than commonly
thought. The thermal history of the IGM can be probed in the 21 cm line, which is ob-
servable in absorption (or in emission), depending on whether the spin temperature of the
IGM is below (or above) the CMB temperature.

If the IGM heats early, as suggested by our estimates of the X-ray emission of early
galaxies, the 21 cm absorption line appears earlier, and the “dip” as a function of redshift
caused by adiabatic cooling is not as deep and not as sharp as in the case of late heating as
it would otherwise (see Figure 2 in Fialkov & Barkana 2014). Another consequence of early,
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intense heating is that the temperature of the IGM could become high enough, to suppress
the formation of low-mass galaxies (Ripamonti et al., 2008) and the growth of their nuclear
BHs (Tanaka et al., 2012a).

3.4.5 Implications for Gamma Ray Bursts from Pop III stars

As discussed in §3.1, the fraction of HMXBs at high redshifts has potential implications for
the expected rates of LGRBs from Pop III stars. According to the collapsar model (Mac-
Fadyen & Woosley, 1999), for an exploding massive star to yield a GRB, several conditions
need to be satisfied, namely:

1. The core of the star must collapse to a BH. This is realized by most Pop III stars,
given their large masses.

2. The hydrogen envelope of the progenitor star must be stripped, so that a relativistic
jet can penetrate and exit the remaining envelope.

3. The BH should be surrounded by an accretion disk of high angular momentum mate-
rial. This is realized if the core of the progenitor star has retained sufficient angular
momentum during the evolution.

Binary systems more easily satisfy the last two conditions with respect to single stars (see
e.g. Cantiello et al., 2007). In fact, for single stars to end their lives as LGRBs, they need to
be born with large initial rotation (since they are less likely to be spun up by other stars),
and also avoid being slowed down by magnetic torques (Spruit, 2002; Yoon et al., 2006; Perna
et al., 2014).

In contrast, binary stars can spin up the helium core of the progenitor star via tidal
coupling and spin-orbit locking. Further, RLOF can strip the hydrogen envelope during a
common-envelope phase without reducing the rotation of the helium core (Bromm & Loeb,
2006). This is especially important for Pop III stars, whose heavier hydrogen envelopes
would be more difficult to shed in isolation. Therefore, compact binary systems, or HMXBs,
constitute a promising channel to produce LGRBs from Pop III stars.

We can use our results for the formation rates of Pop III HMXBs to estimate the frac-
tion of LGRBs from Pop III stars8. Bromm & Loeb (2006) quantified the GRB formation
efficiency as

8Note that in our study, since we are considering HMXB ’candidates’, there is also the possibility of
merger of the two stars during the common-envelope inspiral phase, when they both are stripped down to
their Helium cores. This event could provide another avenue for the formation of GRBs (Fryer & Heger, 2005).
Alternatively, after both stars have undergone the SN explosion, if the system is still bound, the compact
objects of the binary, upon merger as a result of gravitational energy loss, would be likely contributors to
the population of Short Gamma-Ray Bursts (e.g. Narayan et al. 1992).
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ηGRB ' ηBH ηbin ηclose ηbeaming, (56)

where ηBH is the number of BH-forming stars resulting from a given total stellar mass, ηbin is
the binary fraction and ηclose is the fraction of sufficiently close binaries to undergo RLOF. For
Pop I/II stars they calculated ηBH ' 1/(700 M�). Combining this value with adopted values
for the other parameters—ηbin ∼ 0.5, ηclose ∼ 0.3, and ηbeaming ' (1/50) − (1/500)—yields
ηGRB,PopI/II ∼ 4.2× (10−6 − 10−7) M−1

� .
Bromm & Loeb (2006) noted that it was only to make educated guesses for the Pop III

case, due to an absence of detailed calculations for the fraction of close binaries. Our work
is a first attempt to fill the gap in our theoretical knowledge. We can write FHMXB =
ηBH ηbin ηclose. Adopting for comparison the same value of ηbeaming ' (1/50) − (1/500),
we then infer ηGRB,Pop III ' 4.8 × (10−6 ∼ 10−7) M−1

� for the interacting 5-star case, and
2.2× (10−5 ∼ 10−6) M−1

� for the (most favorable) 10-body scenario.
Therefore, our results suggest that LGRB rates from Pop III stars could be comparable to

or somewhat higher than the rates from Pop I/II stars. However, even with these rates, the
probability of detecting a GRB from a Pop III star remains very low and rather uncertain.
The probability depends on the mass function of Pop III stars, the likelihood that a Pop III
star produces a GRB, the luminosity function of these bursts, and how efficiently such high-
redshift GRBs can be identified. Accordingly, there is a wide range of published theoretical
results based on different model assumptions (Mesinger et al., 2005; Bromm & Loeb, 2006;
Salvaterra et al., 2008; Ma et al., 2015). However, the most optimistic estimates suggest that
the rate of detection is no higher than one every few decades. Thus, a detection of a GRB
from a Pop III star will likely require a long time baseline, provided by a combination of the
current Swift satellite and proposed future missions such as SVOM (Schanne et al., 2010)
and EXIST (Grindlay, 2009). The latter, in particular, will be especially well-suited for the
detection of high-redshift GRBs (see Salvaterra et al. 2008). Observing even a single event
from a Pop III star would have profound implications for cosmological models of structure
formation (de Souza et al., 2013; Maio & Viel, 2015).

3.4.6 Caveats

Our suite of N -body simulations, spanning diverse sets of initial conditions for Pop III stars
and their environments, point that HMXBs form in higher fractions in the earliest galaxies
than at low redshifts, and make significant contributions to the thermal history of the IGM,
the 21 cm signature at z ∼ 20, and to the rates of LGRBs. The fact that the formation
rates of HMXBs varied little between the simulations suggest that our estimates for FHMXB

is reasonably robust. However, we here point out several uncertainties of our work that could
affect our conclusions.

One important factor is the IMF of the stars (Hirano et al., 2014). We adopted the IMF
of Stacy & Bromm (2013), which were based on the masses of protostars roughly 5000 yr
after the formation of the protostellar seeds.

However, our key results are based on fragmentation of the protostellar clouds on smaller
scales, as found in the simulations by Greif et al. (2011). In those simulations, the most
massive protostars had the highest accretion rates, suggesting that the IMF slope may be
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steeper than what we assumed. We also did not account for changes in the masses of stars as
they evolved. These are important considerations, as the masses of the stars play a critical
role in determining the time that a binary spends transferring mass as a HMXB.

We made an effort to account for this limitation by using free parameters such as fsur,
which accounts for the mass loss during the SN explosion.

Another factor that could be more carefully treated in future studies is the spin of the
star. In a binary system, this impacts the circularization of the orbit, followed by low
eccentricity and the synchronization of spin with orbital phase.9 Due to tidal dissipation and
circularization, this could additionally decrease the orbital distance of a binary, boosting the
formation of HMXBs and change the average value of the eccentricity.

In addition to reducing the orbital separation, the spin makes a difference in mass transfer
rates.

Our simulations generally produce binaries with large eccentricities. For highly eccentric
orbits, mass transfer occurs only near pericenter (Lajoie & Sills 2011 and Sepinsky et al.
2010), and the rates depend on whether the orbital angular speed of the star is super-
sychronous or sub-synchronous with rotational angular speed (Davis et al., 2013).

We found that the viscous timescales in our eccentric binaries were longer than the orbital
timescales in the majority of cases, and used this fact to conclude that their duty cycle should
be the same as for nearly circular binaries. However, we did find one exception, in which a
RLOF accretion event would be sufficiently short-lived to be episodic. A more careful study
focused on stellar rotation effects may be necessary to more conclusively estimate the duty
cycle of eccentric Pop III HMXBs.

Finally, our simulations are an attempt to model the stellar dynamics as a gravitational
N -body problem with perturbative forces due to a fixed, smooth gaseous background. More
detailed simulations that include detailed stellar feedback, as well as the dynamics and
thermodynamics of the gaseous environment, could lead to additional revelations about the
early evolution of Pop III star groups.

3.5 Summary

In this study, we used N -body simulations of the first stars to explore the formation, evo-
lution, disruption and energy output of Pop III HMXBs. The code includes gravitational
scattering of stars, dynamical friction, and the gravitational potential of ambient gas.

The initial conditions for the simulations (i.e. IMF, typical star separation in the host
haloes, ambient densities) are taken from two different sets of cosmological simulations of
Pop III formation, namely by Stacy & Bromm (2013) (’large-scale’, i.e. a few thousands
of AU), and Greif et al. (2012), (’small-scale’, i.e. a few tens of AU). These provide two
complementary sets in that they explore different physical scales for star formation (for
details, see 3.2.4). For each of the two scenarios, we investigated star evolution in two
background gas densities, a high-density case (106cm−3), and a lower-density one (104cm−3).

Based on the handful of protostars per halo that are found in the works quoted above,
we simulated systems with 5 stars and systems with 10 stars. We found:

9These effects had been often assumed to be due to the tidal interactions with accreting gas, but recent
studies suggest that the orbital semimajor axis and eccentricity can either increase or decrease depending on
the binary properties at pericenter (Sepinsky et al. 2007 and Sepinsky et al. 2009).
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1. 5-body simulations: If stars form in quasi-Keplerian disk configurations with initial
separations of hundreds of AU, HMXBs are highly unlikely to form. In contrast, if
stars form in compact groups separated by ∼ 10 AU, as is expected from turbulent
fragmentation, stellar scatterings lead to a significant HMXB formation rate. In par-
ticular, we found that HMXBs form at a rate of a few per 104 M� of stars formed,
independent of the ambient gas density.

2. 10-body simulations : We simulated 10 stars on separations of ∼ 10 AU, and evolved
them as isolated quasi-Keplerian disks, or as two colliding groups with 5 stars each.
For the latter, we ran several different sets of collision geometries.

We found that the HMXB formation rate was a factor ∼ 1 − 3 times higher than for
the 5-body simulations, mainly due to the fact that the larger number of stars allowed
for more hardening via stellar scattering.

All of the small-scale simulations suggest an X-ray luminosity per unit star formation that
is a factor ∼ 102 higher than what is observed in the local Universe (under the assumption
that other variables such as the X-ray escape fraction from galaxies and the duty cycle of
HMXBs do not differ significantly). These results are mostly due to the large mass of the
most massive star of the HMXBc compared to that of the companion star, implying both a
large tacc as well as a higher luminosity of the remnant BH. The fact that we found little
variation in this quantity across all of our simulations suggests that this is a robust estimate.
Additional factors, such as in-disk migration of nascent stars, could further increase the
HMXB formation efficiency.

A direct consequence is that X-rays can heat the IGM rapidly at Cosmic Dawn. Signals
of early heating can be probed via the 21 cm line radiation: the absorption line signal is
expected to show a broader, shallower minimum due to the shorter gas cooling time, while
the emission line would be observed earlier because of the higher gas temperature, at earlier
times. Several studies have modeled the 21 cm signature of the first HMXBs, but relied
on assumptions for their LX/SFR relation relative to the empirical value found at lower
redshifts. Our work provides a theoretically driven estimate for this quantity.

In addition to the implications for the thermal history of the IGM, these high formation
rates of HMXBs per stellar mass imply a higher GRB formation efficiency from Pop III stars
in binaries. These predictions may be tested with a long baseline of observational data from
Swift in combination with future missions such as SVOM, EXIST.
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4 Intermediate-mass black holes from Population III

remnants in the first galactic nuclei

T. Ryu, T. Tanaka, R. Perna, Z. Haiman The Monthly Notices of the Royal Astronomical
Society, Vol. 460, 4122 (2016)

Abstract
We report the formation of intermediate-mass black holes (IMBHs) in suites of numerical
N -body simulations of Population III remnant black holes (BHs) embedded in gas-rich pro-
togalaxies at redshifts z & 10. We model the effects of gas drag on the BHs’ orbits, and
allow BHs to grow via gas accretion, including a mode of hyper-Eddington accretion in which
photon trapping and rapid gas inflow suppress any negative radiative feedback. Most initial
BH configurations lead to the formation of one (but never more than one) IMBH in the
center of the protogalaxy, reaching a mass of 103−5 M� through hyper-Eddington growth.
Our results suggest a viable pathway to forming the earliest massive BHs in the centers of
early galaxies. We also find that the nuclear IMBH typically captures a stellar-mass BH
companion, making these systems observable in gravitational waves as extreme mass-ratio
inspirals (EMRIs) with eLISA.

4.1 Introduction

Virtually every nearby massive galaxy harbors a supermassive black hole (SMBH) in its
nucleus (Kormendy & Ho, 2013; Magorrian et al., 1996). Tight correlations between SMBHs
and the properties of their host galaxies, as well as the phenomenology of quasars and
luminous active galactic nuclei, suggest that SMBHs play a role in shaping their environment
both on local (Silk & Rees, 1998; Fabian, 2012) and cosmological (Madau et al., 2004; Ricotti
& Ostriker, 2004b; Tanaka et al., 2016) scales.

How SMBHs form is one of the most fundamental open problems in astrophysics. The
observation of quasars powered by ∼ 109 M� SMBHs at z ≈ 6 − 7, less than a Gyr after
the Big Bang (Fan et al., 2001; Willott et al., 2003, 2010; Mortlock et al., 2011; Venemans
et al., 2013), places strong constraints on theoretical models for their origin (see reviews
by, e.g. Volonteri 2010; Haiman 2013). The two most often discussed hypotheses are that
they grew from either (i) the stellar BH remnants of the first generation of ∼ 100 M� stars
(Population III, hereafter Pop III, stars; Haiman & Loeb 2001; Madau & Rees 2001; Yoo &
Miralda-Escudé 2004; Volonteri & Rees 2006; Tanaka & Haiman 2009), or (ii) the remnants
of the “direct collapse” of > 105 M� gas clouds that avoided fragmentation into Pop III stars
(Oh & Haiman, 2002; Bromm & Loeb, 2003; Koushiappas et al., 2004; Volonteri & Rees,
2005; Shapiro, 2005; Begelman et al., 2006; Spaans & Silk, 2006; Lodato & Natarajan, 2006;
Wise & Abel, 2008; Regan & Haehnelt, 2009; Schleicher et al., 2010; Shang et al., 2010;
Latif et al., 2013; Tanaka & Li, 2014). Both scenarios require that some of the first SMBHs
grew at a (logarithmically averaged) rate Ṁ ∼ 10LEdd/c

2 (Tanaka, 2014), where LEdd ∝ M
is the Eddington luminosity for a BH of mass M , and c is the speed of light. This value
is comparable to the accretion rate producing the Eddington luminosity with the radiative
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efficiency η ≡ L/(Ṁc2) ∼ 0.1 expected in thin discs.10

In this paper, we examine the possibility that the first nuclear SMBHs originated from
hyper-Eddington accretion onto Pop III remnants—i.e. from a growth mode where Ṁ �
ṀEdd ≡ LEdd/c

2. This is motivated by theoretical models of optically thick accretion flows
in which photons are trapped and advected inside the accretion flow. In such “radiatively
inefficient” accretion modes the luminosity and radiation feedback of the flow are quenched,
allowing accretion rates much higher than those corresponding to the Eddington limit for
radiatively efficient discs (see Begelman 1979 for spherical flows and Abramowicz et al. 1988
for slim accretion discs). Several studies have investigated whether such an accretion mode
contributed to the growth of the first SMBHs (Volonteri & Rees, 2005; Begelman, 2012;
Madau et al., 2014; Alexander & Natarajan, 2014; Volonteri et al., 2015; Pacucci & Ferrara,
2015; Pacucci, Volonteri, & Ferrara, 2015; Lupi et al., 2016; Pezzulli et al., 2016).

We focus our attention on the recent work by Inayoshi et al. (2016), who found hyper-
Eddington accretion solutions in spherically symmetric radiation-hydrodynamics simulations
of Bondi-like accretion. They found, in broad agreement with previous simulations (Milosavl-
jević et al., 2009; Park & Ricotti, 2012), that radiative feedback typically limits the accretion
rate to values comparable or below ṀEdd. This radiative feedback arises from photoioniza-
tion and heating of the gas near the Bondi radius, and occurs even for flows that are highly
optically thick to electron scattering, and for which trapping of the radiation limits the lumi-
nosity emerging from the photosphere below LEdd. However, Inayoshi et al. (2016) also found
that for sufficiently large ambient gas densities, the combination of the large ram pressure
of the inflowing gas and photon trapping inhibit radiative feedback. The accretion flow in
this regime is steady and unimpeded from the Bondi rate; following Inayoshi et al. (2016)
we refer to this as hyper-Eddington accretion.

We perform N -body simulations of Pop III remnant BHs in a model protogalactic dis-
tribution of gas and dark matter (DM) at z & 10, subjecting the BHs to dynamical friction,
and allowing them to accrete in the manner found by Inayoshi et al. (2016). The goal of
our simulations is to follow the coupled growth and orbital evolution of a small cluster of
stellar-remnant BHs, and to evaluate whether such BHs can reasonably be expected to reach
the hyper-Eddington regime, and grow rapidly into more massive BHs.

In our models, we find that Pop III BHs indeed frequently grow into IMBHs with masses
over 103 M�, and even into supermassive holes (SMBHs) with masses 105 M�. We further
find that these I/SMBHs always form after a lower-mass BH has eroded its orbit, and settled
near the center of the model protogalaxy. This suggests that hyper-Eddington accretion is
a viable mechanism for forming nuclear SMBHs in early galaxies.

In addition, we report that our simulations always produce only a single I/SMBH. This
is because once these massive BHs dominate the central potential, subsequent BHs dragged
into the dense central regions reach high velocities that prohibit their growth. Instead, they
are captured as stellar-mass BHs in a bound orbit. This suggests that I/SMBH formation
is typically accompanied by so-called extreme-mass ratio inspirals (EMRIs), the merger of
compact objects with mass ratios � 1 that are one of the main targets of the planned

10Radiatively efficient discs are theoretically expected to have η ∼ 0.1 − 0.4 (e.g. Shapiro, 2005), in
agreement with the mean value ∼ 0.07 − 0.1 inferred from the So ltan-Paczynski argument, comparing the
mass density of SMBHs with the quasar luminosity density (e.g. Merloni & Heinz 2008; Shankar et al. 2010,
but see Shankar et al. 2016 for a recent argument for a higher value).
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space-borne gravitational-wave detector eLISA.
The rest of this paper is organized as follows. In §2, we describe the setup of our simula-

tions, including the properties of the Pop III remnant BHs and of their host galaxy, as well
as the numerical schemes used to simulate their orbital evolution and growth. We present
and discuss our main results in §3. Several implications and theoretical caveats are discussed
further in §4. We summarize our conclusions in §5.

4.2 Numerical model

In this section, we provide an overview of our simulations. We first describe the properties
of the parent galaxy, and the initial conditions for the small cluster of stellar-mass BHs.
We then describe the equations of motion we solve to follow the growth of BHs and their
interactions and dynamics, as well as the numerical scheme we use to solve these equations.
A key feature of our model is a prescription that allows rapid growth by gas accretion, based
on the recent numerical study of Bondi-like hyper-Eddington accretion with radiation by
Inayoshi et al. (2016).

4.3 Protogalaxy + BH population model

4.3.1 Protogalactic gas cloud and DM halo

We consider a small cluster of Pop III-remnant BHs embedded in a protogalactic, so-called
atomic-cooling DM halo, with a virial temperature of Tvir ≥ 104K and mass & 107−8 M�
at z ∼ 15− 20. Such a system is a plausible outcome of lower-mass Pop III-forming haloes
growing either via accretion and minor mergers, or via major mergers. Massive stars are
expected to form earlier, in the lower-mass progenitor “minihaloes”, and leave behind stellar-
mass BH remnants. However, the UV radiation and/or SN explosions of the progenitor star
of such a BH can unbind the gas from the shallow potential well of its host minihalo. The
remnant BHs are then expected to be starved Alvarez et al. (2009), and not surrounded
again by dense gas and grow until they are incorporated into more massive atomic-cooling
haloes.

The gas collapsing inside an atomic cooling halo is expected to cool and condense, and to
develop a nearly isothermal density profile with d ln ρ/d ln r ≈ −2 (Oh & Haiman, 2002; Wise
& Abel, 2007; Regan & Haehnelt, 2009; Shang et al., 2010; Latif et al., 2014; Regan et al.,
2014). Under the assumption that the metallicity in this protogalaxy remains low, and H2

cooling is disabled, the temperature will remain near the HI atomic cooling floor of 8000 K.
This configuration is expected to be rare, as it requires a large UV (Lyman-Werner) flux
from a bright neighbour, forming near-simultaneously (Dijkstra et al., 2008; Agarwal et al.,
2012; Visbal et al., 2014). In the presence of metal and/or H2-cooling, the large-scale inflow
rate is expected to be slower, as a result of the lower sound speed, reducing the normalization
of the density profile (see, e.g. Shang et al. 2010).

Our fiducial protogalaxy model is based on the metal- and H2–free atomic cooling halo,
and consists of a DM component with a Navarro et al. (1997) (NFW) density profile, and an
isothermal gas profile that behaves as ∝ r−2 at large radii. In order to avoid a mathematical

70



singularity at the origin, we introduce a core region of size rc inside which the density is
nearly constant.

The matter distribution in our model protogalaxy can be summarized as follows:

ρbg(r) = ρgas(r) + ρNFW(r) (57)

ρgas(r) =
ρc

1 + ( r
rc

)2
, (58)

where ρNFW(r) is the NFW profile with concentration parameter C = 9 and the virial radius
is rvir ' 1 kpc. The virial radius is defined as the radius within which the average matter
density is 180 times the cosmological critical density. The values of rc and nc are determined
by normalizing the gas profile to satisfy the cosmological ratio of baryon to DM mass inside
rvir. We take rc = 0.003 pc and nc = 2.5 × 1010cm−3. These values are consistent with
those found in the highest-resolution adaptive mesh refinement simulations to date (Regan
et al., 2014). For numerical convenience, we slightly modify the NFW profile (which scales
as r−1 at small radii) by requiring that the DM density does not exceed the gas density for
r ≤ rNFW,c, a radius at which ρgas = ρNFW. This modification only affects the region inside
∼ 10−3rc, and does not appreciably affect our results. The density profile of DM and gas
remains fixed and unchanging throughout our simulations; the possible impact of this large
simplification is addressed below.

4.3.2 Pop III-remnant BHs

Within our spherically symmetric halo, we place a small cluster of ten BHs inside a radius
of 100 pc. This represents ≈ 10% of the virial radius of a halo just above the atomic cooling
threshold, and is intended to correspond to the spatial extent of a star-forming region, or
the region over which the BHs are initially spread after merging events. Each hemisphere is
divided by the polar angle into five compartments of equal shape and size, and a single BH
is placed at a randomly chosen radius and angular position inside each compartment (i.e.,
ten compartments, and one BH per compartment).

We also require that the initial distance between each pair of BHs is larger than 10 pc.
Each BH is given a random initial velocity, so that its speed is no larger than the gas sound
speed cs ≈ 10 km s−1 and the radial component of its velocity is nonpositive (i.e. it is not
flying away from the origin; this is intended to mimic the outcome of recent mergers).

The masses of the Pop III stars as the BH progenitors are assigned randomly from an
IMF dN

dM?
= M−α

? with α = 0.17 Stacy & Bromm 2013. We adopt a minimum mass of
Mmin,? = 25 M�, and a maximum mass of Mmax,? = 140 M�. The latter value is motivated
by the fact that more massive stars are expected to result in pair-instability supernovae and
leave no BH remnant Heger et al. 2003. While stars more massive than ≈ 260 M� may
form BHs, such large masses may be precluded by UV feedback in the protostellar stages
Hosokawa et al. e.g. 2011.

