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Abstract of the Dissertation

Aspects of global symmetry in quantum
many-body systems.

by

Abhishodh Prakash

Doctor of Philosophy

in

Physics

Stony Brook University

2018

Symmetries lie at the heart of understanding many physical phe-
nomena - from solids and liquids to fundamental forces. In par-
ticular, the existence of distinct phases of matter, which has con-
sequences as important as the very existence of life, is in several
cases a consequence of the manner in which global symmetries in-
terplay with dynamics. One important route for the formation
of phases is when symmetry is spontaneously broken. Examples
include the transition of a liquid to solid or fluid to superfluid. In-
deed, there was a time when all known examples of phases were
believed to be understood in this framework leading to specula-
tions that symmetry-breaking was the ultimate theory of phases
and phase transitions. In the recent decades however, several ex-
amples of phases that lie outside the symmetry-breaking paradigm
have been discovered both experimentally and theoretically like
quantum hall phases, topological insulators and the Haldane phase.
It is now understood that in order to have non-trivial phases,the
presence of global symmetries is not essential and if present, they
need not be broken. In this thesis, we will study various quantum
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many-body systems, their phases and the e↵ect of global symme-
tries from this modern viewpoint.

In the first part, we will study how to detect various phases of
one-dimensional spin chains via appropriately designed order pa-
rameters when we know the global symmetry of the system and
test this out on a model Hamiltonian. Next, we will explore how
so-called symmetry-protected topological (SPT) phases which are
non-trivial phases without broken symmetries can be unwound by
extending the symmetry. In the second part, we demonstrate how
certain SPT phases can serve also as computational phases of mat-
ter i.e. phases of matter that can be used to obtain resource
states for quantum computation. In the last part, we explore
disorder-driven out-of-equilibrium phases of matter, dubbed eigen-
state phases and their stability in the presence of di↵erent kinds of
global symmetries.
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Chapter 1

Introduction

1.1 The importance of phases

The existence of matter in distinct phases has several consequences. The
most important example is perhaps that of water. Without any change in
its chemical composition, depending on external conditions like temperature
and pressure, water molecules can organize themselves into several phases-
solid, liquid and gas. In its liquid form, water is understood to be crucial
for the existence of life [1]. It is for this reason that in order to search for
extraterrestrial life, NASA’s Kepler observatory looks for Earth-like planets,
called Goldilocks planets that exist in the so-called habitable zone i.e. the range
of orbits around a star within which a planetary surface can support liquid
water [2]. Not just the existence of di↵erent phases but also phase transitions
i.e. the ability to go from one phase to another by varying external parameters
is also very important. By freezing water into ice, it can be used to preserve
things and by boiling it into steam, it can be used to power engines. The ability
to melt metals into its liquid form has proven very useful in remodeling them
to desired shapes. Finally, di↵erent phases respond di↵erently to electrical
and thermal currents and this has been used extensively for various practical
purposes– good insulators are used to build shelters that provide protection
from the elements and good metals are used to distribute heat and electricity.

From an academic point of view, the study of phases and phase transitions
is highly interesting even when disconnected from commercial and practical
uses and this study has a long history which we will briefly glimpse below.
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1.1.1 What makes up stu↵?

The study of phases of matter is closely linked with the search for the
fundamental constituents of matter. Interestingly, the best theory for what
the universe is made up of had been more-or-less the same for close to two
millenia. These were called the classical elements– earth, fire, air and water.
While the origin of this is commonly attributed to ancient Greece (during the
fourth century B.C.), similar lists have also been found in the ancient cul-
tures of Babylon, Japan, Tibet, India and China [3]. It was the scientific
revolution [4] with its new ideas, rigor and techniques like experimentation,
mathematical modeling and empericism that brought about a significant im-
provement of the understanding of the building blocks of the universe. The
first list of indivisible constituents, called elements, was published by Antoine-
Laurent de Lavoiser in 1789 which included oxygen, nitrogen, hydrogen and
others which are part of the modern list of elements we well as ‘light’ and
‘caloric’ which are not. A significant achievement of this line of study was the
publication of the periodic table by Dimitri Mendeleev in 1869 [5] that not
only organized a large number of observed elements but also made predictions
for undiscovered ones (which were subsequently proven). It is now known that
elements themselves are further divisible and the modern viewpoint of fun-
damental building blocks, called the standard model of elementary particles
is phrased in terms of fundamental fields and their excitation quanta, called
fundamental particles. This too is believed to be incomplete and the search
for a more general theory is an active area of ongoing research.