After the stellar masses are drawn, they are converted to BH masses M using the following
fitting formulae provided by Tanaka et al. (2012b), which are based on simulations by Zhang
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Redshift z ≈ 15− 20

Sound speed cs ≈ 10 km s−1

Halo mass Mvir,halo ≈ 5× 107 − 108 M�

Halo virial temperature Tvir & 10000 K

Initial radial distance of BHs ri(t = 0) ≤ 100 pc

Initial separations between BHs rij(t = 0) ≥ 10 pc

Initial speed of BHs vi(t = 0) ≤ cs

Mean molecular weight µm = 1

Gas density profile ρgas ∝ r−2 (isothermal sphere)

Dark matter density profile ρDM=NFW

Concentration parameter C=9

Virial radius rvir ' 1 kpc

Core gas density nc = 2.5× 1010 cm−3

Core radius for gas rc = 3× 10−3 pc

Core radius for DM rNFW,c ≈ 10−6 pc

Initial stellar mass function range 25 M� ≤M? ≤ 140 M�

Initial stellar mass function slope α = 0.17

Total run time trun = 500 Myrs

Table 8: Choices of the values of different physical parameters defining our protogalaxy +
BH cluster model. See text for details. Note that the italic subscripts i and j are indices
representing the BHs.
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Figure 19: Schematic representation of one of the BHs in the halo, defining our notation.
Mbg(< r) denotes the mass of the background material (gas + DM) enclosed within the
radial position r of the BH, while MB represents the mass of gas enclosed within the Bondi
radius of the BH.

et al. (2008):

M =

{
3
4
(M? − 20 M�) + 2 M� if M? ≤ 45 M�

5
12

(M? − 20 M�) if M? > 45 M� .
(59)

The average mass of a Pop III star is 〈M?〉 ≈ 80 M�, and that of a remnant BH is
〈M〉 ≈ 25 M�. All simulations are run until either a tightly bound BH pair with a semima-
jor axis a ≤ 1 pc forms, or until a physical time of trun = 500 Myr has elapsed—whichever
occurs first.

The properties of the host halo and the BHs adopted in our simulations are summarized
in Table 8, and a schematic diagram of the halo + BH system is illustrated in Figure 19. The
radial coordinate of the BH is denoted by r. The gas density profile is spherically symmetric,
and has a flat central core of size rc. The sum of the gas and DM densities define the total
background matter density ρbg. We denote the mass enclosed inside the instantaneous radial
coordinate of the BH by Mbg(< r). The Bondi radius rB (defined in §4.5 below) defines a
spherical region around each BH that we call the “Bondi sphere.” We will make use of the
average density around the surface of this sphere, 〈ρ〉B, and the total mass enclosed inside
the Bondi sphere, MB.
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4.4 The equations of motion

We use an N -body code to integrate the equations of motion and mass growth for each BH
embedded in the model protogalaxy. The motion of the BHs is determined by the following
forces: (i) their mutual gravitational attraction (including post-Newtonian terms up to 2.5th
order), (ii) dynamical friction/drag from the surrounding medium, and (iii) the gravitational
potential of the background matter. We also account for (iv) the deceleration due to mass
growth via accretion. The resulting equation of motion for the ith BH includes the sum of
the five forces:

ai = aN,i + aPN,i + adf,i + abg,i + aacc,i (60)

We next describe each contribution in detail.

1. Gravitational attraction between BHs
This contribution is dominated by the standard Newtonian expression,

aN,i = −
∑
j 6=i

G MBH,j
∂ Φ(rij)

∂ rij

ri − rj
rij

, (61)

where G is the gravitational constant, Φ is the pairwise gravitational potential, ri
is the displacement of the ith BH from the center of the host DM halo, and rij ≡
|ri − rj|. In our numerical implementation, we adopt the Plummer softening kernel
Binney & Tremaine 1987 with softening length 1.7×106 cm, which is equivalent to the
Schwarzschild radius for a 5.75 M� BH.

We add post-Newtonian terms aPN to Eq. (61) up to order 2.5, which includes the loss
of orbital energy and angular momentum via GWs. The full expressions for these terms
can be found in, e.g., (Damour & Deruelle, 1981; Kupi et al., 2006). At sufficiently
small pair separations, the orbital decay due to GW emission leads to merger on a
timescale ∝ a4 where a is the semimajor axis (Peters & Mathews, 1963; Peters, 1964).
It turns out that no BHs in our simulations reach separations where GW emission is
relevant for their orbital evolution11 Notice that This finding is different from the simi-
lar, earlier studies by Tagawa et al. (2015, 2016), who considered a cluster of BHs with
a smaller initial separation, and found that the post-Newtonian terms can sometimes
be important and lead to BH-BH mergers. We defer the discussion of this point to
§ 4.8 below.

2. Dynamical friction and gas drag
An object in motion through a medium creates an overdensity, or wake, behind it,
whose gravitational pull acts as a dissipative drag on the object’s motion. In this
study, we consider dynamical friction due to both DM and gas.

11 For reference, GW emission becomes the dominant orbital evolution mechanism at an orbital distance
a < 10−5 pc for a circular binary consisting of two BHs with masses 105 M� and 100 M�. We find that the
central pair is rarely disrupted once they reach a separation ∼ 1 pc, as described later in the text (§4.7.3).
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For the DM contribution, we adopt the standard Chandrasekhar formula (Binney &
Tremaine, 1987),

a
(DM)
df,i = −4π ln Λ f(Xi)

G2Mi

v3
i

ρDM(ri) vi, (62)

with

f(Xi) ≡ erf(Xi)−
2√
π
Xi exp

(
−X2

i

)
, (63)

where Xi ≡ vi/(
√

2σv) and σ is the velocity dispersion, ' cs. We use ln Λ = 3.1 and
indicate with ρDM(ri) the DM density at the location of the i-th BH.

For the gas, we adopt the following formula from Tanaka & Haiman (2009), which
incorporates behaviours found in numerical simulations for subsonic and supersonic
regimes (Ostriker, 1999b; Escala et al., 2004; Chapon et al., 2013). In our implemen-
tation, the specific drag force vector always points opposite to the direction of BH
motion, and is given by:

a
(gas)
df,i = −4π G2 Mi ρgas(ri)

1

v3
i

× f (gas)(Mi)vi, (64)

with

f (gas)(Mi) =



0.5 ln Λ
[
erf
(
Mi√

2

)
−
√

2
π
Mi exp

(
−M2

i

2

) ]
0 6Mi 6 0.8;

1.5 ln Λ
[
erf
(
Mi√

2

)
−
√

2
π
Mi exp

(
−M2

i

2

) ]
0.8 6M 6Meq;

1
2

ln
(

1− 1
M2

i

)
+ ln Λ

Mi >Meq.

(65)

Above, Mi ≡ vi/cs is the Mach number of the ith BH, and cs is the isothermal sound
speed of the gas. We use ln Λ = 3.1, the same as for the DM. The corresponding value
ofMeq that makes the above function continuous with respect toM is approximately
1.8.

With the density distributions we use in our model (see § 4.3 above), and in particular
near the center of the model protogalaxy, the effects of gas dominate over that of DM—
both in dynamical friction and background gravitational force. Although we include
the DM-related force calculations for completeness, they do not play a major dynamical
role.

The expressions for dynamical friction given above were derived under the assumption
of non-accelerated motion in a uniform density distribution. Capturing the effects of
nonlinear dynamical friction along an accelerated trajectory, in a non-uniform back-
ground medium, would require hydrodynamical simulations, including the self-gravity
of the surrounding medium. This is outside the scope of this paper, but we note that
existing studies of dynamical friction in a nonuniform medium or for perturbers on
nonlinear trajectories (e.g Sánchez-Salcedo & Brandenburg, 2001; Just & Peñarrubia,
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2005; H. Kim & Kim, 2007; W.-T. Kim, 2010), do not report major differences from
the Chandrasekhar formula. We therefore simply evaluate the formulae given above,
by using the value of the density at the coordinates of each BH; this is the typical
approach taken in similar numerical studies (e.g. Blecha et al., 2011; Guedes et al.,
2011). For comparison, we have run a second set of simulations in which the dynami-
cal friction forces were computed by averaging the density values at a distance around
each BH; we defer discussing the details of this comparison until §4.6 below.

3. Gravity of the background matter
The background gas and DM exert a gravitational pull on the BHs. Because we
assume a spherically symmetric density profile, this force points toward the center of
the potential. It can be expressed as

abg,i = −G Mbg,i

r3
i

ri, (66)

where ri is vector pointing from the center of the halo to the i-th BH and Mbg,i is the
mass of ambient gas and DM contained inside r < ri.

Our assumption that the background matter distribution remains static will fail when
M & Mbg, i.e. when the BH mass exceeds that of the matter inside its orbit. In
this case, the matter at the center will be strongly perturbed by the BH, and our
prescription of a static background is invalidated. Treating the dynamical reaction of
the gas and DM distribution to a massive BH is beyond the scope of our computa-
tional methods. However, in order to assess the possible impact of this assumption on
our results, we have run two sets of simulations with different treatments of the back-
ground force. In the first set, we treat this force simply as given by equation 66. In the
second, we set it to zero if M > Mbg. The full set of our simulations is described in §4.6.

4. Accretion-induced deceleration
The BH decelerates through conservation of linear momentum,

aacc,i = −Ṁi

Mi

vi. (67)

4.5 Accretion rate

We next detail our prescription for the mass growth of each BH due to gas accretion. We base
our model on the recent numerical study by Inayoshi et al. (2016), whose key finding is that
the accretion rate can significantly exceed the Eddington rate (see also the other references
mentioned in the Introduction). Inayoshi et al. (2016) found that spherically symmetric BH
accretion solutions with radiative feedback were divided into several qualitatively distinct
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regimes, depending on the ratio of the Bondi accretion rate of ambient gas (ρ∞),

ṀB =
4πG2M2 ρ∞

c3
s,∞

, (68)

(cs,∞ being the sound of speed of the ambient gas), to the Eddington rate12

ṀEdd ≡
LEdd

c2
=

4πGM

κes c
= 2.2× 10−9 M

M�
M� yr−1, (69)

where LEdd is the Eddington luminosity and κes is the Thomson scattering opacity.
Inayoshi et al. (2016) concluded that:

(i) Under conditions where the ratio of the canonical Bondi rate to the Eddington rate
ṀB/ṀEdd . 0.1− 1, the BH accretion rate is Ṁ ∼ ṀB;
(ii) If 1 . ṀB/ṀEdd . 100, photoionization by the light produced by the accretion flow
causes the accretion onto the BH to be intermittent, with a time-averaged rate Ṁ . ṀEdd;
(iii) If ṀB/ṀEdd & 3000, the large ram pressure of the inflowing gas, combined with photon
trapping below the photosphere, renders radiative feedback ineffective, and accretion pro-
ceeds unimpeded at Ṁ ∼ ṀB (cf. Begelman, 2012).
In the intermediate regime between cases (ii) and (iii) above, i.e. if 100 . ṀB/ṀEdd . 3000,
the accretion rate remains uncertain, because of the unresolved role of hydrodynamical in-
stabilities.

Our accretion prescription closely follows the behaviour outlined above, with a few mod-
ifications. First, we replace the Bondi rate for a stationary mass with the Bondi-Hoyle-
Lyttleton (BHL) rate, to account for the fact that the BHs in our simulation are in motion
with respect to the surrounding gas. Second, whereas the canonical expression for the Bondi
accretion rate (eq. 68) uses the ambient density “at infinity” ρ∞, we instead use the value of
the density averaged over the spherical region around the BH defined by the Bondi radius

rB,i =
2GMi

c2
s + v2

i

. (70)

The resulting expression for our modified Bondi rate is

ṀB,i =
4πG2M2

i 〈ρB(ri)〉
c3

s (1 +M2
i )

3/2
, (71)

where 〈ρB(ri)〉 denotes the aforementioned average density of gas at the surface of the“Bondi
sphere” around the BH.

Third, we conservatively assume that the BH accretion rate should not be higher than
the mass inflow rate into the center of the halo from larger scales, as this would deplete the
central gas density, without the possibility of a steady replenishment from larger radii. In
pristine atomic–cooling haloes, the hydrodynamical simulations mentioned above typically

12Our notation was chosen to match that of Inayoshi et al. (2016). Many other works define ṀEdd to
correspond to the Eddington luminosity with a radiative efficiency of η, which would be ṀEdd/η, i.e. a
factor of 10 higher than eq. (69) for η = 0.1.
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Table 9: Summary of our 6 prescriptions for BH accretion and 2 different treatments of the
central background potential adopted in our simulations. These constitute a set of 12 models.
Note that the accretion prescription in Eq. 73 follows Inayoshi et al. (2016). In model “I”
this prescription is adopted independently of whether the BH mass exceeds or not the mass
contained within its Bondi radius, MB, whereas in the “fin” models the accretion rate is
capped to a fraction fin of the inflow rate in the self-gravitating regime, when MB ≥ M .
Model “E” denotes a commonly adopted Eddington-limited accretion prescription, and in
the Ṁ = 0 reference case we do not allow any accretion.

Model Ṁ when MB < M Ṁ when MB ≥M

fin = 1 eq.73 Ṁ = finṀin = Ṁin

fin = 10−3 eq.73 Ṁ = 10−3 × Ṁin

Accretion fin = 0 eq.73 Ṁ = 0

Prescription I eq.73 eq.73

E min[ṀB,
1
η
ṀEdd, Ṁin] min[ṀB,

1
η
ṀEdd, Ṁin]

Ṁ = 0 Ṁ = 0 Ṁ = 0

Background On abg,i always on

Potential Off abg,i = 0 if Mi > Mbg(< ri)

find this inflow rate to be

Ṁin =
c3

s

G
≈ 0.5 M� yr−1. (72)

A possible caveat here is that the inflow rate in the presence of metal and/or H2 cooling
may be ≈ two orders of magnitude lower. On the other hand, the rate increases steadily as
the halo grows in mass, and recent simulations have found that pressure and gravitational
torques can maintain ∼ M� yr−1 inflow rates down to ∼pc scales, even in the face of
radiative cooling and SN feedback (Prieto & Escala, 2016).

Our implementation of the Inayoshi et al. (2016) accretion regimes can therefore be
summarized as:

Ṁ =



min[ṀB,
1
η
ṀEdd, Ṁin]

(if min[ṀB, Ṁin] < 3000ṀEdd)

min[ṀB, Ṁin]

(if min[ṀB, Ṁin] ≥ 3000ṀEdd)

. (73)

In this study, we take η = 0.1. We note that this may somewhat overestimate the
accretion rate in the Eddington-limited regime, as both Park & Ricotti (2012) and Inayoshi
et al. (2016) found that the time-averaged rate is limited to ∼ 0.5ṀEdd. We implement
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Figure 20: Top left panel: The radial distance r (black solid line), and Mach number (gray
dotted line) of a BH which experiences the hyper-Eddington accretion as it sinks to the halo
core, whose size rc is also displayed for reference (yellow dashed line) in Model “fin = 1” with
abg ‘On’ (see Table 9). Middle left panel: The corresponding accretion rate Ṁ of the BH in
Eddington units (solid black line). For reference, the panel also shows the the self-gravitating
inflow rate Ṁin (yellow dashed) also in Eddington units, as well as the critical values at which
the accretion switches modes [i.e. to Eddington (blue dot-dashed) or hyper-Eddington (green
dotted)]. Bottom left panel: The corresponding mass of the BH is shown (solid black line),
together with the mass MB enclosed within its Bondi radius (solid magenta) and the gas
mass Mbg contained inside its orbit (dashed gray). The accretion rate and the BH mass
both grow rapidly once the BH sinks the core. At the same time, the BH begins to dominate
the central potential, but not the mass inside its Bondi sphere. Right panels: The above
behaviour is contrasted with a BH on a highly elliptical orbit but with a larger semimajor
axis, which never makes it inside the core. This BH never experiences (hyper-)Eddington
accretion, and its mass remains near its initial value.

Equation (73) as long as the BH dominates the gravitational potential inside its Bondi
sphere, i.e. M > MB. On the other hand, if M < MB, the Bondi formalism breaks
down. The latter condition roughly coincides with the gas inside the Bondi sphere becoming
self-gravitating and Jeans-unstable. In this regime, the accretion rate is plausibly of order
Ṁin ≈ c3

s/G. However, how much of this canonical inflow rate ends up accreting onto the BH
remains uncertain, and will depend on factors such as gas cooling, turbulence and angular
momentum transport, and the BH’s specific accelerated trajectory. We here parameterize
the accretion rate in this self-gravitating gas regime as Ṁ = finṀin, and consider the two
extreme values of fin = 0 and 1, as well as an intermediate value of fin = 10−3.

To further explore the dependence of our results on this accretion prescription, we have
also run a set of simulations where Ṁ continues to be given by the Bondi rate even when
MB > M , and another set where Ṁ continues to follow the Inayoshi et al. (2016) prescription
described above, regardless of whether MB is larger or smaller than M .

4.6 Summary of simulation sets

Our fiducial set of models implement the prescriptions described above. The accretion rate
onto the BH is determined by the Inayoshi et al. (2016) accretion rates (eq. 73) if M > MB,
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and Ṁ = finMin in the self-gravitating regime, once M ≤ MB. As noted above, we have
run two additional sets of simulations, in which Ṁ is either given by Eq. (73) regardless
of how M compares to MB (which we will refer to as (Prescription “I”; for Inayoshi et al.)
and another in which BH accretion tracks the Bondi rate, but is always Eddington-limited,
i.e. Ṁ = min[ṀB,

1
η
ṀEdd, Ṁin] (Prescription “E”, for Eddington). Note that the latter is a

prescription commonly adopted in numerical and semi-analytic studies of BH growth in the
early Universe (see reviews by, e.g. Volonteri 2010; Haiman 2013 and references therein) As
a simple control, we have also run simulations with no accretion.

For each of the six accretion prescriptions listed above, we consider a case where the
background gravitational force abg,i is always present and points inward. We then consider
a second case, motivated in the previous subsection, where abg,i is set to zero whenever the
BH is more massive than the mass enclosed inside its present position [i.e. if Mi > Mbg(ri)].

Our full suite of simulations is summarized in Table 9. Each of the twelve models we
have described above (six different accretion prescriptions, and two different treatments
of the background gravitational force at small radii) were simulated multiple times using
different initial values for BH masses, positions, and velocities (the criteria for our initial
conditions are described in §4.3.2 and 8). We simulated each model using 43 distinct sets
of initial conditions; each set of initial conditions was recycled 12 times, using the different
prescriptions in the 12 different models.

4.7 Results

We now turn to the results of our N -body simulations. We briefly summarize our major
findings below, and follow these with detailed explanations and analyses.

1. We found that in a majority (24 out of 43) of initial condition sets, an IMBH of mass
∼ 103 to ∼ 105 M� formed as a result of hyper-Eddington accretion, in all the models
that allowed for this accretion mode (i.e. in models “fin = 1”,“fin = 10−3”,“fin = 0”
and “I” listed in Table 2).

2. If one set of initial conditions results in IMBH formation in one hyper-Eddington
model, then it does so in all the others. The determining factor is whether the BH
passes through a dense, gas-rich region (as a result of small semimajor axis, small
pericenter, or both) where dissipation of orbital energy via gas drag is efficient.

3. All of the IMBHs end up within the central . 0.01 pc of the protogalactic halo, strongly
suggesting that they are viable precursors of nuclear SMBHs observed as quasars at
z > 6.

4. There is at most one IMBH in each simulation; we do not find a single instance of
multiple IMBHs forming.

5. Many of the IMBHs capture a lighter BH into a close, sub-parsec orbit, and we argue
that such systems could lead to EMRI events detectable by planned gravitational-wave
observatories, such as eLISA.
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6. We do not find mergers between stellar-mass BHs, in contrast to similar studies by
Tagawa et al. (2015, 2016). The main reason for this appears to be simply the larger
radii at which we initially place the BHs.

7. The above findings appear to be robust with respect to our treatment of both dynamical
friction and the gravitational force due to the background matter distribution.

4.7.1 The onset of hyper-Eddington accretion

The first significant event in our simulations is the descent of the innermost BH to the
dense gaseous core, which is driven by the decay of its orbit due to dynamical friction.
Because the BHs are relatively widely separated in our initial conditions (the initial mean
separations are ' 75 pc), three-body interactions at this stage are rare. As the innermost
BH sinks even closer to the center, its ambient density increases and its Bondi accretion
rate increases. The accretion rate eventually transitions from Ṁ = ṀB < ṀEdd/η (sub-
Eddington Bondi), to Ṁ = ṀEdd/η < ṀB (Eddington-limited), and finally (in 25 out of
43 cases) to Ṁ = ṀB > 3000 ṀEdd (hyper-Eddington; accretion unimpeded by radiation
feedback), as dictated by Eq. (73). This qualitative picture is shared by all of our simulations
in which hyper-Eddington accretion occurs.

This progression is illustrated in the left panel of Figure 20, which shows the journey
in position and mass for a BH that undergoes hyper-Eddington accretion. The data is
taken from a simulation run using the fin = 1 accretion scenario and with the background
gravitational force always present—however, we reiterate that the behaviour shown here is
shared by all examples of hyper-Eddington accretion in our simulations.

The top left panel of this figure shows the position of the innermost BH with the core
radius rc shown for reference. In the middle panel, we show the BH accretion rate in units
of ṀEdd, alongside the two critical values that determine the accretion regime according to
Eq. (73): 3000 ṀEdd, and Ṁin. Finally, in the bottom panel, we show the mass M of the
BH (in M�). We also plot M/MB, the ratio of the BH mass to the gas mass inside its
Bondi sphere. Recall that when this ratio is greater than unity, we study evolution under
different accretion prescriptions (the difference between our fin = 1, fin = 10−3, fin = 0,
and “I” models; see Table 10). Further, we show M/Mbg, the ratio of the BH mass to the
mass contained in the halo inward of the BH’s radial position. If this ratio is greater than
unity, we also study BH evolution without the background gravitational in the “Background
Potential Off” simulations (see Table 10).

For comparison, on the right side of the figure, we have plotted the same information for
another BH in the same simulation that does not undergo hyper-Eddington accretion. This
BH is on a highly elliptical orbit around the center of the halo, but its Bondi accretion value
never exceeds the ṀB = 3000 ṀEdd threshold to overcome radiative feedback.

In the left side of this figure, we see that it takes the accreting BH only a few Myr to sink
to the center where it begins to undergo hyper-Eddington accretion. For BHs that undergo
hyper-Eddington accretion in our simulations that allows this (models fin = 1, fin = 10−3,
fin = 0, and “I”), an average of 5.6 Myr elapses between when the Bondi accretion rate
first reaches the Eddington limit and when it reaches 3000ṀEdd. This is much shorter
than the Salpeter time (∼ 45 Myr for the adopted radiative efficiency η = 0.1), indicating
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that the increase in the Bondi accretion rate is caused by the increase in ambient density
(ṀB ∝ ρgas ∝ r−2 for r & rc), as opposed to mass growth (ṀB ∝M2).

In Figure 21, we show the semimajor axis (vertical axis) and eccentricity (plotted as
1 − e, horizontal axis) of each of our BHs in the “fin = 1, abg on” simulation set (a total of
43 runs and 430 BHs, 24 of which grow to become IMBHs). Because the BH orbits are not
Keplerian (and therefore not elliptical), the concept of eccentricity is not rigorously defined.
We evaluate the instantaneous eccentricity using the standard formula for Keplerian orbits

e =

√
1 +

2ε`2

{G[M +Mbg(r)]}2
, (74)

where ε is the specific energy of the orbit (orbital energy divided by the “instantaneous
reduced mass” M Mbg(r)/[M + Mbg(r)]), and ` is the specific angular momentum (orbital
angular momentum divided by the instantaneous reduced mass). Note that the gravitational
potential used in calculating ε is logarithmic, and the enclosed central mass Mbg(r) varies
with the orbital radius.

The red dots in Figure 21 represent the orbital evolution of BHs that do not make it to
the dense central region to become IMBHs within the 500 Myr runtime of the simulations;
the black curves represent the orbital evolution of BHs that do grow into IMBHs. The
dotted box in the upper left approximately encloses initial orbital parameters (a and e) for
BHs which do not grow to IMBH/SMBH. BHs with the initial a and e outside the box have
sunk to the core and have experienced hyper-Eddington accretion, whereas we find no such
examples with initial a and e that lie inside the box. Notice that some BHs with small
initial semimajor axes (i.e. outside the box) migrate to the center after the first BH becomes
massive, and form a bound pair with it. The dashed horizontal line near the bottom marks
the core radius, rc = 0.003 pc.

BHs evolve from having large semimajor axes and high-eccentricity orbits (upper left of
the panel) about the center of the protogalaxy potential, to having tighter, nearly circular
orbits (lower right portion of the panel). As a BH approaches the center of the protogalaxy,
it sinks to the center more quickly than it can complete an orbit. The final plunge into the
center of the protogalaxy is not plotted, as we find that e cannot be reliably calculated from
the shape of the orbit.

The orbital evolution and the final transition to hyper-Eddington accretion described
above can be understood as follows. Outside the core, the mass enclosed inside the BH orbit
is Mbg ≈ 4πρcr

2
cr ∝ r, and the dynamical time can be expressed as

τdyn =

(
r

ag

)1/2

≈ 170

(
r

rc

)
yr . (75)

Barring an encounter with another BH, BHs have velocities v ∼ cs or smaller. In this
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Figure 21: The evolution of the semimajor axis and eccentricity for 430 BHs in 43 simulations
with the prescription “fin = 1, abg on.” The BHs begin with large semimajor axes and high-
eccentricity orbits (upper left of the panel). The red dots represent the orbits of 406 BHs
that do not sink to the center within the simulation runtime of 500 Myr. The black lines
represent the orbits of the 24 BHs that sink to the dense central region and grow into IMBHs.
The orbits circularize as they decay, before finally plunging radially to the center (this last
phase is not shown in the figure). Only BHs with an initial distance of . 5pc from the center
are found in this category. The dotted box region on the upper left demarcates the region in
the a-e parameter space where we never found examples of BHs that successfully grow into
a central massive BH. The dashed horizontal line marks the core radius at rc = 0.003 pc.
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subsonic regime, f gasv−3 . c−3
s in Eq. 65. Writing adf ∼ v/τdf , we can estimate τdf as

τdf ∼ (1− 4)× 103

(
M

10 M�

)−1

max

[
1,

(
r

rc

)2
]

yr , (76)

where the leading factor depends on whether the Mach number is less than or greater than
M = 0.8. The azimuthal force due to dynamical friction results in circularization and orbital
decay on a timescale of τdf , whereas in the radial direction the background force dominates
over dynamical friction (∼ Myr for pericenter passage of & 30 rc and M ∼ 30 M�). Because
τdf ∝ r2 outside the core, the decay accelerates, with the final stages occurring over a few
thousand years.

Since the orbital decay occurs on a timescale much shorter than the Salpeter time, the
BH does not grow significantly by either sub-Eddington or Eddington-limited accretion. If
M . 60 M�, then rB . rc and the orbital velocity is comparable to or less than the sound
speed. The Bondi accretion rate for stellar-mass BHs outside the core can be estimated as

ṀB ≈
4πG2M2ρ(r)

c3
s

= 7× 10−3

(
M

10 M�

)2(
r

rc

)−2

M� yr−1

= 3.1× 105

(
M

10 M�

)(
r

rc

)−2

ṀEdd. (77)

Hence an infalling stellar-mass BH begins to undergo hyper-Eddington accretion when r & rc.

4.7.2 Hyper-Eddington accretion: a brief but dramatic growth spurt

Once the BH overcomes the ṀB = 3000 ṀEdd threshold, its accretion rate instantaneously
increases by a factor of 3000 η = 300. At the instant after this transition, its mass growth
timescale is M/Ṁ ≈ 0.1 Myr (the Salpeter time divided by 3000η), but then rapidly shortens
as ∝ M−1 before quickly hitting the ceiling finṀin imposed by the large-scale mass inflow
rate (eq. 72). For comparison, note that in Eddington-limited growth, Ṁ ∝ M and the
growth timescale is constant at the Salpeter value. As a result, when the BH accretion rate
becomes hyper-Eddington, its mass shoots up from a few × 10 M� to more than 103 M� in
less than ∼ 0.1 Myr.

This rapid mass growth results in two significant transitions in our simulations. First,
the gas mass inside the Bondi radius exceeds that of the BH mass. Again, how the BH is
assumed to accrete mass when MB > M is what distinguishes our fin = 1, fin = 10−3, fin = 0
and “I” models.

If M . 60 M�, then the Bondi radius is small and the density at the surface of the Bondi
sphere is close to the local density. Then, considering the Bondi-like profile (∼ r−3/2) inside
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the Bondi sphere,

MB ∼
∫ rB

0

〈ρB(r′)〉
(rB

r′

)3/2

r′2 dr′ (78)

∼ 8π

3
r3

Bρ(r)

∼ 0.7 M�

(
M

10 M�

)3

min

[
1,

(
r

rc

)−2
]
, (79)

and MB < M .
However, since rB ∝ M , at larger BH masses the Bondi sphere quickly becomes larger

than the gaseous core. We just established above that the BH typically begins its hyper-
Eddington accretion near the core. Therefore, once a BH grows to M & 60 M�, rB > rc and
the gas density at the surface of the Bondi sphere is essentially given by the halo gas profile
evaluated at r = rB. Then we can write

MB ∼
8π

3
r3

Bρ(rB) ≈ 8π

3
ρcr

2
crB = 2.4M > M. (80)

We conclude that as soon as hyper-Eddington accretion begins, the gas enclosed inside the
Bondi sphere shoots above the BH mass.

The second transition that occurs as the BH grows is that the BH mass exceeds the mass
of the matter enclosed inside its orbit around the center of the halo (Mbg). For r � rc, the
enclosed mass is simply

Mbg & 4πρcr
2
cr ≈ 200 M�

(
r

rc

)
, (81)

whereas inside the core (r � rc)

Mbg =
4π

3
ρcr

3 ≈ 70 M�

(
r

rc

)3

. (82)

Either way, as the BH grows beyond several 100 M� near or inside the core, our simulations
always result in M > Mbg. Since the BH dominates the central potential, the innermost
gas distribution will be strongly disturbed, and will correspond to a radial force towards the
center of the halo. This is the motivation for running a second set of simulations, in which
the gravitational force of the background matter is turned off if M > Mbg.

The above caveats aside, the hyper-Eddington rate initially follows the Bondi rate and
scales as Ṁ ∝M2. One significant aspect of this mode of growth is that, in addition to the
raw accretion rate being much higher than Eddington-limited growth, the accretion timescale
decreases (i.e. the growth rate accelerates and is faster than exponential). However, this
growth does not last long in our simulations, because Ṁ encounters one of two upper limits.

The first upper limit is finṀin (where Ṁin = c3
s/G), the parametrized gas supply rate

into the center of the halo in the “fin = 1”,“fin = 10−3”, and “fin = 0” models.
The second one is due to the fact that as M increases, rB increases, and the density at

the surface of the Bondi sphere decreases. For rB � r and rB � rc, the density at the Bondi
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Table 10: Average mass, mass ratio, eccentricity (e) and accretion rate for the first BH-BH
pair when its semimajor axis is a ≈ 1 pc. Accretion rates are in units of the Eddington rate.
The subscript “1” refers to the more massive BH, and “2” to the less massive BH.

abg Model M1[ M�] M2[ M�] q (=M2/M1) e Ṁ1/ṀEdd,1 Ṁ2/ṀEdd,2

on

fin = 0 160 71 0.45 0.92 0 38000

fin = 10−3 1.5× 104 45 3.0× 10−3 0.99 19 4.8

fin = 1 6.1× 105 31 5.1× 10−5 0.90 760 8.6× 10−2

I 2.5× 105 38 1.5× 10−4 0.87 10 2.9

E 450 50 0.11 0.99 10 5.9

Ṁ = 0 41 37 0.92 0.96 0 0

off

fin = 0 170 91 0.55 0.92 0 58000

fin = 10−3 2.6× 104 44 1.7× 10−3 0.99 17 3.2

fin = 1 4.1× 106 29 7.0× 10−6 0.84 240 2.1× 10−2

I 2.7× 106 33 1.2× 10−5 0.98 10 0.78

E 370 53 0.14 0.90 10 6.8

Ṁ = 0 41 37 0.92 0.87 0 0

sphere surface becomes

ρ(rB) ≈ ρc

(
rB

rc

)−2

=
ρcr

2
cc

4
s

4G2M2
. (83)

Then the Bondi accretion rate evaluates to

ṀB =
4πG2M2ρ(rB)

c3
s (1 +M2)3/2

≈ πρcr
2
ccs u 0.2 M� yr−1, (84)

or ≈ 40 % of Ṁin (=cs/G
3).

To summarize, the dynamics in our simulations evolves according to the following trends:

1. The orbit of the innermost BH decays on the dynamical friction timescale. As it does,
the accretion rate goes from sub-Eddington Bondi-Hoyle-Littleton (Ṁ ∝ M2, Ṁ ≤
ṀEdd/η) to Eddington-limited accretion (Ṁ = ṀEdd/η ∝ M). However, this phase
lasts much less than a Salpeter time, and the mass growth is typically insignificant.

2. As the BH approaches the center of the halo, typically at r ∼ a few × rc, the Bondi
rate ṀB > 3000ṀEdd. At this point, following Inayoshi et al. (2016), we assume that
photon trapping allows for hyper-Eddington accretion, i.e. once again matching the
unimpeded BHL rate (Ṁ = ṀB ∝M2).
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3. In the hyper-Eddington phase, the BH grows from a typical mass of a few ×10 M�
to & 103 M�. During this rapid transition, the BH becomes more massive than the
mass contained inside its orbit around the halo center (M > Mbg), and the gas mass
enclosed within its Bondi sphere exceeds its own mass (MB > M). The behaviour up
to this point is almost identical for all the simulations that allow for hyper-Eddington
accretion (models “fin = 1”,“fin = 10−3”,“fin = 0” and “I”). Most of the variation
between these models result from the difference in prescriptions when MB > M and
M > Mbg. That is, the models “branch out” from this point forward.

4. The accretion rate then slows, as it encounters the halo mass supply limit finṀin or the
asymptotic constant value of ṀB in the limit of large Bondi radius. Because both of
these values are constant, as the BH mass increases Ṁ falls below 3000ṀEdd ∝M , and
becomes Eddington-limited again. The final masses of the BHs, and their configuration
with respect to the halo and other BHs, depend on the prescriptions for accretion and
background gravitational force, as discussed in the following.

4.7.3 The final IMBH masses and configurations

In Table 10, we summarize the average final masses and accretion rates found in our sim-
ulations, for each combination of our prescriptions for gas accretion and treatment of the
background gravitational force. The values presented are the mean values over the 24 real-
izations per model with a nuclear BH, evaluated when the first BH has sunk to the center of
the protogalaxy and has captured a companion BH into a closed orbit with a semimajor axis
≈ 1 pc. We have chosen to stop the simulations at a = 1 pc, because at smaller separations
between the innermost bound pair three-body scatterings are rare. We assume that past
this separation, the inner bound pairs evolve through damped, closed orbits until merger.
masses and instantaneous accretion rates of the central BH are denoted with a subscript “1,”
and those for the smaller companion BH with a subscript “2.” We also list the mass ratio
M2/M1 ≤ 1 and the orbital eccentricity e of the pair.

The bottom half of Table 10 lists the BH properties found in simulations where the
background gravitational force exerted on a given BH was set to zero whenever the BH
mass exceeded the mass enclosed inside its radial position. The final values found in these
simulations do not vary significantly from the ones in which the background force was always
present (the top half of the table).

4.7.4 The central BH

Let us first discuss the central BH. In the simulations with fin = 0, BHs stop growing once
they are outweighed by the gas mass enclosed inside their Bondi sphere. Because of this,
they never grow beyond M1 ∼ 100 M�. In simulations where fin = 10−3, fin = 1, and
“I” the growth rate is capped by finṀin and by the asymptotic Bondi rate (eq. 84). These
upper bounds allow the growth of the central BH to M1 ∼ 104 M� for fin = 10−3, and
M1 ∼ 105 M� to ∼ 106 M� for fin = 1 and “I” (note that the values for finṀin and the
asymptotic Bondi rate are comparable). In all simulations where hyper-Eddington accretion
is allowed to continue past the point M < MB, the central BH grows into an IMBH or SMBH.
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For reference, we can see that if the mass growth is limited at the canonical Eddington
value (model “E”), then the central BH which forms a bound pair with another BH does
not grow significantly. This is because the bound pairs reach a . 1 pc soon after the first
BH sinks to the core, when both BHs are still close to their original stellar masses. Once a
tight central binary forms, its orbital velocity increases, and suppresses the BHL accretion
rate below the Eddington value, stunting further growth of either BH. We also show, for
reference, values in which accretion is not allowed at all (model “Ṁ = 0”).

4.7.5 The stellar-mass BH companion

A striking result of our simulations is that we find no more than one hyper-accreting BH per
simulation (i.e. either zero or one IMBH per galaxy). The reason for this is that if an IMBH
forms in one of our simulations, it prevents other BHs from undergoing hyper-Eddington
accretion.

This finding can be explained as follows. The first IMBH forms relatively quickly (its
orbit decays in a few Myr), and does so at the center of the halo, where gas densities (and
Bondi accretion rates) are high. Once this IMBH is in the center of the halo, any subsequent
BH whose orbit decays will be captured by the IMBH potential. Whereas the first BH had
orbital velocities v . cs as it fell toward the center, the orbital velocity of a BH captured
by the IMBH will be supersonic. The supersonic orbital motion suppresses both the orbital
decay rate via dynamical friction, preventing the second BH from sinking deep into the gas-
rich center of the halo. On top of this, the high velocity suppresses the Bondi-Hoyle-Lyttleton
accretion rate, ṀB ∝ (c2

s + v2)−3.
Thus, the first BH to wander to the center of the potential is able to grow to an IMBH via

hyper-Eddington accretion, but then subsequently prevents other BHs from doing the same.
As a result, our simulations typically produce bound pairs of IMBHs and stellar-mass BHs
with mass ratios q ≡ M1/M2 ∼ 10−4 − 10−2. Such “extreme mass-ratio” systems are one of
the important targets for detection by planned gravitational-wave instruments, and we will
revisit them in our discussion section. As Table 10 shows, interestingly, all EMRIs have a
highly eccentric orbit; this is a result of the preferential capture of stellar-mass BHs on such
orbits, i.e. with pericenters inside the sphere of influence of the newly grown IMBH.

In models where an IMBH is not produced, subsequent BHs are free to fall to the center
at low speeds, just as the first one did. As shown in Table 10, in the “fin = 0” models, we
find near-equal, stellar-mass binaries forming in the nucleus. In these models, the growth
of the 1st BH is artificially stunted, allowing the 2nd BH to experience a brief phase of
hyper-Eddington accretion. This hyper-Eddington phase, as the 2nd BH travels through the
dense gaseous core, only lasts until it, too, reaches a mass of M2 & 100 M�; its Bondi sphere
will then become self-gravitating, and its grow is terminated, just as for the first BH.

4.7.6 Different treatments of central background potential

The main difference in the two sets of models (shown in the bottom vs. top half of Table 10)
is that if abg is always present, the central BH ends up at the very center of the model
protogalaxy, because the background force always continues to point inward. In contrast,
when abg is turned off, the gas drag brings the BHs to rest near—but not at—the center.
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Aside from this detail, we find no major qualitative difference in the properties of the BHs
across these two sets of simulations. We conclude that the hydrodynamical reaction of the
innermost gas to the central BH is unlikely to significantly influence our main conclusions
about the demography and location of the emerging BH population (in particular whether
hyper-Eddington accretion occurs).

4.8 Discussion

4.8.1 SMBH precursors

Our simulations focus on the growth and orbital evolution of Pop III remnant BHs in a
model protogalaxy that is just above the atomic-cooling threshold for virial mass. We find
that the hyper-Eddington accretion prescription of Inayoshi et al. (2016) typically results in
the formation of a single IMBH in the center of the protogalaxy.

The natural interpretation is that this is a massive nuclear BH that will continue to grow
as the host galaxy grows. The formation of a ∼ (104−105) M� BH in an atomic-cooling halo
is the same end result as in the so-called “direct collapse BH” scenario. These IMBHs must
then grow at a logarithmically time-averaged rate Ṁ . 10ṀEdd (i.e. at a rate comparable
to the Eddington limit for a radiative efficiency η ∼ 0.1) to explain the & 109 M� engines
of the z & 6 quasars. The direct collapse scenarios generically require specific conditions
that may be rare in the Universe. For example, in most models the collapse is facilitated by
a high Lyman-Werner intensity that dissociates molecular hydrogen, and thus only a small
fraction of galaxies are expected to be viable direct-collapse sites (e.g. Dijkstra et al. 2008;
Shang et al. 2010; Hosokawa et al. 2012; Dijkstra et al. 2014; Sugimura et al. 2014; Visbal
et al. 2014; Latif et al. 2015; Inayoshi & Tanaka 2015; Regan et al. 2016).

The picture suggested by our simulations is that IMBHs in protogalactic nuclei could
plausibly be more commonly produced by hyper-Eddington growth of a pre-existing stellar-
mass BH – the essential requirements being only a high-density core, and a large-scale inflow
rate of O( M�yr−1), down to the Bondi radius (∼0.01 pc) of the central BH with initial mass
of ∼ 100 M�.

These two hypotheses for SMBH progenitors—rare direct-collapse seeds and more com-
mon results of hyper-Eddington accretion—could be tested against observations through
event rates detected by milli-Hertz gravitational-wave detectors (e.g. Sesana et al. 2007;
Tanaka & Haiman 2009) or by the global signatures of the redshifted 21 cm line (e.g. Tanaka
et al. 2016).

4.8.2 EMRI detections

Whenever an IMBH forms in our simulations, we find that it captures one or more stellar-
mass BH companions. Mergers of such BHs are predicted to produce EMRIs, a category of
gravitational wave events that is one of the primary low-redshift targets of the space-based
interferometer eLISA (Consortium et al., 2013; Amaro-Seoane et al., 2013).

Because the timescale for the M2 � M1 pairs in our simulations to merge through
emission of gravitational waves is well over a Hubble time, additional mechanisms such as
three-body scatterings or continuous gaseous dissipation (e.g. by a circumbinary accretion
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disc, Cuadra et al. 2009; Roedig et al. 2011) are required to drive the merger. The production
of such pairs in our simulations suggests that they could result in mergers of IMBHs and
stellar-mass BHs at lower redshifts.

We note that our IMBH-BH pairs have eccentricities e & 0.9, at a ≈ 1 pc (Table 10).
This points to the interesting possibility that they could lead to EMRIs that have residual
eccentricities when they enter the eLISA band. However, as we do not follow the evolution
of such pairs all the way to merger, and given the variety of possibly relevant mechanisms,
we leave the assessment of any residual eccentricity in the eLISA band for future work.

Additionally, the merger of a protogalaxy or dwarf galaxy containing an IMBH with a
more massive one containing a SMBH should result in the formation of a SMBH-IMBH pair.
While this is an expected corollary of our findings, further work is required to assess whether
such pairs can overcome the so-called “final parsec problem” (Merritt & Milosavljević, 2005).

4.8.3 Comparison with previous work

Several recent papers have investigated super-Eddington accretion in galaxies. Lupi et al.
(2016) used hydrodynamical simulations to investigate super-Eddington accretion of stellar-
mass BHs in circumnuclear gas discs in the hearts of galaxies. Their scheme allows gas
particles close to the BH to accrete and grow the BH. Pezzulli et al. (2016) considered the
growth of stellar-mass BHs inside model galaxies that account for metal enrichment, dust,
star formation and detailed cooling. They assume that the central BH grows at a rate
proportional to the cold gas mass in the bulge, and inversely proportional to the dynamical
time of the bulge.

One major difference between this study and those papers is the accretion prescription.
We adopt the analytic Bondi-like accretion prescription based on Inayoshi et al. (2016)
and featuring the transition from low Bondi-Hoyle-Lyttleton accretion, to Eddington-limited
accretion, and then to hyper-Eddington accretion. Another notable difference is that Lupi
et al. (2016) and Pezzulli et al. (2016) examined the growth of BHs in fully evolved galaxies,
whereas in this study we focus on the growth of Pop III remnant BHs into IMBHs in a
protogalaxy of mass ∼ 108 M�.

Alexander & Natarajan (2014) considered a set-up similar to ours, in which a stellar-mass
BH is in orbit in a protogalaxy, accreting above the fiducial Eddington rate. The focus of that
paper was to assess the ability of the gas inside the BH’s sphere of influence to shed angular
momentum and accrete onto the BH. The orbit of the BH was assumed to be determined
by its interactions with a nuclear star cluster (which was found to be important to reduce
the angular momentum). Here we treated a small system of BHs, and assumed that the
background gas dominates their orbital decay into the nucleus.

Closest to our study, Tagawa et al. (2015) and Tagawa et al. (2016) performed N -body
simulations of BHs embedded in a compact distribution of gas, in order to gauge the merger
mechanisms of BHs in galactic centers. Overall, the set-up and goals of these studies and ours
are similar, although Tagawa et al.’s focus was to clarify the occurrence rate and mechanisms
of stellar-mass BH mergers. Our most notable finding – the frequent formation of a single
IMBH at the center of the protogalaxy – differs from the conclusions by Tagawa et al.
(2015) and Tagawa et al. (2016), who find efficient formation of stellar-mass binaries, often
facilitated by 3-body interactions.
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These differences in conclusions arise from three important differences between our initial
conditions and model assumptions. First, we spread 10 initial BHs over a large region of up
to 100 pc, with separations of > 10 pc. The initial BH separations are much more compact
in (Tagawa et al., 2015, 0.01− 10 pc) and especially in (Tagawa et al., 2016, 0.01− 0.1 pc).
As a result, we do not find 3-body interactions or stellar-mass binaries. Second, we adopt
a centrally condensed density profile, while Tagawa et al. (2015) and Tagawa et al. (2016)
both assume homogeneous clouds. Third, we investigate various accretion prescriptions, and
allow hyper-Eddington accretion at rates limited only by the steady large-scale inflow rate
(whereas Tagawa et al. 2015 did not consider accretion onto BHs and Tagawa et al. 2016
considered an accretion rate capped by the Eddington limit and by the assumed total cloud
mass). As a result of these last two differences, we find that rapid growth into IMBHs and
SMBHs is much more common, and always occurs in the nucleus – producing EMRIs, rather
than stellar-mass binaries.

4.8.4 Caveats

Our results were obtained in simplified toy models, and are subject to several caveats. We
here discuss three possible major limitations of our model.

Gravitational potential of the background matter. Our simulations assume a static density
profile of gas and dark matter, instead of allowing the protogalaxy to evolve dynamically or
thermodynamically. On one hand, the simplified treatment of the protogalaxy allowed us
to run hundreds of simulations—dozens of initial condition realizations for each of a dozen
different combinations of theoretical models. On the other, this survey of model prescriptions
and the statistical sample size came at the expense of a more detailed treatment of gas
dynamics.

In particular, not accounting for the dynamical evolution of the surrounding matter
directly impacts the two gravitational effects in this work: the gravitational force exerted by
the ambient matter, and dynamical friction. Our assumption of a static background allows
us to evaluate analytically the gravitational force from the ambient medium, and we treat
the dynamical friction using a modified version of the Chandrasekhar formula Binney &
Tremaine 1987.

In an attempt to gauge the robustness of our results with respect to these theoretical
simplifications, we ran different sets of simulations with very different assumptions. First, as
discussed above, we ran a set of simulations in which the gravitational field of the background
material was entirely removed, once the BH mass exceeded the mass of the matter enclosed
inside its orbit. The only qualitative difference we found was that this resulted in the central
BH ending up slightly off-center (whereas leaving the analytic background force “on” had the
effect of always pulling the central BH to the very center of our model protogalaxy). We also
note that while gas anisotropies are common features in simulations of protogalactic haloes,
the masses of any anisotropic clumps tend to be small compared to that of the ambient gas
(which are overall well-described by power-law profiles, e.g. Regan & Haehnelt 2009).

We also ran, for the same set of the different accretion prescriptions, simulations in which
the dynamical friction was not calculated using the local gas density at the BH coordinates
ρ(r), but using the gas density averaged over the surface of its Bondi sphere, 〈ρB(r)〉. The
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rationale behind this experiment was that whereas the derivation of the Chandrasekhar for-
mula assumes an infinite, uniform background distribution of gas, the physical phenomenon
of dynamical friction is due to the wake of overdense gas formed at some distance from the
massive body. We found no qualitative difference between this set of simulations and the
one described in §3. While there is a rich literature on quantifying how dynamical friction
differs in nonuniform density distributions or nonlinear trajectories (e.g Sánchez-Salcedo &
Brandenburg, 2001; Just & Peñarrubia, 2005; H. Kim & Kim, 2007; W.-T. Kim, 2010), these
studies do not report major differences from the Chandrasekhar formula.

We conclude that our results are unlikely to be an artifact of the simplified treatment of
the gravity of the ambient matter distribution.

Star formation in the halo. Our model does not consider star formation inside the halo.
Once a dense region of gas cloud in the halo becomes optically thick, fragmentation leads to
star formation (e.g. Regan et al., 2014; Becerra et al., 2015, and refs. therein). The stars
may form directly in the core region, or form elsewhere and subsequently migrate to the core.
Because the stars have lifetimes of ∼ Myr, we expect them to become BHs before arriving at
the core, or shortly afterward. In practice, we do not expect significant qualitative differences
based on which type of BH reaches the core first—the pre-existing BHs our simulations had
in mind, or the stars/BHs that form in situ in the halo. According to the picture suggested
by our simulations, whichever type of BH arrives at the center first should grow massive via
hyper-Eddington accretion, then capture any subsequent arrivals into bound orbits (which
may eventually produce EMRI events).