1.1.2 What the stu↵ that make up stu↵ make up?

In the early nineteenth century, the English chemist, Humphry Davy ob-
served that of the 40 chemical elements known, twenty-six had metallic proper-
ties. He further conjectured that elements that were then believed to be gases,
such as nitrogen and hydrogen could be liquefied under the right conditions and
would then behave as metals [6]! Clearly, Davy understood that even though
the constituents of a substance were unchanged (indivisible elements even), in
large numbers, they could organize themselves into di↵erent phases. Davy’s
conjectures were subsequently proven– in 1823, Michael Faraday, then an as-
sistant in Davy’s lab, successfully liquefied chlorine and most known gaseous
elements and by 1908, James Dewar and Kamerlingh Onnes were successfully
able to liquefy hydrogen and helium, respectively. The emerging picture of
phases and phase transitions was as shown in fig. 1.1 (taken from ref. [7]).
The discovery of superconductivity in 1911 by Kamerlingh Onnes and super-
fluidity in liquid helium by Pyotr Kapitsa and John Allen in 1937 compelled
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Figure 1.1: Schematic of phases and phase transitions.

the need for a systematic understanding of phases and phase transitions.

1.2 The role of symmetries

1.2.1 Orders of phase transitions

One of the earliest and most successful attempts at a systematic under-
standing of phases and phase transitions is the theory of spontaneous sym-
metry breaking (SSB). Before understanding SSB, we need to understand the
notion of an order of a phase transitions. Roughly, phase transitions can be of
two types:

1. First-order: Characterized by an abrupt change in the free energy, latent
heat and a co-existence of phases near phase transitions.

2. Continuous/ second-order: Characterized by a divergent susceptibility
and an infinite correlation length but no abrupt change in the free energy.

It can be said that it is the continuous phase transitions which are the in-
teresting ones. This is because first order phase transitions can either be cir-
cumvented or avoided by appropriately tuning external parameters (like how
the water-steam phase transition as a function of pressure disappears beyond
a certain temperature) or they turn into second order phase transitions. The
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Landau-Ginzburg phase transitions via SSB describes a class of continuous
phase transitions [8].

1.2.2 Spontaneous symmetry breaking and universality

A symmetry can be thought of as the collection of actions that leaves
something of interest invariant. For example, if the thing of interest is a
triangle, there are six actions that leaves it invariant. These symmetry actions
can be generated by a combination of a 120 degree rotation about the center
and reflection about one of the axes of symmetry as shown in fig.1.2. The

Figure 1.2: Symmetries of the triangle.

mathematical framework that describes the set of symmetry actions and their
properties is group theory. Spontaneous symmetry breaking can be understood
in a nutshell as a phenomenon where a problem has a set of symmetries but
its solutions have only a subset of those symmetries. A clear illustration of
the essential features of this phenomenon, taken from the review of symmetry
breaking and ordered media by Michael [9] is as follows. The problem is very
simple– what is the curve joining the four corners of a square of unit length?
The problem clearly has the symmetries of the square. However, the solutions,
shown in fig. 1.3 which are curves of length 1 +

p
3 clearly have symmetries

fewer than that of the square. Specifically, the solutions are longer invariant
under a 90 degree rotation about the center of the square. The number of
degenerate solutions are the same as the number of symmetries of the problem
divided by the number of symmetries of the solutions. In fact, the broken
symmetry generator of rotation of the square by 90 degrees relates the two
solutions as can be seen in fig. 1.3. In the Ginzburg-Landau framework, phases
can be thought of as being described by a family of problems, parametrized
by a set of continuous parameters (temperature, pressure, magnetic field, . . . )
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Figure 1.3: Illustrative example of spontaneous symmetry breaking.

with a certain set of symmetries, and the solutions with a subset of those
symmetries. A SSB phase transition between a disordered phase (when the
symmetries of the problem are also those of the solution) to an ordered phase
(when some of the symmetries of the problem are broken and are not the
symmetries of the solutions) happens at some value of the parameters which
is called the critical point. What the problem is depends on whether we are
looking at classical or quantum phases. For classical phases, the problem is
to find configurations of the system that minimizes a certain quantity called
the free energy. For quantum phases, the problem is to find minimum energy
quantum states called the ground states of the system. The symmetries of
the problem are reflected in the symmetries of the quantity that defines the
dynamics of the system- the energy function for a classical system and the
Hamiltonian for a quantum system.