Therefore, we do not expect any in situ star formation in the halo to qualitatively affect
our findings.

Effect of radiation on the hydrodynamics. Our toy model neglects the radiation produced
by the accreting BHs (and of any stars found in the same galaxy). The gas in the halo
cools efficiently and is mostly neutral, and accreting BHs will create their individual small
HII regions. Here we estimate the size of these HII regions, before the BHs wander into
the core and reach the hyper-Eddington state. In the “intermediate” regime, when η−1 .
ṀB/ṀEdd . 3000, the time-averaged accretion rate is limited to the Eddington rate, because
of the periodic formation, disappearance, and re-appearance, of an HII region that makes the
accretion episodic. The maximum size of this HII region is larger than the Bondi radius, by
definition, before the hyper-Eddington state can be reached Inayoshi et al. (2016). Assuming
a luminosity of LEdd, the HII region size is RHII = 8 × 1013(M/30 M�)1/3(r/rc)

4/3cm (see
eq. 27 in Inayoshi et al. 2016) or RHII/r = 0.01(M/30 M�)1/3(r/rc)

1/3. This means that
the HII region remains relatively small for BHs located within a few pc of the core. A
near-Eddington BH outside this region (say at 10-100 pc) could blow a large HII bubble and
change the global density distribution. However, the stellar-mass BHs in these outer, low-
density regions will be highly sub-Eddington and dim (eq. 77). We conclude that radiative
feedback is unlikely to prevent the onset of the hyper-Eddington phase of the first BH that
sinks to the central region.

Validity of Hyper-Eddington accretion. As emphasized throughout this paper, a key ingre-
dient of our model is that we allow rapid accretion, well in excess of LEdd/c

2. This is based
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on the recent results of Inayoshi et al. (2016), who find this to be the case for accreting BHs
whose HII region is confined to within the Bondi radius. This conclusion is subject to a
few caveats summarized in Inayoshi et al. (2016). In particular, here we highlight the fact
that Inayoshi et al. (2016) assumes a spherically symmetric accretion flow with low angular
momentum, such that the centrifugal radius (setting the size of an accretion disc, producing
significant luminosity) is smaller than the trapping radius (inside which photons are advected
inward with the flow, rather than diffusing out). At the onset of the hyper-Eddington phase,
the latter is 1500 RSch, or 5× 1010(M/100 M�) cm. We thus require that the accretion flow
onto the BHs remain quasi-spherical down to this distance from the BH. While this appears
feasible once the BH settles to the bottom of the potential well, a proper assessment will
require follow-up investigations, resolving the angular momentum transfer and dissipation
for the flow onto the central BH. However, we note here that this requirement is much less
stringent than the one addressed in a similar context by Alexander & Natarajan (2014), who
required the centrifugal radius to be as small as a few ×RSch (and found it to be feasible,
faciliated in their model by resonant effects due to a central stellar cluster).

4.9 Summary

In this paper, we described the formation of 103−5 M� IMBHs in centrally condensed gas
clouds, arising from a small cluster of Population III remnant BHs. The stellar-mass BH are
assumed to have been delivered into the cloud during the process of the hierarchical assembly
of the halo via mergers, and have a spatially extended initial configuration (several pc to
100 pc). We then follow their accretion and orbital dynamics via an N-body calculation.
These calculations reveal that as a result of gas drag, one of these BHs typically sinks to the
nucleus, where it rapidly grows into an IMBH.

Our results suggest a viable pathway to forming the earliest massive BHs in the centers
of early galaxies. We also find that only one IMBH can form in this way per galaxy, and that
this IMBH typically captures a stellar-mass BH companion, making these systems observable
in gravitational waves as EMRIs with eLISA.

More detailed simulations that account for the hydrodynamics, radiative transfer, and
the cosmological evolution of the host protogalaxy are required to test this idea further.
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5 Interactions between multiple supermassive black holes

in galactic nuclei: a solution to the final parsec prob-

lem

T. Ryu, R. Perna, Z. Haiman, J. Ostriker, N. Stone The Monthly Notices of the Royal
Astronomical Society, Vol. 473, 3410 (2018)

Abstract
Using few-body simulations, we investigate the evolution of supermassive black holes (SMBHs)
in galaxies (M? = 1010 − 1012 M� at z = 0) at 0 < z < 4. Following galaxy merger trees
from the Millennium simulation, we model BH mergers with two extreme binary decay sce-
narios for the ‘hard binary’ stage: a full or an empty loss cone. These two models should
bracket the true evolution, and allow us to separately explore the role of dynamical friction
and that of multi-body BH interactions on BH mergers. Using the computed merger rates,
we infer the stochastic gravitational wave background (GWB). Our dynamical approach is
a first attempt to study the dynamical evolution of multiple SMBHs in the host galaxies
undergoing mergers with various mass ratios (10−4 < q? < 1). Our main result demonstrates
that SMBH binaries are able to merge in both scenarios. In the empty loss cone case, we
find that BHs merge via multi-body interactions, avoiding the ‘final parsec’ problem, and
entering the PTA band with substantial orbital eccentricity. Our full loss cone treatment,
albeit more approximate, suggests that the eccentricity becomes even higher when GWs be-
come dominant, leading to rapid coalescences (binary lifetime . 1 Gyr). Despite the lower
merger rates in the empty loss cone case, due to their higher mass ratios and lower redshifts,
the GWB in the full/empty loss cone models are comparable (0.70× 10−15 and 0.53× 10−15

at a frequency of 1 yr−1, respectively). Finally, we compute the effects of high eccentricities
on the GWB spectrum.

5.1 Introduction

It is known that almost every nearby massive galaxy harbors a SMBH in its nucleus (Kor-
mendy & Ho, 2013). In the ΛCDM cosmology, galaxies evolve as they hierarchically merge.
As a result, it is expected that more than two SMBHs could coexist in a galaxy. If they
successfully get close to each other, they form a bound pair. Recently, the presence of mul-
tiple SMBH systems has been observationally confirmed, such as a SMBH binary system at
z = 0.055 with the projected separation of ∼ 7 pc (Rodriguez et al., 2006; Bansal et al.,
2017) and a triple SMBH at z = 0.39 with the closest pair separated by ∼ 140 pc (Deane et
al., 2014) .

However, it is still unknown whether the SMBH binary would further decay and eventually
merge. This is one of the fundamental questions in astrophysics. The coalescence of two
SMBHs, possibly being the loudest GW event in the Universe, has received much attention
recently as we enter a new era of GW astronomy. In particular, Pulsar Timing Arrays
(PTAs) are expected to be a powerful tool to detect the GWs emitted during the inpiral and
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coalescence of SMBH binaries. Therefore, it is important to study formation and evolution
of SMBH binaries.

Generally speaking, the evolution of a SMBH binary involves three stages from its for-
mation to coalescence (Begelman et al., 1980). (i) As galaxies merge, SMBHs spiral to the
core regions of the merged galaxies due to dynamical friction and form binaries. (ii) As
the orbit shrinks, dynamical friction becomes inefficient and three-body interactions with
surrounding stars or other orbiting BHs can cause the orbit of the SMBH binary to further
decay. Viscous torques from a surrounding circumbinary disk can also play a role at this
stage in a wet merger (e.g Mayer et al., 2007; Lodato et al., 2009; Mayer, 2013; Tang et
al., 2017). (iii) Finally, at small enough separations, GW emission takes over, driving the
SMBHs to merge. Whether or not SMBHs can merge is mostly determined by how smoothly
and rapidly a transition from (i) to (iii) takes place13.

In order for such transition to occur in less than the Hubble time, there must be a sufficient
number of central stars to extract the orbital energy of the SMBH binary until it enters the
GW-dominated regime. However, as the binary becomes more tightly bound, a significant
fraction of stars are ejected, leaving behind empty phase space regions (the so-called empty
“loss cone”) around the binary with no stars remaining to interact with. The empty loss
cone is replenished by dynamical processes, the simplest of which is two-body relaxation.
Given the long relaxation time in the nuclei of bright elliptical galaxies (& 10 Gyr, Merritt
& Wang 2005; Merritt et al. 2010), once the loss cone is cleared out, it is unlikely that it
can be refilled fast enough - via two-body relaxation - to merge within a Hubble time. This
may stall the SMBH binary at parsec scales, and is famously known as the “final parsec
problem” (Milosavljević & Merritt, 2003). However, alternative dynamical mechanisms for
sufficiently fast loss cone repopulation have been proposed, such as enhanced stellar flux into
the core regions in non- spherical (triaxial or axisymmetric) nuclei (e.g Yu, 2002; Gualandris
et al., 2017). Many studies have shown that some level of triaxiality is a characteristic of
galatic merger remnants (e.g Preto et al., 2011; Khan et al., 2011, 2016; Gualandris & Merritt,
2012b) and that triaxial potential-density configurations can be dynamically stable over long
timescales (e.g Poon & Merritt, 2002, 2004). This implies that aspherical geometries may
prevent SMBH stalling, and yield a quick transition from phase (i) to (iii). In other words,
SMBHs might coalesce on a shorter timescale than estimated assuming an empty loss cone.

However, it is also possible that the loss cone is not replenished efficiently. Because
of resolution limitations, most N -body simulations of the final parsec problem in galaxy
mergers are not likely converged (Vasiliev et al., 2014). More approximate Monte Carlo
studies indicate that while axisymmetric potentials cannot solve the final parsec problem,
realistic levels of triaxiality can (Vasiliev et al., 2015). However, triaxiality can erode over
time due to chaotic diffusion (Merritt & Valluri, 1996), and, particularly in minor mergers,
it is not clear that sufficient triaxiality is generated on small scales to refill the loss cone
in time. Furthermore, the core/cusp dichotomy in the surface brightness profiles of galactic
nuclei suggests that the (large) galaxies of greatest interest for pulsar timing efforts merge in
a preferentially gas-poor way (Faber et al., 1997; Lauer et al., 2005). Interestingly, Dvorkin &
Barausse (2017) suggest that in their extreme “nightmare scenario” in which SMBH binaries

13A bottleneck can arise earlier, in phase (i), for very small mass ratios q? � 1, when the dynamical
friction time exceeds the Hubble time (Taffoni et al., 2003).
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are assumed to stall and never complete their mergers, such a population of stalled binaries
would produce a stochastic GW background at lower frequencies that should be detectable
with PTAs .

The lack of theoretical consensus concerning solutions to the final parsec problem mo-
tivates us to consider the outcomes of stalled SMBH binaries in a cosmological context. If
a SMBH binary fails to merge before another BH makes it to the nucleus as a result of a
subsequent galaxy merger, multi-body interactions between the binary SMBH and the in-
coming BH will occur. Such triple BH interactions could be even more abundant at early
times if more numerous SMBHs were assembled earlier, possibly promoting the formation of
sufficiently compact binaries at high redshift which could merge by GW emission (Volonteri
et al., 2003). The intrusion of another BH into the SMBH binary system can enhance the
loss cone refilling rate by disturbing stellar orbits (Perets et al., 2007; Perets & Alexander,
2008). Moreover, chaotic, non-hierarchical three-body interactions tend to shrink the binary
semimajor axis and to increase the eccentricity of an initially circular binary (Valtonen &
Mikkola, 1991). If they form a hierarchical triple, the merger time of the inner binary can be
dramatically reduced due to eccentricity oscillations induced by the Kozai-Lidov mechanism
(Blaes et al., 2002). All of these effects likely accelerate the BH coalescence rate (Iwasawa et
al., 2006; Bonetti et al., 2017) as well as the ejection rate of (typically less massive) SMBHs
(Hoffman & Loeb, 2007). Ejection events - which can also occur due to GW recoil following
successful SMBH mergers (Bekenstein, 1973; Campanelli et al., 2007a) - are observationally
important for SMBH demographics (Schnittman, 2007; Kulkarni & Loeb, 2012). Under-
standing the outcomes of multiple SMBH interactions is therefore of great importance not
just for determining merger rates, but also cosmological SMBH evolution.

In order to gain an in-depth understanding of SMBH binary evolution, observations of
GWs using PTAs are crucial. There are currently three ongoing PTA groups, the North-
American Nanohertz Observatory for Gravitational Waves (NANOGrav, The NANOGrav
Collaboration et al. 2015), the European PTA (EPTA; Desvignes et al. 2016), and the
Parkes PTA (PPTA; Manchester et al. 2013). Their combined effort, the International PTA
(IPTA, Hobbs et al. 2010), recently released its first datasets (Verbiest et al., 2016). With
the duration of the observation T ∼ a few years to a few months and the observing cadence of
∆t ∼ a few weeks, the relevant frequency band is beween 1/T and 1/2∆t. This corresponds
to approximately nHz − µHz. This frequency range is comparable to that of GWs from
compact sub-parsec (0.01− 0.1 pc) SMBH binaries. This makes the SMBHs one of the most
promising astrophysical sources of GWs accessible to PTAs. A stochastic GW signal can
be described by its amplitude hc, also known as the characteristic strain. In particular, for
each individual SMBH binary in a circular orbit, it is easily shown that the strain scales as
hc(f) ∝ f−2/3, where f is the observed frequency (Phinney, 2001). The strain is usually
quoted at the frequency f = 1 yr−1, and then referred to as A (Jenet et al. 2006; Eq. 103 of
this paper). The stochastic GWB from massive BH mergers has been extensively examined
via semi-analytical (e.g Wyithe & Loeb, 2003; Ravi et al., 2014) or Monte Carlo approaches
(e.g Sesana et al., 2009; McWilliams et al., 2014; Kulier et al., 2015; Kelley et al., 2017), and
it is typically estimated that A ' (0.1 − 6) × 10−15. However, so far, most of the studies
have relied on the galaxy (or dark matter halo) merger history (merger rate and merger mass
ratio) and assumed that the SMBH coalescence rates track the galaxy merger rates.

In this paper we adopt a dynamical approach to SMBH orbital evolution following merg-
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ers, and we use it to estimate BH merger rates for both the full and the empty loss cone sce-
narios. Given the merger histories of galaxy samples in a mass range M? = 1010 − 1012 M�,
for 0 < z < 4, from the Millennium simulation (Springel, White, et al., 2005), we follow
the evolution of SMBH binaries and their coalescences as the host galaxies go through mi-
nor/major mergers. Based on the inferred merger rates, we then predict the stochastic GW
background. Our work is a first attempt to compute the global GWB by using few-body
simulations to follow the dynamical evolution of multiple SMBH systems as a consequence
of multiple galaxy mergers with a broad range of mass ratios (10−4 < q? < 1, where q? is the
mass ratio of two merging galaxies, defined to be smaller than 1). We explore two extreme
scenarios for the last stage of the decay of a hard binary to bracket the range of outcomes
to the final parsec problem: the full loss cone and the empty loss cone limits. In the empty
loss cone case, dynamical friction no longer affects the evolution of the orbits when binaries
become hard. We treat the full loss cone case in a more approximate way, assuming that
dynamical friction always operates efficiently to cause orbital decay down to the merger.
This is merely an approximation to the more complex physics of stellar scattering in the
full loss cone regime (and furthermore neglects hydrodynamical solutions to the final parsec
problem), but as we argue later, it is a reasonable approximation for high mass-ratio systems.

In our suites of simulations, we find that SMBH binaries merge in both scenarios, but
with higher coalescence rates in the full loss cone case than in the empty loss cone one. In
the full loss cone model, when GW-driven evolution becomes more dominant, the binary
eccentricities are almost unity (e > 0.99), confirming some past predictions Quinlan (1996);
Antonini & Merritt (2012). Subsequently, SMBH binaries coalesce rapidly (binary lifetimes
. 1 Gyr). On the other hand, in the empty loss cone model, multi-body interactions of
SMBHs play an important role in the decaying and coalescing of SMBH binaries. The
binary lifetimes are longer (& 1 Gyr). Using the inferred BH coalescence rates, we estimate
A between the two models, A = 0.70 × 10−15 and A = 0.53 × 10−15 for the full loss cone
and the empty loss cone case, respectively. They are comparable because (i) the higher
coalescence rates of the full loss cone model come mostly from higher rates of low mass ratio
mergers that contribute little to the GWB; high mass ratio systems merge in both models,
(ii) more abundant and louder BH coalescence events at a later time (i.e. more massive
mergers via mass growth and multi−BH interactions at small z), and (iii) the larger mass
ratios of merged binaries, which increase the contributions of less massive binary mergers
(in less massive galaxies) to the stochastic background signal, relative to the full loss- cone
regime.

This paper is organized as follows. In §5.2, we explain our numerical setup including
galaxy sampling (§5.2.1) and describe our model galaxies (§5.3) and prescriptions for BH
mergers (§5.3.3 - 5.3.4). We present our results in §5.5. In §5.7, we estimate the stochastic
GWB and further discuss the effects of high eccentricity on GW spectra. Finally, we conclude
with a summary of our findings in §5.7.5.

5.2 Numerical Setup

In this section we describe the main ingredients of our galaxy/SMBH modelling. In par-
ticular, we detail how we select galaxy samples and how we treat galaxy mergers and the
consequent rearrangement in the background potentials of DM and stars. We also describe
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Figure 22: The fraction of galaxies that experience mergers (solid line with circles) with
a given galaxy merger mass ratio q?. We distinguish the host galaxies by the number of
significant mergers (q? > 0.01): the host galaxies with one significant merger (dotted line
with squares) and those with multiple significant mergers (dotted line with triangles). Note
that, while the lines for the galaxies experiencing no significant merger are not drawn, their
contributions are included in the total fractions.

how we take into account the formation of SMBH binaries and how we define a BH merger.

5.2.1 Sampling of dark matter and galaxy merger trees

We follow merger trees of DM subhalos sampled from the Milli-Millennium simulation
(Springel, White, et al., 2005)14. The Millennium simulation 15 is a large N -body simula-
tion of cosmological structure formation performed with the GADGET-2 code assuming the
standard ΛCDM cosmology with the cosmological parameters of σm = 0.25, σb = 0.045, σλ =
0.75, h = 0.73 and σ8 = 0.9. The simulation follows the evolution of N ≈ 1010 particles in a
periodic box of 500 h−1Mpc on a side from z = 127 to z = 0. The simulation provides a total
of 64 snapshots at redshifts from z ≈ 20 to z = 0, equally spaced in log(1 + z). Throughout
this paper, we assume that each DM halo hosts a galaxy whose mass is proportional to that

14http://gavo.mpa-garching.mpg.de/Millennium/
15There has been much progress in cosmological simulations since the Millennium: More advanced numer-

ical techniques have been used in several simulations, such as ‘Illustris‘ (Vogelsberger et al., 2014). Those
simulations have successfully captured complicated effects induced by mutual interactions between gas, stars,
DM and even BHs, which could not be achieved in DM-only simulations like the Millennium. However, the
general physical picture should be shared by all those simulations, in particular the treatment of DM/galaxy
mergers (e.g Rodriguez-Gomez et al., 2015), which is one of our main model ingredients. For the pur-
pose of our study, the Millennium simulation allows us more freedom to choose/implement different model
ingredients under the same physical framework of galaxy formation.
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of the DM halo.
For galaxies at z = 0 (denoted by “host” galaxy) in the Millennium simulation, we follow

the merger history of each host galaxy assuming a SMBH seed located at the center, from the
past (z > 0) to the present day (z = 0). We will describe the detailed prescriptions for seed
SMBHs in §5.3.3. The total number of the sampled host galaxies is 212. We consider galaxy
mergers in each tree up to 10 - 12 for each host galaxy. This amounts to a total of 1733
galaxy mergers. The stellar masses of the host galaxies (the scaling relation 1 in §5.3.1) range
within M? = 1010− 1012 M�

16 (corresponding to virial masses of the host dark matter halos
ranging from MDM,host = 1012 − 1014 M� ). The earliest galaxy merger occurs at redshift
z = 3.58 (or a cosmic time of t = 1.76 Gyr) and z = 4.18 (cosmic time of t = 1.47 Gyr)
for host galaxies in the mass ranges of M? = 1011 − 1012 M� and M? = 1010 − 1011 M�,
respectively. In this paper, we refer to (smaller) galaxies merging with the host galaxies as
“satellite” galaxies of mass M?,sat. The galaxy merger ratio q? between the satellite and host
galaxy is defined to be smaller than 1, namely q? = M?,sat/M?,host.

In Figure 22, we show the fraction of galaxies that go through mergers (solid line with
circles) with a given q?. We sub-categorize the host galaxies into two bins depending on
the number of significant mergers (q? > 0.01) 17 they experience: the host galaxies with one
significant merger and those with multiple significant mergers. We find that mergers with
q? < 0.01 are more common for galaxies of M? = 1011 − 1012 M� (the maximum count at
q? ∼ 3 × 10−3). For galaxies of M? = 1010 − 1011 M�, the most frequent are mergers of
q? ∼ 3× 10−2 and the q? distributions have shorter low-q? tails. In addition, we can see that
the majority of the host galaxies of M? = 1010 − 1011 M� experience more than two major
mergers. Therefore, all of these indicate that the merger mass ratio q? is generally higher for
less massive host galaxies. This may imply that SMBHs merge with relatively high rates in
galaxies of M? = 1010 − 1011 M� compared to more massive galaxies, which will be shown
in §5.6. We also summarize those merger counts in Table 11.

16In this paper, the subscript ? indicates physical quantities related to galaxies, while quantities with a
subscript “BH” or without one refer to the SMBHs. For example, we have galaxy masses M?, but BH masses
MBH. Similarly, galaxy merger mass ratios are indicated with q?, while BH binary mass ratios with q.

17Throughout this paper, we only use the terms “significant (q? > 0.01)”, “major (q? > 0.25)” and “minor
(q? < 0.25)” mergers to refer to galaxy mergers.
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We present in Figure 23 the average mass ratio q?, the merger rate per galaxy and the
merger fraction, as a function of redshift. The upper panel shows the merger mass ratios
averaged per Gyr as a function of redshift. It can be seen that the merger mass ratio is
generally higher for galaxies of M? = 1010− 1011 M�, independent of redshift. In the middle
panel we show the number of mergers per galaxy per Gyr. The thickness of the line represents
progressive, different cutoffs on the mass ratio: from the merger count without any cutoff
(thickest line) to the mergers of q? > 0.1 (thinnest line). In the bottom panel we present
the cumulative distribution of significant mergers in z, or the number fraction of significant
mergers integrated up to a given redshift.

5.3 Model description

In this section we describe our modelling of DM and galaxy potentials, as well as the treat-
ment of SMBHs, and in particular their seed masses, their orbital parameters at galaxy
mergers, and their mass growth. Furthermore, we describe our treatment of dynamical
friction and the BH merger conditions using two different prescriptions.

5.3.1 Dark matter and stellar distribution and seed BH mass

We model gas-poor galaxies with three components: DM, stars and SMBHs. As we follow
the merger histories of the host galaxies in the Millennium simulation, at every galaxy merger
DM and stellar potentials are re-established based on the new mass of the galaxy after the
merger.

We adopt the NFW profile for the DM density distribution ρDM with concentration
parameter C = 3 (e.g Van Wassenhove et al., 2014). For numerical convenience, we slightly
modify the inner region of the NFW profile (ρDM ∼ r−1) so that the DM density does not
exceed the stellar density at the very center of the galaxy core. This only affects the region
inside ∼ (10−3 − 10−4)rc, and does not appreciably affect our results.

We consider the stellar density distribution for merged galaxies explored in Stone &
Ostriker (2015):

ρ? =
ρc

(1 + r2/r2
c)(1 + r2/r2

h)
, (85)

where ρc is the central density, rc is the core radius and rh is the outer halo radius (or half-
mass radius). The profile has a flat central core in the innermost region (r < rc), smoothly
extending outward with ρ? ∝ r−2 for rc ≤ r < rh and ρ? ∝ r−4 for rh ≤ r.

The post-merger stellar density profile ρ?(r) of a merged galaxy is more complex than
this idealized model, but our choice of ρ?(r) is motivated by observations of large elliptical
galaxies that are likely the primary hosts of PTA sources. Specifically, Hubble Space Telescope
(HST) observations of the nuclear regions of nearby early type galaxies find a bimodality
in surface brightness profiles I(R) (here R is a projected 2D radius, as opposed to the 3D
radial coordinate r). When power law profiles are fit to the inner isophotes of HST data,
i.e. I(R) ∝ R−Γ, the resulting Γ distribution is strongly bimodal, with most galaxies having
either 0 < Γ < 0.3 or 0.5 < Γ < 0.9 (Lauer et al., 2005). The former type of galactic nucleus,
known as a “core” profile, is dominant among galaxies brighter than MV ≈ −20 (Graham et
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al., 2003; Graham & Guzmán, 2003), and is roughly consistent with the flat inner slope one
obtains by projecting Equation 85.

Flat cores in surface brightness profiles could be created by the dynamical effects of SMBH
binaries. In the aftermath of a galaxy merger, hosted SMBHs are effectively dragged towards
the centre of the merged galaxies by dynamical friction, and eventually form a binary. The
binary acts as a heating source as its orbit shrinks, pumping the lost energy to the background
stellar populations. The deposition of the binary’s orbital energy can scour out a flat core
of stars in the inner region, creating a mass deficit relative to the initially steeper density
profile (e.g. see Chapter 7 in Merritt, 2013, and references therein). The creation of flat
cores by SMBH binaries has been confirmed in numerical simulations (e.g. Merritt, 2006;
Gualandris & Merritt, 2012b; Kulkarni & Loeb, 2012; Bortolas et al., 2016). Furthermore,
stellar scouring has been inferred in a number of core elliptical galaxies from observations
(e.g. Thomas et al., 2014), and is widely predicted in numerical studies (e.g. Milosavljević
& Merritt, 2001; Kormendy & Ho, 2013). Although both dynamical friction and three-body
stellar scatterings contribute to core creation in the vicinity of an SMBH binary, we only
include the former (Ebisuzaki et al., 1991) in our model18. We discuss limitations of our
simple treatment of phase (ii) later in this section.

For a given DM halo mass MDM,host at redshift z, the DM density distribution is com-
pletely determined. However, we have three free parameters for the stellar potential to be
fixed, namely, rc, rh and ρc. In order to fix those parameters as well as the seed SMBH mass,
we solely depend on four observational scaling relations:

1. MDM −M? relation :
(

MDM

1013 M�

)
= 0.50

(
M?

1011 M�

)
(Lin et al., 2012; Kulier et al., 2015)

2. MBH −M? relation :
(

MBH

109 M�

)
= 0.49

(
M?

1011 M�

)1.16

(Kormendy & Ho, 2013)

3. MBH − σ relation :
(

MBH

109 M�

)
= 0.309

(
σ

200 km s−1

)4.38
(Kormendy & Ho, 2013)

4. MBH − rc relation :
(

rc
kpc

)
= 0.0821

(
MBH

109 M�

)0.855

(Thomas et al., 2016),

We note that we ignore the scatter in the above relations, assuming them to be exact. 19

While the general MDM−M? relation is more complicated than our prescription (e.g Moster
et al., 2013), a single power law is a reasonable approximation to the high mass end of this
relation that we focus on. With these relations, the DM, the stellar distributions, and the
seed SMBH mass are determined given the DM halo mass. In particular, we assume that
central SMBHs are missing in galaxies of M? < 108 M�, which correspond to the minimum

18The anisotropic emission of GWs (or “gravitational rocket effect”) during the final coalescence of two
SMBHs may also produce a mass deficit in galactic nuclei (Merritt et al., 2004; Gualandris & Merritt, 2008)
following recoil of the merged SMBH, but we neglect this in our model.

19Taking into account scatter and the impact of different choices of the SMBH-galaxy relation to populate
SMBHs may overly introduce complexities to our analysis. For simplicity, we neglect scatter in galaxy scaling
relations used in our model. However, this issue has been addressed before, for example in (Shankar et al.,
2016; Sesana et al., 2016; Rasskazov & Merritt, 2017).
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Figure 24: The evolution of stellar mass (M?), central BH mass (central MBH) and core mass
(Mc) (top-left), core density ρc (top-right), σ? (bottom-left) and two characteristic radii rh and
rc (bottom-right) of one massive galaxy among the sampled galaxies. We show those variables
as determined only by the scaling relations (dotted lines) as well as when the heating effect
due to dynamical friction is additionally taken into account (solid lines). The host galaxy
grows via 9 mergers from M? ' 1010 M� at z = 2.8 (t = 2 Gyr) to M? ' 3×1011 M� at z = 0
(t = 13.8 Gyr). The mass of the central (most massive) BH has reached MBH ' 109 M� at
z = 0. Overall, the core swells (rc and Mc) as M? increases, but ρc declines.
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BH mass MBH = 105.5 M� in our simulations. For mergers with such small galaxies, we
simply add the masses of the small galaxies to the host galaxy masses without placing the
seed SMBHs. Those small galaxies occupy around 1% of the total number of satellite galaxies
for all galaxy mass ranges.

In order to see how the stellar potential evolves as the total stellar mass increases, we
express rc, the core stellar mass Mc and ρc in terms of M?:

rc ∝M0.99
? , (86)

Mc ∝M1.52
? , (87)

ρc ∝M−1.46
? . (88)

The relations are derived in Appendix B and imply that as galaxies (DM subhalos) grow
in mass, the core regions expands in size and mass whereas the core density declines (Dullo
& Graham, 2014). Even though the dependencies on M? differ, those trends are consistent
with those of Faber et al. (1997), i.e. rc ∼ M0.92

? , Mc ∼ M1.24
? and ρc ∼ M−1.52

? . As an
example, in Figure 24 we show the evolution of M?, the central BH mass and Mc, ρc, σ? and
rh and rc of one of the more massive galaxies in our sample. In the plots, we show those
variables as determined only by the scaling relations as well as when the heating effect due
to dynamical friction (see below) is additionally taken into account. The host galaxy grows
via 9 mergers from M? ' 1010 M� at z = 2.8 (t = 2 Gyr) to M? ' 3 × 1011 M� at z = 0
(t = 13.8 Gyr). The mass of the central (most massive) BH has reached MBH ' 109 M� at
z = 0. As expected, the core swells (rc and Mc) as M? increases, but ρc declines. Notice
that rh has a relatively weak dependence on Mc compared to rc, i.e., rh ∼M0.47

? . We go into
greater detail on evolutionary deviations due to heating effects and the prescription for BH
mass growth in the following section (§ 5.3.2).

We provide in Table 13 in Appendix B the scaling relations between the relevant variables
in our model in terms of MBH (as well as MDM), derived with the four scaling relations 1-4.

5.3.2 Evolution of DM and galaxy potential and BH mass growth

As galaxies merge, DM and stellar potentials evolve in time. For the DM potential, we
interpolate the DM halo masses between two adjacent galaxy mergers (or two different red-
shifts or snapshots at mergers) in the Millennium simulation. In particular, we use a fitting
formula derived by Wechsler et al. (2002), which can be written as follows,

MDM(z) = MDM,0 exp

[
−∆

(
z + 1

z0 + 1
− 1

)]
, (89)

where z0 is the redshift when a halo is observed. Here, we assume z0 to be the same as the
redshift at which two halos merge in the Millennium simulation. Therefore, given the mass
of a merged halo (or merged galaxy) at z = z0 and the subsequent merger at z = z1, we
determine ∆20. In the Millennium simulation, DM halos typically grow in mass from one

20More explicitly, ∆ is expressed in Wechsler et al. (2002) as S/(1 + zc), where zc is the redshift at which
the halo collapses and S is a characteristic factor which relates the accretion rates of halos.

105



merger to the following merger. However, there are also cases where the DM halo masses at
subsequent mergers are found to be smaller. On average, sampled host galaxies experience
such decreases in mass once in their merger histories. This could be caused by several
mechanisms, and in particular tidal stripping. But the precise cause cannot be determined
from the information provided in the snapshots alone. In this paper, for such cases, we
conservatively assume that DM halo masses do not change between the two mergers, but we
update the halo masses accordingly at the later merger. In addition to the growth of DM
halos, we also take into account the widening of the stellar potential due to the “scouring
effect” (Milosavljević et al., 2002; Merritt, 2006) of SMBH binaries as a result of dynamical
friction. As the orbits of SMBH binaries shrink, they lose their energy to background stars,
which will clear out some stars onto wider orbits. To quantify this effect on the stellar
potential 21 we compute, at every time step ∆t, the dissipative energy Edis,i due to the
dynamical friction force f df,i (see Equation 97) for the ith BH moving at velocity vi,

Edis =
∑
i

|f df,i · v i|∆t. (90)

Hence we deposit Edis into the virialized stellar potential assuming the total mass of stars M?

is fixed and the three-parameter structure of the density distribution is maintained. By the
virial theorem, the total potential energy of stars W? can be expressed in terms of the total
binding energy of stars E?, the dissipative energy Edis and the virially averaged dispersion
σ? as follows,

−W? = −2(E? + Edis) = M?σ
2
?. (91)

Stone & Ostriker (2015) provide the explicit expressions for the total potential energy W?

(Equation 8) and M? (Equation 5) in terms of ρc, rc, rh and σ?. With the scaling relations
1-4, we can then estimate the adjusted values of ρc, rc and rh, and update them accordingly
at every time step. Given W?, E? < 0, the scouring effect produces an expansion of the
characteristic size of the potential (rc and rh), while lowering the core density ρc, as shown
in Figure 24. However, note that the decrease in the core density is accompanied by mass
growth of the galaxies.

In our simulations, the masses of the central BHs increase such that MBH − σ (scaling
relation iii) is always satisfied. The central BHs are defined in this paper as BHs whose entire
orbits (either with respect to galaxy potential or in binaries with other BHs) are confined to
the core. If BHs only temporarily stay in the core region at their closest approach (pericentre)
to the origin, they are not identified as central BHs. In our simulations, we find that the
central BHs typically include the most massive BHs (denoted by BH1 and their masses
MBH,1) and the BHs forming bound pairs with BH1. The total mass of the central BHs
(denoted by McBH) is mostly dominated by MBH,1. If the BH mass required by MBH − σ
(denoted by MBH,σ? where σ? is the virially averaged dispersion defined in Equation 91 22)

21Our treatment of scouring only alters the stellar, not the DM, density profile. However, our results are
not significantly affected by whether or not the DM density profile is influenced by scouring effects since the
stellar potential is dominant near the core regions where binaries and multiple BHs interact.

22 Note that the variable σ used in the MBH − σ relation may not have exactly the same meaning as σ?
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is already smaller than McBH, the mass of each central BH stays the same. On the other
hand, for MBH,σ? > McBH, given the mass MBH,i of each central BHi at a certain time step,
the mass of the BHi at the following time step M ′

BH,i increases by a factor of MBH,σ?/McBH,
or simply,

M ′
BH,i = MBH,i

MBH,σ?

McBH

. (92)

With this crude approximation for mass growth through gas accretion we ensure that the
masses of the central BHs are maintained at realistic values. On the other hand, whenever
the central massive BHs are missing in the core regions, given the mass reservoir in these
regions, the masses of other small BHs, which fall into the core later or have already existed,
could grow rapidly up to masses comparable to the missing central BHs. In particular, in our
models assuming instantaneous formations of post-merger galaxies, this can take place while
the central BHs are dislocated off center at galaxy mergers. Only two such cases occurred
in our simulation suite, and to be conservative, we exclude the contribution of these to the
GWB (see §5.7).

5.3.3 Initial orbital parameters of SMBHs at galaxy mergers

In hierarchical models of structure formation in cosmology, DM halos grow via mergers as well
as accretion of DM. During the process of merging, the orbital properties of infalling satellite
halos have been investigated in many studies. Recent cosmological N -body simulations
show that two halos typically merge on almost parabolic orbits with large eccentricity for
various ranges of the halo mass, mass ratio and redshift (Benson, 2005; Khochfar & Burkert,
2006; Wetzel, 2011; Jiang et al., 2015). Additionally, studies of SMBH binary formation in
merging galaxies generally assume such radial orbits for infalling SMBHs as initial conditions
(Kulkarni & Loeb, 2012; Van Wassenhove et al., 2014; Capelo et al., 2015). Motivated
by those studies, we also assume the initial orbits of incoming BHs with respect to the
merged galaxy potential to be highly eccentric. In particular, we adopt a fitting formula
for the eccentricity given in Wetzel (2011). Using cosmological N -body simulations, Wetzel
(2011) investigated the orbital parameters of infalling satellite halos and their dependences
on the halo mass and redshift. The author provides a simple functional form of the orbital
distribution of the satellite circularity η for z = 0− 5 and MDM,host = (1010 − 1015)h−1 M�.
The distribution of the circularity df/dη adopted in this study is expressed as follows,

df

dη
= 3.38

(
1 + 0.567

[
MDM,host

M0

]0.152
)

× η1.05(1− η)
0.242

(
1+2.36

[
MDM,host

M0

]0.108)
, (93)

of the virially averaged dispersion. However, considering systematic uncertainties in the dispersion measure
(Tremaine et al., 2002), we conservatively assume the virially averaged value of σ? as a representative for
the dispersion of the host galaxy. Stone & Ostriker (2015) show that the virially averaged dispersion is
comparable to the central dispersion for rh � rc.
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where η =
√

1− e2 and log[M0/h
−1 M�] = 12.42 − 1.56z + 0.038z2. We estimate the

eccentricity using e = (ra− rp)/(ra + rp), where ra and rp are the apocentric and pericentric
distances of BH orbits, respectively, with respect to the galactic potential. For simplicity,
the initial eccentricity is given in the simulations as the peak value of the fitting formula,
e ' 0.8− 0.9 at mergers.

For a merger between a host galaxy already hosting several BHs (BHi with i ≥ 1) and
an incoming jth satellite galaxy, we assume only one BH per satellite galaxy but we allow
multiple mergers at the same redshift (i.e., j ≥ 1). In the Millennium simulation, when more
than two galaxies disappear from one snapshot to the next one, we assume that they merge
with the host galaxy at the same time. For galaxy mergers at a given redshift, we find a
post-merger galaxy system of a pre-existing BH cluster in a host galaxy and incoming BHs
in satellite galaxies; these are found at the apocenter of their instantaneous orbits in the new
spherical post-merger potential, re-established around the center of mass (CoM) of all BHs.
The CoM of the pre-existing BH cluster and each of the incoming BHs are separated by
r ∼ rh

23. For the given initial positions (i.e., the apocenters of the initial orbits), the initial
velocities are assigned to give highly eccentric orbits as above. Finally, the positions and
velocities of BHs in host galaxies (xBH′

host,i,v
BH′

host,i) and in the jth satellite galaxy (xBH′
sat,j,v

BH′
sat,j)

are expressed for any number of mergers (j ≥ 1) at a given redshift as follows,

xBH′

host,i = xBH
host,i +

∑
jM?,j

M?,host +
∑

jM?,j

× rhx̂
BH
host,i

xBH′

sat,j =
M?,host

M?,host +
∑

jM?,j

× rhx̂
BH
sat,j

vBH′

host,i = vBH
host,i × ξ(q, n) +

√
GMen(r < xBH′

host,i)

xBH′
host,i

(1− e)α× v̂BH
host,i

vBH′

sat,j =

√
GMen(r < xBH′

sat,j)

xBH′
sat,j

(1− e)α× v̂BH
sat,j ,

where xi and vi (without prime symbol) are the position and velocity vectors of BHi just
before mergers, and x̂i and v̂i are the randomly-generated unit vectors, satisfying x̂i ⊥ v̂i
(same for j as well). Men(r < x′) is the enclosed mass inside of r = x′ and α is a factor
used to assign the eccentricity for the first orbit in a non-Keplerian potential (See equation
85). We conservatively use α ' 1/5 for the eccentricity ranges given by Equation 93, i.e.,
e > 0.8 24. Here, we introduce a function ξ(q, n) to quantify the extent by which a host
galaxy is disrupted by a merger. We define the function ξ(q, n) as a degree of memory for

23Note that for multiple mergers (j ≥ 2), the separation between the two BH systems is not exactly rh since
they are not aligned on a line, but rather spread on a 2−dimensional plane (j = 2) or in a 3−dimensional
space (j ≥ 3).

24For the same velocity (not the circular velocity) at the same apocenter, the first pericenter distances are
different in the Keplerian and Non-Keplerian potentials (i.e., different eccentricities). Therefore, some extra
factor should be taken into account in the expression for v at apocenter in the Keperian potential. The value
of α taken in this paper is comparable to that for the logarithmic potential (ρ ∼ r−2) (Innanen et al., 1982).
Recall that our stellar density approximately follows ρ ∼ r−2 at r < rh.
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the orbits of existing BHs in the host galaxies at given mergers, scaling from 0 (complete loss
of memory) to 1 (complete retention of memory). Motivated by the considerations below,
we define ξ(q, n) assuming the following functional form,

ξ(q, n) ≡
∣∣∣∣qn − 1

qn + 1

∣∣∣∣ , (94)

where q =
∑

jM?,j/M?,host. During the process of merger, it is more likely that the system
of host galaxies is disrupted by mergers of high q. In other words, as they go through major
mergers, the host galaxies lose memory of the dynamics before the mergers (ξ ' 0 for q → 1).
BHs in the host galaxies, however, are less influenced by minor mergers, possibly keeping
more memory of the dynamics (ξ ' 1 for q → 0). n is meant to inform how much the
dynamics of BHs in the host halo is affected by a given galaxy merger. For this study, we
conservatively take n = 1. We hope that a more precise functional form will be found in
future studies.

We note that with the prescriptions for v and the assumption of instantaneous formation
of post-merger galaxies, the orbits of pre-existing BHs become possibly either more radial or
more circularized at mergers. We further note that it is possible that BHs could escape from
the potential or their apocenters could become significantly larger than rh if they happened
to gain sufficient kinetic energies at mergers. However, in our simulations, we could not find
such cases.

5.3.4 BH merger conditions

The fate of the SMBHs after galaxy mergers is still not fully understood, with uncertainties
remaining on whether SMBH mergers do occur, and on which timescale. However, under the
assumption that SMBHs do eventually merge, it is important to estimate how frequently they
do so given the merger histories of the host galaxies. At large separations, dynamical friction
plays a dominant role in bringing two massive BHs together to form a bound binary. As they
become more tightly bound, a significant amount of stars may be ejected, leaving behind
an empty loss cone. Given the long relaxation time in the nuclei of early-type galaxies
(∼ 10 Gyr, Merritt 2006), once the stars are cleared out, it is unlikely that collisional
processes can refill the loss cone before z = 0. Many alternative mechanisms to solve the
final parsec problem exist, from nuclear triaxiality to circumbinary disks (see §5.1). Treating
all of these mechanisms in a self-consistent way is far beyond the scope of this paper, which
primarily aims at studying the role of multi-SMBH interactions in the solution of the final
parsec problem. We therefore focus only on dynamical friction and multi-SMBH encounters
as drivers of orbital evolution.

We consider two extreme scenarios for dynamical friction. In our fiducial model, we
assume dynamical friction stops affecting SMBH orbits once binaries become sufficiently
tight. We refer to this as the “empty loss cone model”, or “ELC-model” for short. In
the ELC-model, if binaries satisfy any of the following conditions, dynamical friction is
deactivated:

1. Hard binary: when the semimajor axis of the BH binary is smaller than the hard
semimajor axis ah, or a < ah = Gµ/4σ2

? (µ is the reduced mass of the binary);
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2. Fast-moving stars: when the speeds of the BHs are slower than the local circular
velocity, or v <

√
G[Men(r) +MBH(r)]/r;

3. Inside the influence radius rin = 2GMBH,1/σ
2
? (where MBH,1 is the primary BH mass):

when a less massive BH in a binary is inside the influence radius of a more massive BH
but no 3rd BH is inside rin.

The ELC-model is meant to investigate multi-SMBH interactions as a “mechanism of last
resort” for solving the final parsec problem in massive galaxies where alternative solutions
are likely to be less reliable.

In our alternative scenario, we assume that dynamical friction always play a role until
binaries merge. We refer to this case as “full loss cone model” or simply “FLC-model” 25.
We emphasize that our FLC-model assumes full loss cones and the standard Chandrasekhar
formula (see Equation 97) as a valid way to evaluate dynamical friction for hard binaries
in the full loss cone regime. The standard Chandrasekhar formula was derived under the
assumption of non-accelerated/linear motion in a uniform density distribution. When a bi-
nary enters the hard-binary regime, as the gravity from the second binary becomes more
important, those assumptions of the dynamical friction formula may not be valid any more.
However, by continuing to use the usual dynamical friction formula in the FLC-model down
to the GW-driven regime, we ignore these corrections. We discuss the analytic validity, as
well as the limits and caveats of full loss cone assumption in more detail later. In spite of our
approximated treatments, it captures one very important, and unexplored effect: the stochas-
tic GWB from a cosmologically motivated population of high-eccentricity SMBH inspirals.
When dynamical friction acts on a satellite SMBH with q � 1 in a Keplerian potential
and a relatively flat density profile, the orbit becomes increasingly eccentric (Antonini &
Merritt, 2012). In some portions of the parameter space, the final parsec problem can be
self-consistently bypassed by eccentric dynamical friction effects. Specifically, for ah � rin

and sufficiently small q, the secondary’s pericenter will decrease much more rapidly than
its apocenter, allowing it to bypass the final parsec problem altogether by using apocentric
interactions as a sink for angular momentum at roughly fixed energy. We analyze this effect
in greater detail in later sections.

Together, these two models allow us to separately explore the role of dynamical friction
(FLC-model) and that of possible three-body interactions (ELC-model) on BH mergers,
especially merger rates and stochastic GWB. To proceed further, it is very important to
establish a proper criterion for BH mergers. Given our two limiting treatments for dynamical
friction, we adopt two physically motivated, but distinct merger conditions for BH mergers.
We assume that BHs merge under the following conditions:

1. When dynamical friction is not zero (fdf 6= 0):
If gravitational wave (GW) emission becomes efficient (PGW > Pdf) over multiple orbits,
the binary is declared as a merged BH when the decay time due to GW emissions is
shorter than the dynamical time scale tdyn.

25This model name, as well as the assumptions behind this model, may be overly idealized. However,
our strategy here is to anchor our two models as extreme, but physically possible end limits for BH merger
scenarios.
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2. When dynamical friction is zero (fdf = 0):
If the decay time due to GW is shorter than the time left until the next galaxy merger
and tdyn, the binary is declared as a merged BH.

3. For either fdf = 0 or fdf 6= 0:
If the Schwarzschild radii of two BHs overlap, the binary immediately merges. Simply:
r < rsch,1 +rsch,2, where r is the separation of two BHs and rsch is the BH Schwarzschild
radius.

The decay time due to GW emissions is evaluated as |a/ȧGW| using Equation (5.6) in Peters
(1964). The code computes, and updates at every time step, the decay time until merger. In
condition 1, P represents the dimensionless dissipative power and time scale for each force,
defined as PGW,df = f GW,df · v(Eb/tdyn)−1, where Eb is the orbital binding energy. In the
simulations, whether BHs would merge in the FLC-model is mostly decided by condition 1,
while in the ELC-model, by condition 2. Condition 3 may not even be relevant when two
BHs form binaries and merge without the help of other BHs (likely in the FLC-model), but
we include it to account for possible collision events in chaotic multi−BH interactions (the
ELC-model).

5.3.5 Gravitational wave recoils and remnant masses

When two SMBHs merge, the remnant BH gets a kick due to anisotropic emission of grav-
itational waves (Bekenstein, 1973; Fitchett & Detweiler, 1984; Favata et al., 2004). Recent
numerical simulations of general relativity have confirmed that the recoil velocities could be
as large as galactic escape velocities depending on progenitor spins and mass ratios (Cam-
panelli et al., 2007a,b; Lousto et al., 2010; Lousto & Zlochower, 2011). For such large kicks
(up to ∼ 5000 km s−1), the remnant BH could escape to infinity or end up orbiting in the
outskirts of the halo. If the kicks are not large enough to completely eject the remnant
BH, the BH may return to the core regions after temporarily being ejected, taking part in
interactions again with other BHs.

We implement the effects of the recoil kick in the simulations and take into account the
mass loss to gravitational radiation for the remnant BH using the analytic formulae with the
best-fit values given in Lousto et al. (2010), with random spin orientations and dimensionless
spin magnitudes chosen randomly between 0 and 0.9. We provide the detailed expressions
and prescriptions used in this study in Appendix A.