More formally, the Ginzburg-Landau framework is a phenomenological ap-
proach to phases and phase transitions based on SSB. In this framework,
phases are classified by some universal quantities independent of microscopic
details: space-time dimensions, unbroken and broken symmetries. Further-
more, phase transitions can be classified and divided into placed in univer-
sality classes based on a set of numbers, called critical exponents which can
be measured experimentally. Furthermore, the framework posits that near a
phase transition, a system in equilibrium can be described by a set of local or-
der parameters. The information about the unbroken and broken symmetries
are encoded in the symmetry properties of the order parameter and critical
exponents are obtained by studying the e↵ective field theory that describes
the dynamics of these order parameters with the aid of tools and techniques
like renormalization group.
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1.3 Going beyond spontaneous symmetry break-
ing

The Ginzburg-Landau framework was so successful that there were specu-
lations that all phases and phase transitions could be understood within this
framework. For the existence of a non-trivial phase of a system in equilibrium,
the Ginzburg-Landau framework requires the following in the physical system:

1. The presence of global symmetries.

2. The spontaneous breaking of some of these symmetries.

We will see that both of these requirements can be relaxed to obtain equi-
librium phases and phase transitions that are outside the scope of SSB. We
will also see that the very existence of equilibrium may be inessential to the
existence of a phase which can be defined rather generally.

The main challenge to the sovereignty of the Ginzburg-Landau framework
over the study of phases came with the experimental discovery of the quantum
Hall e↵ect (QHE) [10]– a phenomenon observed in a two-dimensional electronic
gas in the presence of strong magnetic field perpendicular to the plane of the
gas as shown in fig. 1.4. It was found that for a fixed strength of magnetic

Figure 1.4: Schematic set-up of the quantum Hall experiment (left), experi-
mental results (right)

field, the conductance in one of the planar directions after the application
of a voltage in the perpendicular planar direction (called Hall response) was
quantized to be integer multiples of the fundamental unit of conductance,
e
2

h
(subsequently, Hall responses of rational multiples were also discovered).

This quantization was stable to perturbations of the magnetic field. It was
soon clear that each quantized Hall response corresponded to a distinct phase
of matter which could not be characterized by the spontaneous breaking of
any symmetries. Furthermore, it is believed that essential features of these
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phases, especially of systems with a non-integer Hall response (called fractional
quantum Hall systems) do not even rely on the presence of any symmetries, let
alone their spontaneous breaking. Such phases are said to possess topolgical
order.

A second counter example to the symmetry breaking picture is the suc-
cessful prediction [11, 12] and discovery [13] of topological insulators. These
are non-trivial band insulators that possess global symmetries which are es-
sential to distinguish them from ordinary insulators but are not spontaneously
broken. Topological insulators belong to a prominent example of a non-trivial
symmetry protected topological (SPT) phase. We will return to SPT phases in
the chapters contained in the first two parts of this thesis.

A third example is perhaps the most drastic departure- the study of out-
of-equilibrium phases. The earliest instance of such an example is that of
systems which have Anderson localization [14]. These are weakly interacting
quantum systems with quenched disorder which show an absence energy and
charge transport. A renewal of interest in these systems was motivated by the
seminal work of Basko et. al. [15] who showed that localization can persist
even in the presence of strong interactions. Such systems with many-body
localization [16] are believed to belong to a new type of phase of matter whose
members violate the so-called eigenstate thermalization hypothesis (ETH) [17].
It is believed that the existence of such phases, usually observed in systems
with strong quenched disorder, require no symmetries to be present and whose
signatures can be detected at high energies and large ambient temperatures.
We will return to such phases in the third part of this thesis.

1.4 Phases of matter in perspective

Let us explore the notion of a phases in a little more holistic manner. At
a grand level, we wish to take the collection of all physical systems and define
a way to partition them. These partitions can schematically be called phases.
While appealing in its generality and simplicity, this definition is severely
lacking in some important details:

• What do we mean by physical systems?

• On what basis do we partition them?

• How do we study them?

Rather than thinking of these questions as having or lacking absolute an-
swers, we will think about them as additional pieces of information that needs
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to be specified to complete the formulation of the problem. Let us understand
each of these questions separately.

1.4.1 What do we mean by physical systems?

We will first list a set of characteristics that are considered to be essential
for any physical system to investigate the question of phases.

• Thermodynamic limit : First, it has been shown that a sharp notion
of a phase is obtained when we are considering systems in the thermody-
namic limit i.e. when the degrees of freedom of the physical system are
infinitely many. One way to arrive at this limit is when the system is
built out of a large number of individual units each with its own set of
degrees of freedom. A degree of freedom can be thought of as a random
variable for classical systems and as the dimensionality of the Hilbert
space for quantum systems. Note that care must be taken to interpret
this in quantum systems. For example, a single harmonic oscillator or
a hydrogen atom itself lives in an infinite dimensional Hilbert space but
cannot be thought of as a system in the thermodynamic limit while an
infinite number of harmonic oscillators or hydrogen atoms can be. A sys-
tem in thermodynamic limit does not need to be built out of individual
units at all. For example, dimer-coverings of a lattice [18] are commonly
studied as representing the degrees of freedom of a classical system or
as labeling the basis states of the Hilbert space of a quantum system in
thermodynamic limit.