5.4 The equations of motion

Using a few-body code (see Ryu, Tanaka, & Perna 2016; Ryu et al. 2017a for code details), the
equations of motion and mass growth for each SMBH embedded in the evolving galaxies are
integrated. The motion of the BHs is determined by the following forces: (i) aN +aPN: their
mutual gravitational attraction including post-Newtonian terms up to 2.5th order, (ii) adf :
dynamical friction from the surrounding medium (stars+ DM), (iii) abg: the gravitational
pull of the background matter (stars+ DM) and (iv) amg: the deceleration due to BH mass
increase with momentum conserved. The resulting equation of motion for the ith BH includes
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the sum of the five forces:

a i = aN,i + aPN,i + adf,i + abg,i + amg,i (95)

Given the solutions of the equation of motion at every time step, we update the positions
and velocities for each BH and the evolution of galaxy potentials. We next describe each
contribution in detail.

1. Mutual gravitational forces between BHs
We calculate the standard Newtonian gravitational force aN as well as post-Newtonian
terms aPN,

agr = aN,i + aPN,i

= −
∑
j 6=i

G MBH,j
∂ Φ(rij)

∂ rij

r i − rj
rij

+ a1PN,i + a2PN,i + a2.5PN,i, (96)

where G is the gravitational constant, Φ is the pairwise gravitational potential, ri is
the displacement of the ith BH from the center of the host galaxy, and rij ≡ |ri − rj|.
In our numerical implementation, we adopt the Plummer softening kernel (e.g. Binney
& Tremaine, 1987) with softening length equivalent to the Schwarzschild radius for a
100 M� BH.

We include post-Newtonian terms aPN up to order 2.5, which account for the loss of
orbital energy and angular momentum via gravitational waves, but do not account for
spin-orbit or spin-spin coupling. The full expressions for these terms can be found in,
e.g., (Kupi et al., 2006).

2. Dynamical friction from background matter
When an object moves through a medium, it induces an overdensity of the medium,
or wake, behind it. The gravitational force due to the overdense region acts as a
dissipative drag on the object’s motion. In this study, we consider dynamical friction
due to both DM and stars.

For the DM contribution, we adopt the standard Chandrasekhar formula Binney &
Tremaine 1987,

adf,i = −4π ln Λ f(Xi)
G2MBH,i

v3
i

ρ(ri) v i, (97)

with

f(Xi) ≡ erf(Xi)−
2√
π
Xi exp

(
−X2

i

)
, (98)

where Xi ≡ vi/(
√

2σv). We use the circular velocity, defined as√
G[Men(r ≤ ri) +MBH(r ≤ ri)]/ri for σv. We do not include the contribution of stars

bound to infalling BHs in estimating dynamical friction. Again, Men(r ≤ ri) is the
enclosed mass (DM+stars) and MBH(r ≤ ri) is the total mass of BHs (including the
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i-th BH itself) inside r = ri. The expression for the enclosed mass of stars is given in
Stone & Ostriker (2015). We use ln Λ = 5 (Spinnato et al., 2003; Merritt, 2006) and
we take the sum of local densities of stars and DM for ρ, namely, ρ = ρ? + ρDM, at the
location of the i-th BH.

3. Gravitational force of the background matter
The background stars and DM exert an additional gravitational force on the BHs.
Because we assume a spherically symmetric density profile, this force points toward
the centre of the potential. It can be expressed as

abg,i = −G Men,i(r ≤ ri)

r3
i

ri, (99)

where ri is a vector pointing from the centre of the galaxy to the i-th BH.

4. Deceleration due to mass growth
We take into account the decrease in velocity due to mass growth (see §5.3.2). Assuming
BHs grow in mass in a spherically symmetric fashion, the i−th BH decelerates through
conservation of linear momentum,

amg,i = −M
′
BH,i −MBH,i

M ′
BH,i∆t

v i , (100)

where M ′
i is the increased mass estimated using Equation 92, and ∆t is the time step.

In summary, our simulations display several noticeable features: (i) we follow the merger
history of SMBH host galaxies as extracted from cosmological N -body simulations for 0 <
z < 4, across a wide range of merger mass ratios, 10−4 < q? < 1; (ii) we take into account
the evolution of the galactic potential (star+DM) in both physical size and depth as a result
of both galactic mass growth and core scouring from SMBH binaries; (iii) we explore two
different models, the empty and full loss cones. These two extreme assumptions plausibly
bracket the true evolution of binary BHs close to their merger. In addition, they allow us
to clearly isolate the importance of multi-body BH interactions between BHs at coalescence.
We show this by estimating the BH merger rates and the GWB independently for the two
models.

5.5 Results

In this section we present the binary lifetimes of merged BHs and their merger rates for the
two models (FLC and ELC). Additionally, given the merger rates, we infer the characteristic
GW amplitude hc. Given the eccentricities found in our simulations, we show how hc for
eccentric orbits deviates from that for circular orbits.
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5.5.1 Dynamical features

1. FLC-model

In the FLC-model, the birth eccentricities of the binaries are moderate (e & 0.4).
These are lower than the eccentricities assigned to BHs as initial conditions (see Equa-
tion 93). This is because inspiralling BHs experience the strongest dynamical friction
forces (prior to binary formation) at pericenter (near denser core region), leading to
orbital circularization. Given that the density profile adopted in this study approxi-
mately follows ρ ∼ r−2 at rc < r < rh, this is consistent with the eccentricity evolu-
tion of BHs in an isothermal density profile decaying towards the core shown in Ryu,
Tanaka, Perna, & Haiman (2016) (see their Figure 7). Once a binary forms, however,
orbital eccentricities increase rapidly due to dynamical friction. At the point when GW
emission becomes the dominant driver of orbital decay, eccentricities can reach up to
e > 0.99 and semimajor axes down to a ∼ 0.01− 1 pc.

We emphasize here that the evolution of the eccentricities in the FLC model likely
represents the most extreme scenario of eccentricity evolution. Accounting for stel-
lar 3-body scatterings would likely moderate the increase in eccentricity we observe.
Hence, the eccentricity at which GW emission takes over may not be as high as that
found in this study. Indeed, the eccentricities of compact binaries in our simulations
tend to be higher than those found in some previous numerical works with large N -
body simulations (e.g. Berentzen et al., 2009; Khan et al., 2011; Preto et al., 2011),
even though a qualitatively similar increase in eccentricity has been seen in those stud-
ies. Since a long-term “full” loss cone in large N -body simulations cannot be easily
achieved, the binary evolutions found in their studies may correspond to intermediate
regimes bracketed by our two models. For example, Berentzen et al. (2009) studied the
evolution of SMBH binaries, focusing on the interactions with surrounding stars. In
the eccentricity evolutions shown in their examples, we can see a rapid increase right
after binary formation, followed by a relatively gradual rise. This may be due to quick
depletion of the initially full loss cone reported in their paper, as noted above, possibly
corresponding to a regime in between our two models.

We show in Figure 25 the distribution of the eccentricities of binaries in the FLC-model
which will eventually merge, as a function of the mass ratio q. The eccentricities are
evaluated at the time when GWs become more efficient. For such eccentric binaries, the
decay time (Peters, 1964) is short (typically, tdecay < 108 yr). Considering the galaxy
merger time scale of ∼ 1 Gyr and the long infall times for BHs to reach the core, this
means coalescences of BHs may occur even before a 3rd BH can arrive. Indeed, in
almost all of our FLC-model simulations, incoming BHs which can reach the core form
binaries with the central BH, and subsequently merge on a short time scale. Of course,
our FLC-model orbital evolution is quite approximate in that it neglects hardening via
three-body interactions with surrounding stars. This approximation is only justified
in the subset of parameter space where a radializing binary orbit (inside the primary
influence radius) can keep its apocenter outside the hard radius ah. In other words, the
final parsec problem can only be bypassed when rp,GW > a(1− e) and, simultaneously,
a > ah. Here rp,GW is the maximum pericenter for which a SMBH binary will merge
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in a Hubble time tH. Combining these two inequalities gives a necessary condition for
this bypass to occur, which is

q3/4

(1 + q)5/4
<

4σ2
?

c

(
85tH

3GMBH,1c

)1/4

(1− e2)−7/8. (101)

Green curves illustrating this inequality are shown for different primary SMBH masses
in Fig. 25. Most of the mergers we simulate are at sufficiently low mass ratio that our
simulations of high-eccentricity coalescence are self-consistent. However, we caution
that Equation 101 is a necessary, not a sufficient, criterion for an eccentric bypass of
the final parsec problem (see also the discussion of Antonini & Merritt 2012). Whether
or not an individual secondary BH can make use of this route to coalescence depends on
its initial eccentricity and on the role of three-body scatterings with stars. In addition,
the degree of nuclear rotation can affect whether or not they circularize or radialize
(e.g Rasskazov & Merritt, 2017; Mirza et al., 2017).

If binary lifetimes are sufficiently short that BHs coalesce before another BH makes it
to the core, then BH merger rates and infall timescales of incoming BHs should have an
inverse correlation. Given the shorter infall times of the more massive BHs, BH merger
rates should hence increase as q? increases. We confirm this relation in Figure 26. The
plot shows the fraction of galaxy mergers of mass ratio q?, for which the central BHs
are able to coalesce up to z = 0 in our simulations. A number fraction of 1 means two
BHs introduced by a galaxy merger always successfully merge whereas a fraction of 0
means they fail to merge. In the FLC-model, as q? increases, it is more likely that BH
mergers take place, and the BH merger rates can be directly related to the frequency
of major galaxy mergers.

2. ELC model

On the other hand, in the ELC-model, the central binaries typically stall at r ∼ a few
10 pc at z = 0 . This separation may be somewhat larger than generally assumed. In
our simulations, due to dynamical friction, the BH binary orbits efficiently decay to
near the hardening radii, which are at least on the order of a few tens of pc at low
z for the very high mass BHs we consider. Under these conditions, unless a 3rd BH
approaches sufficiently close to the core, the central binaries do not merge. This means
that in order for the central binaries to further decay and finally merge, multiple (at
least N ≥ 2) major mergers are necessary, so that new BHs can make it to the core
rapidly and effectively interact with the central binaries. Therefore, there is a longer
delay in time from binary formation to BH merger. This is clearly different from the
FLC-model. As a result, coalescences of BHs preferentially take place in the host
galaxies experiencing more than one major mergers. We find in our simulations that
99% of BH mergers in the ELC-model occur in such galaxies (experiencing multiple
major mergers) in both mass bins of M? = 1010 − 1011 M� and M? = 1011 − 1012 M�.
Furthermore, we see similar correlations between the galaxy merger mass ratios and
the likelihood of BH mergers within the FLC-model, as shown in Figure 26. However,
we note that the fraction is slightly lower for high q? than in the FLC-model. In
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the FLC-model, major galaxy mergers favorably lead to BH mergers, but because of
ejections (∼ 1 − 5% of BHs found at r > rh at z = 0) via multiple BH interactions,
this is not always the case in the ELC-model.

The general picture of multi-body BH interactions in our simulations is as follows.
When a third BH is orbiting far from the core region, its orbit is governed by dynamical
friction and the galactic potential. Every time the intruder BH gets sufficiently close
to the central binary at the pericenter of its orbit around the galactic potential, it
goes through multiple gravitational slingshots with the central binary (typically, its
apocenter remains outside the core). The intruder BH gains energy at the pericenter
via the slingshot mechanism, and loses energy outside the core region via dynamical
friction. In this case, the background potential when the ejected BH is outside the
core can additionally provide more chances to return back for another slingshot (Ryu
et al., 2017a). This appears to make the intruder BH linger a little bit longer before
its apocenter completely falls into the core. These ejections confined in r < rh are not
always efficient at decaying the central binary orbit 26, but initially wide binaries can
benefit from these slingshots, becoming hardened to some extent.

Finally, when the three BHs become bound, they either go though chaotic interactions
followed by ejections, or form a hierarchical triple. Due to the gravitational pull from
the third BH, the central binaries are usually located off-center when the triples form.
The central binaries go through this course of interaction, similarly described by Hoff-
man & Loeb (2007), one or even more times before they finally merge. We find that it
is less likely for ejected BHs to return and manage to merge. Typically ejected BHs are
the less massive ones, hence they tend to be easily ejected again even though they can
make it to the core. Additionally, we find that escapes of all three BHs are rare (also
similarly to Hoffman & Loeb 2007). Even for that case, cores empty of BHs are tran-
sient, and are rapidly re-filled with other BHs from minor mergers or the ejected BHs
themselves when they return. In our simulations, BH binaries merge in hierarchical
triples and due to strong binary-single BH interactions (see also Iwasawa et al. 2006).
However, the majority of BH mergers occur when they are in hierarchical triples.

5.5.2 Merger efficiencies and binary lifetimes

In order to highlight the differences between the two models, we provide the average lifetimes
of coalescing binaries in Figure 27 as a function of z (upper panel) and the binary mass ratio
q (lower panel). We define the lifetime of a binary as the time from binary formation to
coalescence. In the ELC−model, three-body interactions can cause the ionization of existing
binaries. In this case we estimate the lifetime as the time between when a binary forms and
when it merges, for the subset of binaries that avoid ionization. In both panels, as expected,
the lifetimes of the merged binaries in the ELC-model (≥ 1 Gyr) are longer than those in
the FLC-model (≤ 1 Gyr).

26For a hard binary (primary mass of m1 = 108 M�, q = 0.1 and ah ' 1 pc) with orbital energy
Eb,hard, the energy taken from the binary by a light BH of mass m3 approaching with velocity v = σ? and
subsequently ejected at v < vesc(r = rh) (the escape velocity at r = rh) is |∆Eb,hard/Eb,hard| ' 0.003 − 0.3
for m3/m1 = 0.001− 0.1.
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Figure 27: The average lifetimes of merged binaries as a function of z (upper panel) and the
binary mass ratio q (bottom panel) for the galaxies of M? = 1010 − 1011 M� (blue lines) and
M? = 1011 − 1012 M� (red lines). We use solid (dotted) lines to represent the ELC- (FLC-)
model. We define the lifetimes of binaries as the time from binary formation to coalescence.
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Figure 28: The relative fraction of merged central BH binaries as a function q (in logarithmic
intervals) in host galaxies of masses M? = 1010 − 1011 M� (left panel) and M? = 1011 −
1012 M� (right panel). Red (blue) solid lines refer to the ELC- (FLC-) model. It is normalized
such that the sum of the fractions is unity.

120



10
-2

10
-1

10
0

 0  0.5  1  1.5  2  2.5  3  3.5  4

M
★

=10
10

-10
11

M⊙

A
v
e
r
a
g
e
 
q

z

galaxy merger
ELC-model
FLC-model

10
-2

10
-1

10
0

 0  0.5  1  1.5  2  2.5  3  3.5  4

M
★

=10
11

-10
12

M⊙

A
v
e
r
a
g
e
 
q

z

galaxy merger
ELC-model
FLC-model

Figure 29: The average q in each Gyr from z = 3.5 to z = 0, along with the average galaxy
merger ratio q? (same lines as in the middle panels in Figure 22, but each line separately
drawn in each panel).
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The lifetimes for the FLC-model that we find are relatively short compared to the ones
reported by Kelley et al. (2017). Besides different models and different prescriptions for
binary decay mechanisms, this difference may be primarily due to highly eccentric binary
orbits and the assumption of efficient decay due to dynamical friction at all times. In
particular, in the upper panel, as z decreases, the lifetimes become longer for both models.
However, such longer times may be due to different reasons in each model. In the FLC-model,
we can understand this as a result of galaxy mergers of smaller q at lower z (see the middle
panel in Figure 22), hence binaries with lower q?. Remember that the dynamical friction

timescale for a tightly bound binary is roughly estimated as tdf = Eb/(fdf · v) ∝ M
1/2
BH,1q

−1.
This can be also found in the bottom panel, which shows that the lifetimes rise as q declines.
In the ELC-model, on the other hand, the longer lifetimes may be attributed to mainly
two reasons: 1) as galaxy mergers occur with smaller q? the central binaries have to wait
for a longer time until new BHs fall into the core (or longer infall times of less massive
BHs); and 2) it is harder for the central binaries to be ionized or to get hardened via three-
body interactions. Interestingly, differently than in the FLC-model, the dependence on the
mass ratio q is weakened (even flat for q < 0.3) as the central binaries go through chaotic
interactions with other BHs, followed by ionization and exchange in binary members.

Because of such differences between the two models, we find different statistical properties
of the merged BH binaries including their merger rates and mass ratios. This is the subject
of the next section.

5.6 Coalescence of BHs - BH merger rate and mass ratio

In this section we focus on a detailed analysis of the statistical distributions of BH mergers,
such as merger rates, mass ratios and their evolution as a function of z. We provide an
overview of BH coalescence events for the FLC- and ELC- models in Table 12.

5.6.1 Mass ratios and chirp mass of coalescing BH binaries

In Figure 28 we present the number fraction of merged central BH binaries as a function
of q (in logarithmic intervals) in host galaxies of M? = 1010 − 1011 M� (left panel) and
M? = 1011 − 1012 M� (right panel). A noticeable difference between the ELC and the
FLC-model is that BH mergers with larger mass ratios are more common in the ELC-model
(see longer high-q tails for the ELC-model in both galaxies). The reason for this is likely
the nature of three-body interactions, i.e., less massive objects being easily ejected, leaving
behind more massive binaries (Valtonen & Karttunen, 2006). This trend is more pronounced
in the host galaxies of M? = 1011− 1012 M� (right panel). Considering more frequent major
mergers (see Table 11) as well as higher q? (see Figures 22), the BH merger ratios in such
galaxies for the FLC-model and ELC-model are generally high. However, for the galaxies
of M? = 1011 − 1012 M�, the number of host galaxies going through a single major merger
and multiple major mergers are comparable (ratio of ∼ 3 : 4 in Table 11). This means that
BH mergers in the ELC-model more “selectively” occur in the galaxies experiencing multiple
major mergers. Even though the merger rates are low (see Figure 32), this can possibly lead
to a shift to higher q.
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Such enhancement of higher q (or “selective mergers” in more massive galaxies) for the
ELC-model can also be found in Figure 29. In this figure we show the average q for every
Gyr from z = 4 to z = 0 along with the average galaxy merger ratio q?. As explained above,
typically the mass ratios for the ELC-model are higher than for the FLC-model. However,
comparing with the galaxy merger ratios, the difference becomes noticeable. For galaxies
of M? = 1010 − 1011 M� (left panel), the BH merger mass ratios q are quite moderately
following the line for the galaxy merger mass ratio q?. For those of M? = 1011 − 1012 M�
(right panel), however, the lines for q are always positioned above that for q?, and q for the
ELC-model is generally higher than that for the FLC-model.

As a consequence of three-body interactions, the chirp mass is higher for BH mergers in
the ELC-model. We present these effects in Figures 30 and 31. Figure 30 shows the fraction
of ejected BHs as a function of mass ratio q in the ELC-model. Here, q labeled “ejected BHs”
refers to the mass ratio of ejected BHs to the central BHs during 3-body interactions. As a
comparison, we also depict the lines corresponding to the merged binaries shown in Figure
28. We can see a higher fraction of ejected BHs with smaller q for galaxies in both mass
bins. This implies that less massive BHs are more likely to be ejected, resulting in more
massive binaries retained in the core regions. Additionally, a comparison between the two
panels shows that the mass ratios of ejected BHs to the central BHs in larger galaxies (left
panel) are lower than those in smaller galaxies (right panel). Therefore, given the central
binary masses required by the M − σ relation (i.e., the average mass of merged binaries
∼ 4.5× 10−3M? in Table 12) and the larger mass ratios, the chirp mass for the ELC-model
also becomes higher for galaxies in both mass bins as found in Figure 31. The shaded regions
indicate 68% of BH mergers at a given redshift. The lines for the average values and those
demarcating the shaded regions share the same line types, but slightly thinner.

5.6.2 BH merger rate

We present in Figure 32 and Figure 33 two different realizations of the BH merger rates
as a function of z. Figure 32 shows the merger counts per central BH/galaxy averaged
over every Gyr, or ∆N/∆t for the host galaxies of M? = 1010 − 1011 M� (left panel) and
M? = 1011 − 1011 M� (right panel), with a reference line corresponding to ∆N/∆t = 0.1.
There are a few noticeable features seen in both panels as follows: (i) the BH coalescence rates
for the FLC-model are higher for galaxies in both mass bins than those for the ELC-model.
This is also seen in Figure 33. This is expected given the longer lifetimes of BH binaries
in the ELC-model, possibly leading to ionizations of binaries as well as ejections of BHs;
(ii) the merger rates are higher for BHs in less massive host galaxies (left panel). Notice
that the BH merger rates for more massive galaxies are always below the reference line;
but the differences in the BH merger rates between the galaxies get smaller as z decreases.
Finally, the rates tend to converge to 10−2 Gyr−1 < ∆N/∆t < 10−1 Gyr−1 at z ' 0. The
rate at z = 0 is consistent with what has been assumed as a present-day merger rate for a
single object in Jaffe & Backer (2003). (iii) Comparing the BH merger rates with the galaxy
merger rates, the BH coalescence rates are smaller than the galaxy merger rates by a factor
of 3− 20 depending on the model and redshift. As shown in Figure 26, every galaxy merger
with a small mass ratio does not always lead to a BH merger. BHs, which either never fall
into the core or are ejected, are left orbiting outside the core regions. If one only considers
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Figure 30: The relative fraction of ejected BHs (thick blue solid line) as a function of mass
ratio q in the ELC-model. This is normalized so that the sum of the fractions is unity.
Here, q of the “ejected BHs” is defined as the mass ratio between ejected BHs and central
BHs during 3-body interactions. As a comparison, we also depict the lines (thin red solid)
corresponding to the merged binaries shown in Figure 28.
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Figure 31: The redshift evolution of the average chirp mass for merged BHs in galaxies of
M? = 1010 − 1011 M� (blue lines) and M? = 1011 − 1012 M� (red lines). The dotted lines
represent the FLC-model and the solid lines the ELC-model. The shaded regions indicate
68% of BH mergers at a given redshift. We use same line types for the average values (lines
with circles) and the (slightly thinner) lines running along with the boundaries of the shaded
regions.

major mergers (q? > 0.1), then as indicated in Figure 26, the differences should be smaller.
However, such differences should be considered for studies including both minor and major
mergers.

In Figure 33, we also show the merger rates of BHs and galaxies in two different units.
In the left panel, we show the number of BH/galaxy mergers per unit redshift per comoving
volume Vc, or d2N/dzdVc. For this, we take for Vc the size of the computation box in
the Milli-Millennium simulation (Vc ' 6.28 × 105 Mpc3). It is clear that the merger rates
are rising towards lower z < 1.5 (as those for galaxies) except for the rate of the galaxies
of M? = 1010 − 1011 M� for the FLC-model, which remain roughly flat. The counts for all
models reach up to d2N/dzdVc ∼ 2×10−4 Mpc−3 for more massive galaxies and d2N/dzdVc ∼
3 × 10−3 Mpc−3 for less massive galaxies at z ' 0. This is attributed to the tendency for
a larger number of BHs to accumulate in the core region at z ∼ 0. Even smaller BHs
(with longer decay times) can have enough time to decay to the core regions, increasing
the chances of BH mergers in both models. Additionally, given the high merger rates for
lower-mass galaxies, and especially the higher mass ratios in the ELC-model, we can expect
that the contribution of BH mergers in lower-mass galaxies to the GWB is not negligible
(see Figure 35).

In the right panel, the number of BHs/galaxy mergers per unit time per unit redshift,
or d2N/dzdt, is presented. This represents the detectable merger rate that originates from a
comoving shell in redshift (corresponding to the comoving volume in the left panel). For the
conversion between the merger rates in the left in the right panels, we use equation (4) in
Menou et al. (2001). The same line colors and line types are used as in the left panel. Also
note that, for a clearer view, we further draw on a logarithmic scale the lines for the BH
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Figure 32: The merger counts per central BH (red lines)/galaxy (blue line) averaged per Gyr,
or ∆N/∆t for the host galaxies of M? = 1010−1011 M� (left panel) and M? = 1011−1012 M�
(right panel). The blue solid line with crosses indicates the merger counts for the host galaxies
(same lines with the thickest lines as in the bottom panel of Figure 22). We adopt the solid
line with solid squares for the ELC-model and the dotted line with hollow squares for the
FLC-model. For an easy comparison, we additionally depict a reference line (black dotted
line) corresponding to ∆N/∆t = 0.1.
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Figure 33: The merger rates of BHs and galaxies in two different units. Left panel: the
number of BH mergers per unit redshift per comoving volume Vc, or d2N/dzdVc, for the
FLC- (dotted lines) and the ELC- models (dot-dashed lines with circle). Here, we take
for Vc the size of the computation box in the Milli-Millennium simulation. Right panel:
the number of BH/galaxy mergers per unit time per unit redshift, or d2N/dzdt. We use
equation (4) in Menou et al. (2001) for the unit conversion between the merger rates in the
two panels. The same line colors and types are adopted as in the left panel. In the bottom
panel, for clarity, we further draw on a logarithmic scale the lines for the BH merger rates
in the galaxies of M? = 1011 − 1012 M�.
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Figure 34: The characteristic strain hc for the FLC-model (thick blue solid line) and the
ELC-model (thick red solid line). The black solid line (labeled ”All mergers”) above both
models indicates the strain assuming all galaxy mergers lead to BH mergers given the sampled
galaxy merger trees (see more details in §5.7.3). We additionally indicate the upper limit
in each experiment at its peak sensitivity (triangles), and we extrapolate this limit to other
frequencies assuming a power law of f−2/3 within the frequency range of 1/T < f < 1 yr−1,
where T is the total observing time. The dotted lines refer to the PTA estimates from other
studies. We estimate A = 0.70 × 10−15 for the FLC-model and A = 0.53 × 10−15 for the
ELC-model. The curved dotted lines indicate the deviation due to eccentric orbits. The line
colors are shared with those for the circular orbit case (thick blue/red solid lines).
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merger rates in the galaxies of M? = 1011−1012 M� (bottom box). The BH merger event rate
is 0.1−0.2 per yr at z ' 1−2 and 10−4−10−2 per yr for the galaxies of M? = 1010−1011 M�
and M? = 1011 − 1012 M�, respectively.

In the next section, we use the BH merger rates in our models to estimate the amplitude
and spectrum of the stochastic GWB.

5.7 Discussion

5.7.1 Stochastic GW background - GW from circular orbits

Over observing times of a few years to a few months, binary supermassive BHs are one of
the most promising astrophysical sources of GWs in the nHz frequency band accessible to
pulsar timing arrays (PTAs). The characteristic strain hc(f) of the GW signal from a circular
binary can be calculated as follows (Phinney, 2001; Sesana et al., 2008),

h2
c(f) =

4G

πf 2c2

∫ ∞
0

dz

∫ ∞
0

dM d2n

dzdM
1

1 + z

dEgw(M)

d ln fr

, (102)

where f is the observed frequency and M is the chirp mass, defined as
M = (MBH,1MBH,2)3/5/(MBH,1 + MBH,2)1/5. Here f is related to the rest-frame frequency
fr and the Keplerian orbital frequency forb such that f(1 + z) = fr = 2forb. Egw is the
energy emitted in GWs. d2n/dzdM represents the differential merger rate density (i.e., the
number of BH mergers per comoving volume) of SMBH binaries per unit redshift per unit
chirp mass. It is easily shown that the strain scales as f−2/3 (Phinney, 2001) and is usually
described in terms of A (Jenet et al., 2006),

hc(f) = A

(
f

yr−1

)−2/3

. (103)

In particular, for a finite number of sources in a comoving volume Vc with the rest frame
frequency in the range of fmin < fr < fmax, Equation 102 can be re-written as follows,

h2
c(f) =

4π−1/3

3c2
f−4/3

∑
i

fmin<fr<fmax

1

(1 + zi)1/3

(GMi)
5/3

Vc

Ngalaxy,total

Ngalaxy

(104)

where i represents each GW source (BH merger event) in the galaxies of both mass ranges.
Assuming that our galaxy sample of size Ngalaxy is representative of the properties of the
entire set of galaxies in the Millennium simulation of number Ngalaxy,total, we normalize our
estimate of the strain with a factor of Ngalaxy,total/Ngalaxy. The variable fmin represents
twice the Keplerian orbital frequency calculated with the values of the binary mass and the
semimajor axis at the time when GWs become dominant to shrink the orbit (i.e., when the
merger condition 1 is fulfilled). For fmax, we assume the frequency at the innermost circular
orbit, or fmax = [2/(1 + z)]forb(r = 3rsch) (Hughes, 2002; Ravi et al., 2012; McWilliams et
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Figure 35: The spectra of the characteristic strain from the galaxies of each mass range
(dotted line for M? = 1011 − 1012 M� and dot-dashed line for M? = 1010 − 1011 M�) as well
as the total estimate (solid line) for the FLC-model (left panel) and the ELC-model (right
panel). The straight lines represent the strain assuming circular orbits, while the curved lines
show the modification when the orbital eccentricities are taken into account. As a reference,
we also indicate the upper limits for the strain with thin solid lines. The triangles show
the upper limit in each experiment at its peak sensitivity. In the left panel, the green lines
indicate the spectra made with only SMBH binaries fulfilling the bypass condition (Equation
101). As a consequence of three-body interactions, the chirp mass is higher for BH mergers in
the ELC-model (see Figure 31). As a result, despite the lower BH merger rates, BH mergers
in the smaller galaxies of M? = 1010 − 1011 M� almost equally contribute to the GWB as
those in more massive galaxies.
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Figure 36: M
5/6
chirp-weighted (corresponding to weighting by GW intensity) average e as a

function of Mchirp for the FLC-model (dotted line with hollow circles) and the ELC-model
(solid line with solid circles) at three characteristic frequencies, i.e. f = 10−8.3 Hz (near peak
sensitivity, see Figure 37), f = 1 yr−1 Hz = 10−7.5 Hz and f at merger. We analytically
estimate the eccentricities at which GW emission becomes more efficient (Peters & Mathews,
1963). The shaded regions indicate 68% of BH mergers at a given chirp mass.
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Figure 37: Our estimates for hc are compared with the current/future-expected sensitivities
(wedge-shaped dot-dashed lines). The upper-most wedge indicates the sensitivity set by the
full IPTA (hc ∼ 10−16 − 10−17 at f = 5 × 10−9 Hz, Janssen et al., 2015). The predictions
of our models cannot yet be tested with the current instruments. The other two lines
refer to the sensitivity set by complete Parkes PTA (PPTA, 20 pulsars for 5 yr) data set
(labeled “PPTA data”) and that achievable with the planned Square Kilometer Array (SKA)
assuming monitoring of 20 pulsars over 10 yr (labeled“future SKA”). The sensitivity provided
by the PPTA dataset may not be sufficient to reach the strain inferred from our models. In
the future, we expect that the planned SKA will be able to impose constraints over wider
frequency ranges.
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al., 2014), which is written as,

fmax = 2.2× 10−5

(
MBH,1

108 M�

)−1(
1 +

MBH,2

MBH,1

)1/2

Hz . (105)

Assuming circular orbits and given the amplitude scaling as f−2/3 (see Eq.103), from our
merger rates we find that A = 0.70 × 10−15 for the FLC-model and A = 0.53 × 10−15 for
the ELC-model. We show our estimates for the characteristic strain hc for the FLC-model
(denoted by “FLC (circular)”) and the ELC-model (denoted by “ELC (circular)”) in Figure
34. The black solid line (labeled ”All mergers”) above the two lines for the FLC-model and
the ELC-model corresponds to the strain assuming all galaxy mergers lead to BH mergers
given the sampled galaxy merger trees (see more details in §5.7.3). We additionally depict
the GW spectra inferred in other published studies (Jaffe & Backer, 2003; Sesana et al.,
2008; Kocsis & Sesana, 2011; Shannon et al., 2013; McWilliams et al., 2014; Kulier et al.,
2015) and observational upper limits set by EPTA (A = 3.0 × 10−15, Lentati et al., 2015),
NANOGrav (A = 1.5 × 10−15, Arzoumanian et al., 2016) and Parkes (A = 1.0 × 10−15,
Shannon et al., 2015). For the latter, we indicate the upper limit in each experiment at its
peak sensitivity (triangles), and we extrapolate this limit to other frequencies assuming a
power law of f−2/3. The frequency range shown in each case is 1/T < f < 1 yr−1, where T is
the total observing time. In spite of different dominant mechanisms for orbital decay in the
FLC- and ELC- model, the values are comparable. We believe the reasons are as follows:

1. The merger rates for the ELC-model are lower at 0.5 < z < 2 than those for the
FLC-model (see Figure 32). The resulting decrease in the GWB, however, is relatively
minor, because it is the mergers involving the lowest-mass BHs that are missing. The
mergers which dominate the GWB, involving more massive BHs, are still occurring in
the ELC-model.

2. In the ELC-model, we find that binaries have longer lifetimes (see §5.5.2) due to the
time taken for multiple SMBHs to accumulate in the cores as the host galaxies go
through successive mergers. This can cause an overall delay of the BH mergers com-
pared to nearly prompt mergers in the FLC-model. This results in sparse mergers
at higher z and, more importantly, copious GW emissions at lower z. Moreover, in-
dividual GW emissions are more powerful because the delay of mergers causes BHs
to accrete more mass before they undergo mergers. This would compensate for the
decrease in the GWB due to the loss of some BH mergers, as described in 1 above.

3. In the ELC-model, BH mergers in the smaller galaxies of M? = 1010 − 1011 M� con-
tribute more to the GWB than those in more massive galaxies. Those contributions are
even higher than those for the FLC-model because of the more frequent mergers with
larger chirp mass at lower z in the ELC-model. Figure 35 shows how much BH mergers
in the galaxies of each mass range contribute to the total estimates for the FLC-model
(left panel) and the ELC-model (right panel). The dotted line for M? = 1011−1012 M�
and the dot-dashed line refers to hc for M? = 1010− 1011 M� assuming circular orbits.
As shown in the right panel, the strain is higher in the ELC-model from BH mergers
in smaller galaxies.
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Also note that, as will be explained in §5.7.2, the curved lines show the effect on the
strain of binary eccentricities.

We also find that the amplitude of the characteristic strain is dominated by BH mergers
at low redshift z < 2 (see also Wyithe & Loeb 2003). In the FLC-model, 86% of the BH
coalescences occur at z < 2 with an average chirp mass of M = 1.0 × 108 M�, while
in the ELC-model the fraction of mergers at z < 2 is 98% with M = 1.6 × 108 M�. If we
impose more stringent constraints on z, in the FLC-model the fraction decreases to 65% with
M = 1.2× 108 M� at z < 1 and to 35% with M = 1.4× 108 M� for z < 0.5. In the ELC-
model the fraction becomes 79% withM = 1.8× 108 M� and 49% withM = 2.1× 108 M�.
However, still the majority of SMBH binaries effectively emit GWs at z < 1. The increase
in the chirp mass especially for the ELC-model can be seen in the redshift evolution of the
average chirp mass shown in Figure 31. Here, we separately show the results for the galaxies
of each mass range, but the average chirp mass (including the fraction of BH mergers) given
above is estimated based on all merger events for galaxies in both mass bins.

5.7.2 Stochastic GW background - GWs from eccentric orbits

An eccentric orbit emits GWs at all integer harmonics of the orbital frequency (Peters &
Mathews, 1963; Peters, 1964). Especially for very eccentric orbits, the GW radiation power
is greater at higher harmonics. Since the evolution of a binary orbit strongly depends on
the evolution of the eccentricity, this may change the shape of the spectrum. In fact, larger
contributions from higher harmonics effectively suppress power at lower frequencies, leading
to a low frequency flattening or even a turnover in the spectrum (Enoki & Nagashima,
2007; Sesana, 2010, 2015). Therefore, it is necessary to take into account such effects of the
eccentricity for more realistic estimates of the GWB.

We find that the binary orbits are very eccentric when GW emission becomes more
efficient in our simulations (see Figure 25). In Figure 36, we show M

5/6
chirp-weighted average

e as a function of Mchirp for the FLC- and ELC-model at three characteristic frequencies:
f = 10−8.3 Hz (near peak sensitivity), f = 1 yr−1 = 10−7.5 Hz and f at merger. Given
that these are eccentricities at which GW emission plays a dominant role in causing the
decay of the binary orbits, we analytically estimate the eccentricities at those frequencies
(Peters & Mathews, 1963). The shaded regions indicate 68% of BH mergers at a given chirp
mass. Generally speaking, the eccentricities for the ELC-model tend to have large scatter
compared to those for the FLC-model. The eccentricities are still quite high at f = 10−8.3 Hz
and f = 1 yr−1.

To account for such high eccentricities, we have to consider harmonics up to nmax '
10(1 − e)−3/2 (for e = 0.99, nmax ' 10000), which means that a direct summation of the
contributions of each harmonic is computationally expensive. We instead emply the fitting
formula (16) given in Chen et al. (2017), which has been shown to successfully reproduce the
spectrum within a maximum error of 1.5% in log amplitude (i.e. 3.5% in amplitude) for a
reference case (e = 0.9). The thick dotted lines in Figure 34 and Figure 37 show the spectra
when high eccentricities are taken into account. As expected, the spectra at lower frequency
of f < 1 yr−1 are flattened and turn over towards lower f . The strain for both models
predicted under the assumption of circular orbit is hardly distinguishable. However, clear
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deviations between the two models can be seen when the different eccentricity evolutions are
taken into account in the computation. Eccentric spectra start differing from their circular
counterparts at frequencies of f ∼ 10−7.5 Hz ∼ 1 yr−1 in both models, and display maxima
in the region around f < 10−8 Hz. Such turnovers of the spectra are consistent with the
spectra predicted for e = 0.9 in Enoki & Nagashima (2007). The overall shapes of the spectra
are also similar with what is found for the case of initially very eccentric binaries in a dense
stellar environment (see Figure 3 in Sesana 2015). The spectra from BH mergers in galaxies
of both mass ranges are comparable at frequencies of f > 10−8 Hz; however at f < 10−8 Hz,
the signals from more massive galaxies are clearly larger.

We also have checked how the spectra are altered when we exclude SMBH binaries not
fulfilling the bypass condition (Equation 101). This exclusion rules out 3 binaries from each
galaxy mass bin. Interestingly, we find that A = 0.54 × 10−15 at f = 1 yr−1, which is even
closer to that for the ELC-model. The green lines in the left panel of Figure 35 show the
modified spectra as a result of the exclusion. The turnovers are now less pronounced and
shifted to lower frequencies of f < 10−8 Hz.

As PTA observation periods span decades, the frequency range of f ∼ 10−9 − 10−8Hz
is most sensitive to GWs. In Figure 37, the current and future-expected sensitivities and
observational upper limits are compared with our estimates. The uppermost edge indicates
the sensitivity by the full IPTA (hc ∼ 10−16−10−17 at f = 5×10−9 Hz, Janssen et al., 2015).
The other two lines refer to the sensitivity set by the complete Parkes PTA (PPTA) data set
with 20 pulsars for 5 yr and that achievable with the planned Square Kilometer Array (SKA)
with 20 pulsars over 10 yr 27. Our models predict amplitudes below the observational upper
limits. The current PPTA dataset may not be sufficient to confirm/rule out our models;
however in the future, the planned SKA will be able to give constraints on our models over
wider frequency ranges.

5.7.3 Semi-analytic analysis on the estimate of A - Comparison with previous
works

In this work, using few-body simulations in analytic background potentials, we follow the
dynamical evolution of multiple SMBH systems and estimate the BH coalescence rates in
the host galaxies undergoing multiple mergers with a wide range of mass ratios. Using
the computed merger rates, we next estimated the stochastic GWB. For a more thorough
understanding of our results, it is hence important to compare our results with previous
works.

As an informative comparison, given our sampled merger trees, we analytically estimate
A following the assumptions about BH mergers in McWilliams et al. (2014) and Kulier et
al. (2015). They assume that,

1. every bound pair of BHs efficiently solves the final parsec problem on its own;

2. BH binaries are always in circular orbits.

27The expected level to be reached by the SKA is lower, hc ∼ 10−16 − 10−17 at a reference frequency of
yr−1 (Janssen et al., 2015).
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While these calculations broke new ground in estimating BH merger rates in a cosmological
context, their assumption 1 is optimistic, and their predicted GW emission rates should
be considered upper limits. As a result, the GWB predicted by McWilliams et al. (2014)
and Kulier et al. (2015) is higher than the one given by our detailed computations. By
comparing A for the optimistic case to A for the FLC and the ELC models, we may be
able to understand how much each assumption affects A. For this estimate, we additionally
assume that BH mergers occur after a dynamical friction timescale (equation 3 in Kulier et
al. 2015) since galaxy merger events. This leaves 17 out of our total 1744 mergers incomplete
by z = 0. We take the total mass of merging binaries to be the maximum value between
the BH mass required by the M − σ relation at the BH merger redshift and the sum of the
masses of two merging BHs. We find the total A = 1.10×10−15 for the optimistic case, which
is larger by a factor of 1.5− 2 than those for the FLC-model and the ELC-model. The total
A decreases as we impose q? cutoffs: Assuming only galaxy mergers of q? > 0.01 lead to BH
mergers, A = 1.00× 10−15. For q? > 0.1, A = 0.77× 10−15, which is fairly close to A for the
FLC-model. As shown in Figures 26 and 32 (galaxy merger rates higher than BH merger
rates, see (iii) in §5.6.2), we can confirm again that not all galaxy mergers lead to BH mergers
in both the FLC and the ELC models, resulting in smaller A. In Figure 38, we show the
evolution of A with redshift for the optimistic case (labeled “all mergers”), the FLC- and the
ELC-model. In addition to the total A (upper panel), we separately show the evolution of
A for more massive galaxies (middle panel) and less massive galaxies (bottom panel). In all
three panels, we can see that the amplitudes for the FLC-model and the ELC-model remain
below those for the optimistic case. Due to nearly prompt BH mergers for the optimistic case
and delayed mergers in the ELC-model, the first GW signals for the optimistic case appear
earliest, followed by those for the FLC-model and the FLC-model at last. The first mergers
in the ELC-model are delayed by ∆z ' 0.3− 1.5 with respect to those in the FLC-model.

If we relax the assumption of circular orbits, as seen in Figures 34 and 35, the GWB
further decreases, especially at low frequencies. In our two models, the effects of the ec-
centricities at f = 1 yr−1 are not significant, but the difference could exceed an order of
magnitude at lower frequencies depending on whether merged binary orbits are assumed to
be circular or eccentric.

A suppression of the GW signal at higher frequencies can be caused by the presence of a
circumbinary disk. In another recent study, Kelley et al. (2017), using the galaxy population
in the Illustris simulation, coevolve massive BHs to predict the GWB. They take into account
various possible environmental mechanisms in their calculations including dynamical friction,
stellar ’loss cone’ scattering and tidal-viscous drag from a circumbinary disc. Similarly to
our models, they explore different degrees of loss cone filling. Their fiducial model predicts
an amplitude within the range of 0.3 × 10−15 < A < 0.4 × 10−15 (with the upper limit
of A ' 0.7 × 10−15). This is smaller than our values roughly by a factor of 1 − 2. We
believe that this may be caused by different strategies to populate SMBHs (Sesana et al.,
2016). Furthermore, tidal torques from the gaseous circumbinary disk could also come into
play. This was studied before by Kocsis & Sesana (2011) with BH merger rates from the
Millennium simulation and adopting the models for gas-driven inspirals of Haiman et al.
(2009). Typically, the presence of circumbinary discs drives very rapid inspirals of binaries
via migration, leading to a significant suppression of the signal at frequencies f > 10−8 Hz
compared to mergers in a gas-poor environment.
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Figure 38: The redshift evolution of the GWB amplitude A for the optimistic case (labeled
“all mergers”, thick green solid line), the FLC-model (dotted black line) and the ELC-model
(thin solid black line). The top panel shows the total A and we separately depict the evolution
of A contributed by more massive galaxies (middle panel) and less massive galaxies (bottom
panel). As a reference, the observational upper limits for EPTA, NANOGrav and Parkes are
indicated.
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Generally speaking, adopting the scaling relations to populate SMBHs in the galaxies, our
estimates for A are generally in good agreement with other studies (see Figure 34), especially
with models constructed on the Millennium simulation (e.g Sesana et al., 2009). However,
noting the discussion in Sesana et al. (2016) and Rasskazov & Merritt (2017), we emphasize
that our results could also be affected by the use of different observational relations. Sesana
et al. (2016) employ different SMBH-galaxy scaling relations and accretion prescriptions to
populate and grow the SMBHs, and they study the impact of selection bias in determining
SMBH masses on the PTA measurements. In another study, Rasskazov & Merritt (2017),
taking into account the effects of rotating and aspherical nuclei on the orbital evolution of
SMBH binaries, compute the GWB and study the dependence on the MBH −M? relation.
Even though they tackle this problem within different frameworks, both studies suggest that
the GWB amplitude has been overestimated and may decrease by a factor of a few if different
galaxy scaling relations are used 28.

After the original submission of this manuscript, we became aware of a similar recent
study by Bonetti et al. (2017). They employ a semi-analytic model of galaxy evolution
and model SMBH mergers and their GW signals, by incorporating three-body PN effects to
study the role of triple and quadruple interactions between SMBHs (adopted from Bonetti
et al. 2016). Their inferred merger rates are fairly consistent with those shown in §5.6, and
the physical picture of the mergers we find in our work (see §5.5.1) is also similar to that
discussed in Bonetti et al. (2017).

5.7.4 Caveats

Our results were obtained in models with observationally and numerically-motivated as-
sumptions, but they are subject to several caveats. In this section, we discuss the major
limitations of our models.

1. Dynamical friction. In the FLC-model, we assume dynamical friction operates very ef-
ficiently to decay the orbits of BH binaries at all times. This regime may underestimate
the true hardening rate in the presence of a full loss cone, since inside the influence
radius stellar scattering hardens SMBH binary orbits by a factor ∼ 1/q faster than
the hardening rate from a naive application of the dynamical friction formula (Merritt,
2013). Furthermore, our merging galaxy model assumes a flat core in the inner region,
not accounting for the dynamical changes in shape of the inner stellar potential as
SMBH binaries in it mutually evolve. The shape of the stellar potential around SMBH
binaries is correlated with the hardening rates of the binaries (Dosopoulou & Antonini,
2017), hence their fate and the BH merger rates in the FLC-model.

2. Three-body interactions

We have not self-consistently included the 3-body PN terms (see Equation 5 in Lousto
& Nakano 2008) during the 3-body interactions (e.g Bonetti et al., 2016). However,
as explained in §5.5.1, most of the important 3-body interactions are in the hierarchi-

28Taylor et al. (2016) discuss the similar issue of the overestimate of SMBH merger rates from an obser-
vational perspective.
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cal regime, with only 2 of the 3 bodies sufficiently close for PN terms to be needed.
Therefore we expect that our results are robust, but we will explore this in future work.

3. Assumptions on SMBH mass growth

There are several factors related to the assumptions on SMBH mass growth and sam-
pled galaxies which may affect the GWB. First of all, given the requirement for the total
mass of the central BHs, very loud signals from a few massive binary mergers of q ' 1
at z ' 0 can cause remarkably large jumps in the GWB. As explained in §5.3.2, this
could occur when binaries, with the central BHs and other initially small BHs which
rapidly grow in the cores while the central BHs are temporarily ejected, coalesce. Such
temporary ejection of the central BHs can occur as a result of GW recoil kicks. Given
our galaxy samples, we do not find that A at z = 0 is dominated by a few of these loud
GW emission events. But it is still possible at lower z, especially more likely in the
ELC-model with its more frequent ejections29. If we explore a large number of galaxy
merger trees, the statistical errors from finite sample size30 will decrease, but chances
of large signals from a few individual sources may increase. Furthermore, in this study
we do not consider large kicks driven by nonlinear spin-orbit interactions (Lousto &
Zlochower, 2011; Lousto et al., 2012; Lousto & Zlochower, 2013) with the maximum
recoil velocities larger than typical escape velocities of galaxies. We point out that the
frequencies of ejection and merger events would vary when such large kicks are taken
into account.

4. Galaxy samples

We have not included the contributions from smaller galaxies of M? < 1010 M� (or
MDM < 5× 1011 M�). We find that BH mergers from less massive galaxies contribute
more to the overall GWB as a result of higher BH merger rates as shown in Figure
33. Therefore, it is also possible that BH coalescences in galaxies with M? < 1010 M�
can noticeably increase the predicted GWB. However, it is uncertain whether the BH
merger rates increase further for galaxies of M? < 1010 M� and, more importantly,
the offset between the increase in the BH merger rates and the decrease in the chirp
mass lead to a significant rise in the GWB. For such low mass galaxies, the relationship
between stellar mass M? and halo mass MDM is more complicated than the single power
law we have assumed(e.g Behroozi et al., 2010; Moster et al., 2013), and our model
would need to be modified accordingly. In addition, we assume that each galaxy always
harbors a SMBH as long as the BH mass is larger than the minimum mass. However,
the occupation fraction in the low mass galaxies is more likely to be affected by the
assumptions on BH seed formation and initial occupation fraction at high redshift
(Menou et al., 2001). Therefore, considering that less massive halos tend to possess
relatively small number of early progenitors as well as even small mass progenitors,

29In the FLC-model, we find that the BH merger mass ratios decrease and the BH masses grow as z de-
creases, following the trend in the galaxy merger histories. Hence GW kick-driven ejections, with subsequent
rapid growth of small BHs, are more likely at higher z. However, their contributions may not be significant
to A at z = 0 and chances of such giant binary formations and mergers at small z may be low.

30The Poisson error of
√
NBH merger/NBH merger ' 0.1, where NBH merger is the number of BH mergers for

the current sample size.
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the contributions to the GWB from low mass galaxies of M? < 1010 M� may not be
significant (Sesana, 2013). But these estimates are approximate, so more systematic
studies are necessary for better understanding of the contributions of the BH mergers
in dwarf galaxies.

Another caveat is that, given that we follow up to 10 − 12 galaxy mergers, for host
galaxies experiencing a large number of mergers at low redshift, we may miss some
galaxy mergers in their histories, hence possibly leading to an underestimate of the
GWB.

Last, in our merging galaxy model, we assume one central BH per satellite galaxy at
galaxy mergers. Multiple BHs in satellite galaxies are definitely possible. For those
cases, more frequent multi-BH interactions and ejections will take place, which possibly
influence the BH merger rates, ejection rates as well as the chances of such giant binary
mergers explained above.

5.7.5 Summary

In this work, using few-body simulations in analytic background potentials, we have examined
the evolution of SMBH binaries and higher multiples, from their formation to coalescence,
as the host galaxies go through mergers with mass ratios of 10−4 < q? < 1. For host
galaxies of mass M? = 1010 − 1012 M� at z = 0 extracted from the Millennium simulation,
we followed their merger trees by assuming a SMBH in each of the host/satellite galaxies,
with the BH mass determined by standard scaling relations. We have explored two limiting
scenarios for the decay of the binary orbits, approximating full and empty loss cone regimes.
In the full loss cone model (FLC-model), we assume dynamical friction efficiently shrinks
the orbits until binaries merge, whereas in the empty loss cone model (ELC-model), we
assume that dynamical friction is no longer able to operate and cause orbital decay when the
binaries become hard. The ELC-model allows us to examine multi-body BH interactions in
a cosmological context, and test their utility as a “solution of last resort” to the final parsec
problem in large galaxies where other solutions may fail. The FLC-model, while highly
idealized, serves as a valuable comparison case, and as a testing ground for an underexplored
regime: inspirals where e is excited to very high values by dynamical friction in a flat stellar
core characteristic of the highest mass galaxies. Based on the inferred merger rates from our
simulations, we estimate the stochastic GWB in the two models. We summarize our findings
as follows:

1. Dynamical features of SMBH binaries and multiple systems : we find a few clear dif-
ferences in the evolution of SMBH binaries between the FLC-model and the ELC-
model. For the FLC-model, dynamical friction tends to increase the binary eccentric-
ity. When energy loss to GWs becomes dominant, the binary eccentricities are almost
unity (e > 0.99). The evolution of the orbital eccentricity of SMBH binaries in various
stellar distributions will be explored in a future paper (Stone et al. 2017, in prep).
However, our FLC results can be understood in the context of past work, which finds
eccentricity excitation due to dynamical friction in flat density profiles, particularly in
Keplerian potentials (Dosopoulou & Antonini, 2017). A critical assumption behind the
eccentricity excitation seen in the FLC model is the existence of a flat stellar density
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core. While this assumption is reasonable for the very high-mass galaxies considered
in this paper, it would not apply to lower-mass galaxy mergers. Subsequently, SMBH
binaries merge on a short time scale and the lifetimes of coalescing binaries are less
than 1 Gyr. We also find that the BH merger events are strongly coupled with major
mergers (q? > 0.1) of the host galaxies (Figure 26). For the ELC-model, however,
there is a time delay before the central SMBH binaries merge because they must wait
for other BHs to come close and effectively interact with them. This results in longer
binary lifetimes (& 1 Gyr). This is a clear difference from the FLC-model. As a re-
sult, coalescences of SMBHs in the ELC-model preferentially occur in the host galaxies
experiencing multiple major mergers.

2. BH merger rates : we find that SMBH binaries do merge in both models, but with
typically higher coalescence rates in the FLC-model than in the ELC-model. There
is no “final parsec” problem in either scenario. Even though the BH coalescence rate
for the ELC-model is lower, the BH mergers in the ELC-model strongly indicate that,
as galaxies go through a series of mergers and binaries stall due to inefficient decay
mechanisms (e.g., empty loss cone), a cluster of multiple SMBHs is naturally produced
in the core regions, and these BHs can eventually merge via multi-body interactions.

3. Mass ratio of coalesced BH binaries : another noticeable feature of the ELC-model is
that the mass ratios, and hence the chirp masses, of coalescing SMBHs tend to be
higher. As they go through chaotic three-body interactions, the less massive BHs will
typically be ejected, leaving behind a binary of the more massive BHs.

4. Stochastic GW background : using the inferred BH coalescence rates, we estimate the
strain amplitudes A = 0.70× 10−15 and A = 0.53× 10−15 for the FLC-model and the
ELC-model, respectively. In spite of the lower BH merger rates for the ELC-model,
we find that the amplitudes are quite similar. This is because (a) mergers of BH
binaries, especially with large chirp masses, still occur in the ELC-model. Only those
with lower mass ratios, which make minor contributions to the GWB, are missing;
(b) in the ELC-model, BH coalescence events preferentially take place at a later time
with larger chirp mass, as BHs have more time to grow, given the delayed mergers.
In other words, louder GW emissions more abundantly occur at lower redshift. This
would counterbalance the decrease in the GWB due to the loss of some BH mergers,
as described in 1 above; (c) due to the larger mass ratios of the merged binaries, the
contributions of the less massive binary mergers (i.e., coalesced BHs in less massive
galaxies) to the GWB are relatively high in the ELC-model compared to the FLC
one. Our inferred strain is consistent with current observational limits and a factor
of roughly two below the rates predicted by the simple model in which every galaxy
merger leads to a BH merger.

5. Effect of high eccentricities on GW spectra: Given the high eccentricities of the merged
SMBH binaries, our models predict significant suppression of GW power at lower fre-
quencies. This causes a low frequency flattening as well as a turnover in the stochastic
background spectrum as shown in Figures 34 and 35, which will be observationally
important for comparison to future data.
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By adopting a dynamical approach to study the coalescence of SMBH binaries, our work
shows clear distinctions between two limiting regimes of loss cone physics. In particular,
different expectations for chirp masses, mass ratio distributions, and flattening of the GW
spectra due to high eccentricities can all be observationally relevant. Furthermore, multi-
body interactions between SMBHs are a natural consequence of galaxy mergers, and are
clearly a plausible channel for driving BH coalescences. Our predictions show that ongoing
PTA searches can potentially discriminate between different models of black hole binary
orbital evolution.

6 Conclusions

Black hole binaries are excellent astrophysical laboratories that will provide a fundamental
understanding of black hole physics. Furthermore, they are an important ingredient to inter-
pret the history of the Universe. In this thesis, we have studied the formation of BH binaries
at different cosmic times since the first stars collapsed to a BH, focusing on their interactions
with surroundings and their global-scale observational signatures across the history of the
Universe. A broader overview of them is provided in §1.

We first present a multi-purpose N -body code in §2 developed for the studies outlined
below. The code can solve the equations of motion with physical effects including mutual
gravitational force up to the 2.5-order post-Newtonian terms, dynamical friction, force from
a background potential and mass growth. Furthermore, by implicitly estimating the energy
variations from various dissipative mechanisms, the code can account for the dynamical
evolution of any integrable background potentials. We employ this code for performing
standard scattering experiments and studying the formation of runaway stars.

In §3, we investigate the formation of Population III X-ray binaries and their X-ray
output. We estimate their formation rate, using N -body simulations, which is the first
estimate of this kind. We show that based on the estimated formation rate, the X-ray
luminosity of HMXBs per star formation rate is much higher than what has been observed
in the local Universe. This implies that X-rays can heat the IGM rapidly at Cosmic Dawn,
which can be probed via 21 cm line detection.

In §4, we study the formation of IMBHs and SMBHs via “hyper-Eddington” accretion in
centrally condensed gas clouds from Population III remnant BHs. We find that only one 103−
105 M� IMBH can form via such rapid accretion per galaxy, and that this IMBH typically
captures a stellar-mass BH companion. This can be a viable pathway to the formation of
EMRIs, which are important gravitational wave sources of eLISA.

Finally, in §5, we examine the evolution of SMBH binaries and higher multiples, from
their formation to coalescence. We show that BHs merge via dynamical friction and multi-
body interactions between SMBHs. In this study, we find that multi-BH interactions could
be a promising solution to the final parsec problem. Furthermore, we discuss the stochastic
gravitational wave background from their mergers. In particular, we compute the effects of
high eccentricities on the GWB spectrum.

Over the last decades, great scientific advance in observation and theory as well as nu-
merical techniques have been made. Those have added new aspects to our understanding.
And every new observational and theoretical results will continue to provoke new ideas for

142



solving many astrophysical problems as they have been doing so far. In conducting the stud-
ies presented in the dissertation, we have frequently encountered many interesting questions.
These will be explored with new ideas and new exciting results from a number of ongoing as
well as planned surveys for observing the high-z Universe and gravitational wave emission
from BH mergers.
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Klessen, R. S. (2012). ApJ , 754 , 34.

Jiang, L., Cole, S., Sawala, T., & Frenk, C. S. (2015). M.N.R.A.S., 448 , 1674-1686.

Just, A., & Peñarrubia, J. (2005). A&A, 431 , 861-877.

Kaaret, P. (2014). M.N.R.A.S., 440 , L26-L30.

Kelley, L. Z., Blecha, L., & Hernquist, L. (2017). M.N.R.A.S., 464 , 3131-3157.

Kesden, M., Sperhake, U., & Berti, E. (2010). prd , 81 (8), 084054.

Khan, F. M., Fiacconi, D., Mayer, L., Berczik, P., & Just, A. (2016). ApJ , 828 , 73.

Khan, F. M., Just, A., & Merritt, D. (2011). ApJ , 732 , 89.

Kharb, P., Lal, D. V., & Merritt, D. (2017). A candidate sub-parsec binary black hole in
the Seyfert galaxy NGC 7674 Nature Astronomy , 1 , 727-733.

Khochfar, S., & Burkert, A. (2006). A&A, 445 , 403-412.

Kim, H., & Kim, W.-T. (2007). ApJ , 665 , 432-444.

Kim, W.-T. (2010). ApJ , 725 , 1069-1081.

Kocsis, B., & Sesana, A. (2011). M.N.R.A.S., 411 , 1467-1479.

Kormendy, J., & Ho, L. C. (2013). Ann. Rev. A&A, 51 , 511-653.

Koushiappas, S. M., Bullock, J. S., & Dekel, A. (2004). M.N.R.A.S., 354 , 292-304.

149



Kozai, Y. (1962). AJ , 67 , 591.

Kuhlen, M., & Madau, P. (2005). M.N.R.A.S., 363 , 1069-1082.

Kulier, A., Ostriker, J. P., Natarajan, P., Lackner, C. N., & Cen, R. (2015). ApJ , 799 ,
178.

Kulkarni, G., & Loeb, A. (2012). M.N.R.A.S., 422 , 1306-1323.

Kupi, G., Amaro-Seoane, P., & Spurzem, R. (2006). M.N.R.A.S., 371 , L45-L49.

Lajoie, C.-P., & Sills, A. (2011). ApJ , 726 , 67.

Latif, M. A., Bovino, S., Grassi, T., Schleicher, D. R. G., & Spaans, M. (2015). M.N.R.A.S.,
446 , 3163-3177.

Latif, M. A., Schleicher, D. R. G., & Schmidt, W. (2014). M.N.R.A.S., 440 , 1551-1561.

Latif, M. A., Schleicher, D. R. G., Schmidt, W., & Niemeyer, J. (2013). M.N.R.A.S., 433 ,
1607-1618.

Lattimer, J. M., & Prakash, M. (2005). Physical Review Letters , 94 (11), 111101.

Lauer, T. R., Faber, S. M., Gebhardt, K., Richstone, D., Tremaine, S., Ajhar, E. A., . . .
Siopis, C. (2005). AJ , 129 , 2138-2185.

Leigh, N. W. C., Stone, N. C., Geller, A. M., Shara, M. M., Muddu, H., Solano-Oropeza,
D., & Thomas, Y. (2016). M.N.R.A.S., 463 , 3311-3325.

Lentati, L., Taylor, S. R., Mingarelli, C. M. F., Sesana, A., Sanidas, S. A., Vecchio, A., . . .
Verbiest, J. P. W. (2015). M.N.R.A.S., 453 , 2576-2598.

Levine, R., Gnedin, N. Y., Hamilton, A. J. S., & Kravtsov, A. V. (2008). ApJ , 678 ,
154-167.

Lewin, W. H. G., van Paradijs, J., & van den Heuvel, E. P. J. (1997). .

Lin, Y.-T., Stanford, S. A., Eisenhardt, P. R. M., Vikhlinin, A., Maughan, B. J., & Kravtsov,
A. (2012). ApJL, 745 , L3.

Liu, Li, S., & Komossa, S. (2014). ApJ , 786 , 103.

Liu, Shen, Y., Bian, F., Loeb, A., & Tremaine, S. (2014). ApJ , 789 , 140.

Lodato, G., & Natarajan, P. (2006). M.N.R.A.S., 371 , 1813-1823.

Lodato, G., Nayakshin, S., King, A. R., & Pringle, J. E. (2009). M.N.R.A.S., 398 ,
1392-1402.

Lousto, C. O., Campanelli, M., Zlochower, Y., & Nakano, H. (2010). Classical and Quantum
Gravity , 27 (11), 114006.

150



Lousto, C. O., & Nakano, H. (2008). Classical and Quantum Gravity , 25 (19), 195019.

Lousto, C. O., & Zlochower, Y. (2011). Physical Review Letters , 107 (23), 231102.

Lousto, C. O., & Zlochower, Y. (2013). prd , 87 (8), 084027.

Lousto, C. O., Zlochower, Y., Dotti, M., & Volonteri, M. (2012). prd , 85 (8), 084015.

Lubow, S. H., & Ida, S. (2010). In S. Seager (Ed.), Exoplanets (p. 347-371).

Lupi, A., Haardt, F., Dotti, M., Fiacconi, D., Mayer, L., & Madau, P. (2016). M.N.R.A.S.,
456 , 2993-3003.

Ma, Q., Maio, U., Ciardi, B., & Salvaterra, R. (2015). M.N.R.A.S., 449 , 3006-3014.

MacFadyen, A. I., & Woosley, S. E. (1999). ApJ , 524 , 262-289.

Machacek, M. E., Bryan, G. L., & Abel, T. (2003). M.N.R.A.S., 338 , 273-286.

Machida, M. N., & Doi, K. (2013). M.N.R.A.S., 435 , 3283-3305.

Madau, P., Haardt, F., & Dotti, M. (2014). ApJL, 784 , L38.

Madau, P., & Rees, M. J. (2001). ApJL, 551 , L27-L30.

Madau, P., Rees, M. J., Volonteri, M., Haardt, F., & Oh, S. P. (2004). ApJ , 604 , 484-494.

Magorrian, J., Tremaine, S., Gebhardt, K., Richstone, D., & Faber, S. (1996). In American
astronomical society meeting abstracts (Vol. 28, p. 1423).

Maio, U., & Viel, M. (2015). M.N.R.A.S., 446 , 2760-2775.

Manchester, R. N., Hobbs, G., Bailes, M., Coles, W. A., van Straten, W., Keith, M. J., . . .
You, X. P. (2013). Publ. Astron. Soc. Australia, 30 , e017.

Marigo, P., Chiosi, C., & Kudritzki, R.-P. (2003). A&A, 399 , 617-630.

Mayer, L. (2013). Classical and Quantum Gravity , 30 (24), 244008.

Mayer, L., Kazantzidis, S., Madau, P., Colpi, M., Quinn, T., & Wadsley, J. (2007). Science,
316 , 1874.

McGreer, I. D., Becker, R. H., Helfand, D. J., & White, R. L. (2006). ApJ , 652 , 157-162.

McWilliams, S. T., Ostriker, J. P., & Pretorius, F. (2014). ApJ , 789 , 156.

Menou, K., Haiman, Z., & Narayanan, V. K. (2001). ApJ , 558 , 535-542.

Merloni, A., & Heinz, S. (2008). M.N.R.A.S., 388 , 1011-1030.

Merritt, D. (2006). ApJ , 648 , 976-986.

Merritt, D. (2013). Dynamics and Evolution of Galactic Nuclei.

151



Merritt, D., Alexander, T., Mikkola, S., & Will, C. M. (2010). prd , 81 (6), 062002.

Merritt, D., & Milosavljević, M. (2005). Living Reviews in Relativity , 8 , 8.
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Willott, C. J., Delorme, P., Reylé, C., Albert, L., Bergeron, J., Crampton, D., . . . Schade,
D. (2009). AJ , 137 , 3541-3547.

Willott, C. J., Delorme, P., Reylé, C., Albert, L., Bergeron, J., Crampton, D., . . . Schade,
D. (2010). AJ , 139 , 906-918.

Willott, C. J., McLure, R. J., & Jarvis, M. J. (2003). ApJL, 587 , L15-L18.

Wise, J. H., & Abel, T. (2007). ApJ , 665 , 899-910.

Wise, J. H., & Abel, T. (2008). ApJ , 685 , 40-56.

Wise, J. H., Turk, M. J., & Abel, T. (2008). ApJ , 682 , 745-757.

Wyithe, J. S. B., & Loeb, A. (2003). ApJ , 590 , 691-706.

Wyithe, J. S. B., & Loeb, A. (2012). M.N.R.A.S., 425 , 2892-2902.

Xu, H., Wise, J. H., & Norman, M. L. (2013). ApJ , 773 , 83.
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A Mergers and gravitational wave (GW) recoil kicks

When two BHs merge under user-specified criteria (i.e. GW decay time < orbital period),
the remnant BH gets a kick due to anisotropic emission of gravitational waves (Bekenstein,
1973; Fitchett & Detweiler, 1984; Favata et al., 2004).

We implement the effects of the recoil kick for BHs and take into account the mass loss
to gravitational radiation for the remnant BH using the analytic formulae with the best-fit
values given in Lousto et al. (2010). For the recoil kick, the fitting formula can be written
as follows,

vrecoil(q,α) = vmê1 + v⊥(cos ξ ê1 + sin ξ ê2) + v‖n̂‖, (106)

vm = A
η2(1− q)

1 + q
[1 +Bη]

v⊥ = H
η2

1 + q
(1 +BHη)(α

‖
2 − qα‖1)

v‖ = K
η2

1 + q
(1 +BKη)(α⊥2 − qα⊥1 ) cos(Θ∆ −Θ0) ,

(107)

where q is the mass ratio of two BHs in binaries, M1/M2(< 1), η = q/(1+q)2 and αi = S i/M
2
i

is the intrinsic spin of BH i and the indices ⊥ and ‖ refer to perpendicular and parallel to the
orbital angular momentum, respectively. ê1 and ê2 are orthogonal unit vectors in the orbital
plane, ξ measures the angle between the unequal mass and spin contribution to the recoil
velocity in the orbital plane. Θ∆−Θ0 is the angle difference between the in-plane component
and the infall direction at merger. Adopting their findings, we take A = 1.2 × 104 km s−1,
B = −0.93, H = 6.9× 103 km s−1, BH,K = 0, K = 6.0× 104 km s−1 and ξ = 145◦.

Using the same parameters drawn for the recoil velocities, we estimate remnant masses
using Eq. (4) up to the leading order and Eq. (5) in Lousto et al. (2010). For two BHs of
M1 and M2 of a binary, the remnant mass Mremnant is expressed as follows,

∆M

M1 +M2

= ηẼISCO, (108)

ẼISCO = (1−
√

8

3
) + 0.103803η

+
1

36
√

3(1 + q)2

[
q(1 + 2q)α

‖
1 + (2 + q)α⊥2

]
− 5

324
√

2(1 + q)2

[
α2

2 − 3(α
‖
2)2 − 2q(α1 ·α2 − 3α

‖
1α
‖
2)

+ q2(α2
1 − 3(α

‖
1)2)
]

(109)

Mremnant = M1 +M2 −∆M (110)
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total stellar mass M?

(
M?

1011 M�

)
= 2.00

(
MDM

1013 M�

)
(

M?

1011 M�

)
= 1.85

(
MBH

109 M�

)0.86

stellar dispersion σ

(
σ

200 kms−1

)
= 1.34

(
MDM

1013 M�

)0.26

(
σ

200 kms−1

)
= 1.31

(
MBH

109 M�

)0.23

half-mass radius rh

(
rh

kpc

)
= 5.34

(
MDM

1013 M�

)0.47(
rh

kpc

)
= 5.14

(
MBH

109 M�

)0.41

core radius rc

(
rc
pc

)
= 0.92

(
MDM

1011 M�

)0.99

or
(

rc
kpc

)
= 0.089

(
MDM

1013 M�

)0.99(
rc
pc

)
= 1.56

(
MBH

107 M�

)0.86

or
(

rc
kpc

)
= 0.082

(
MBH

109 M�

)0.86

core density ρc

(
ρc

M� pc−3

)
= 240

(
MDM

1013 M�

)−1.46(
ρc

M� pc−3

)
= 270

(
MBH

109 M�

)−1.26

core mass Mc

(
Mc

109 M�

)
= 0.453

(
MDM

1013 M�

)1.52

= 0.158
(

M?

1011 M�

)1.52(
Mc

109 M�

)
= 0.403

(
MBH

109 M�

)1.31

Table 13: The variables relevant for the model galaxy in this work in terms of BH mass MBH

and DM halo mass MDM, derived using the scaling relations 1 to 4.

B Scaling relations

We provide in Table 13 the scaling relations between the relevant variables in our model
in terms of MBH (as well as MDM), derived with the four scaling relations 1-4. We show
derivations for some of the exponents in the table which are less immediate.

1. Relations of σ:

Using the scaling relation 3 and the relation between MBH and MDM (same as the
scaling relation 2),

σ ∼M
1/4.38
BH ∼M

1.16/4.38
DM = M0.26

DM . (111)

2. Relations of rh:

Combining the relation rh ∼M?/σ
2 and the scaling relation 1 and 3 (or Equation 111

derived above),

rh ∼M?σ
−2 ∼MDM

(
M−0.26

DM

)2 ∼M0.47
DM ∼M0.47

? . (112)
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And the relation MDM ∼M0.86
BH gives,

rh ∼M0.47
DM ∼M0.41

BH . (113)

3. Relations of rc:

From the scaling relation 4 we find

rc ∼M0.86
BH ∼M0.86×1.16

DM ∼M0.99
DM ∼M0.99

? . (114)

4. Relations of ρc:

Given Equation (5) in Stone & Ostriker (2015) and Equations 113 and 114, for rh � rc,

ρc ∼M?r
−1
h (rc)

−2 ∼MDMM
−0.41
DM

(
M−0.99

DM

)2 ∼M−1.46
DM ∼M−1.46

? . (115)

The scaling relation 2 gives

ρc ∼M−1.46
DM ∼M−1.26

BH . (116)

5. Relations of Mc:

Starting with Equation (6) in Stone & Ostriker (2015),

Mc ∼ rc (rh)−1M?, (117)

and inserting Equation 112 and 114 in to Equation 117 above, we arrive at the expres-
sions

Mc ∼ rc (rh)−1M? ∼M0.99
DM M−0.47

DM MDM ∼M1.52
DM ∼M1.52

? , (118)

and

Mc ∼M1.31
BH . (119)

6. rc − rh relation:

rh

rc

= 63

(
MBH

109 M�

)−0.45

= 60

(
MDM

1013 M�

)−0.52

, (120)

or (
rh

kpc

)
= 16.9

(
rc

kpc

)0.48

→
(
rh

kpc

)
= 0.61

(
rc

pc

)0.48

, (121)(
rc

kpc

)
= 0.0026

(
rh

kpc

)2.10

→
(
rc

pc

)
= 2.6

(
rh

kpc

)2.10

. (122)
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