• Locality and dimensionality : A reasonable attribute for a physical
system is its dimensionality. This usually has a visual description in
terms of the individual units of the system– particles, spins etc. being
placed on or the dimer coverings being defined on a lattice of a certain
dimension. However, in order to meaningfully talk about dimensionality,
we must also talk about the locality of interactions. Let us restrict
ourselves to quantum systems for this discussion. The evolution of a state
of a quantum system is described by a Hamiltonian operator which is a
Hermitian operator that acts on the Hilbert space of the system. The
Hamiltonian is local if it is a sum of local operators. An operator is
said to be local at a point if it acts non-trivially on the Hilbert space
associated to a finite neighborhood of the point. For example, for qubits
on a lattice, a local operator at a point x acts as the identity operator
on the Hilbert space of spins far away from x and non-trivially on the
spins close to x. For dimer coverings, a local operator at x changes the
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local dimer configuration near x and leaves the dimer configurations far
away unchanged. If the Hamiltonian was not local and if its terms acted
on far separated qubits, the location of qubits on the lattice would have
very little meaning or consequence and we could, for all purposes imagine
them being located on a cluster or a dot. In other words, a non-local
Hamiltonian can be thought of as describing a zero dimensional system.
Thus, the dimensionality of the system itself can be interpreted as a
consequence of the locality of the interaction terms of the Hamiltonian.

So far, we have listed properties that are expected to hold for any reason-
able physical system. We will now list attributes that are more optional and
serve to make the problem complex and richer:

• Symmetry : As defined before, the symmetries of a system is a set of
transformations that leaves the quantity that describes the dynamics of
the system invariant. For a classical system, this is the energy function
which is a function that assigns to a given configuration of the system a
number– energy and a symmetry transformation is a set of transforma-
tions that does not change the energy when it acts on any configuration.
The symmetries of a quantum system are the set of operators that com-
mute with the Hamiltonian.

• Spectral properties : This is a feature of quantum systems in the
thermodynamic limit described by time-independent Hamiltonians. A
gapped system is one whose Hamiltonian has a finite number of ground
states and a finite energy gap separating the first excited state. A gap-
less system is one whose Hamiltonian has excited states arbitrarily close
to the ground state.

1.4.2 On what basis do we partition them?

Once we specify the class of physical systems we wish to study phases of, we
need to specify how we want to partition them into phases. To do this, we need
to specify an equivalence relation between physical systems. An equivalence
relation ⇠ is a binary relation on a set S that has the following properties

1. Reflexivity: 8 s 2 S, s ⇠ s

2. Symmetry: 8 a, b 2 S, a ⇠ b =) b ⇠ a

3. Transitivity: 8 a, b, c 2 S, a ⇠ b, b ⇠ c =) a ⇠ c

9



If we interpret the set as the collection of physical systems, the specification of
an equivalence relation divides the set into equivalence classes. These equiva-
lence classes can be thought of as the di↵erent phases of the class of physical
systems in consideration. We will look at examples of di↵erent equivalence
relations on di↵erent physical systems in the next section.

1.4.3 How do we study them?

Once we have specified a class of physical systems and the equivalence
relation, in order to study the di↵erent phases, two lines of investigation are
often employed:

1. Classification: The objective of classification is to enumerate the distinct
phases and identify their structure.

2. Characterization: The objective of characterization is to identify the set
of physical properties common to the members of each distinct phase
and to develop methods of identifying these characteristics in any given
physical system so as to unambiguously diagnose the phase it belongs
to.

The above two programs usually work hand-in-hand. Understanding how to
characterize di↵erent phases sometimes points to the structure of the phases in
their classification and vice versa. A great example is that of integer quantum
Hall phases which are characterized by their quantized Hall response by means
of which they can be assigned integer labels. This labeling suggests that these
phases can be classified to have a group structure of integers, Z.

1.4.4 Examples

Let us understand some examples of phases in the terminology we intro-
duced above.

Equilibrium gapped phases

Local observables of a quantum system in equilibrium at a certain temper-
ature T = 1

�
are described by a time-independent Hamiltonian are obtained

using a thermal density matrix

⇢th =
e��H

Tr(e��H)
(1.1)
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It has been shown that a sharp notion of a phase transition can be seen at
zero temperature T = 0 at which point the thermal density matrix describes
the physics in the ground states of H [19]. Such zero temperature phases are
sometimes also called quantum phases. When a family H(�) has a gap for
some �, the phase transition happens when the gap closes, at some critical �c.

Gapped quantum phases in the absence of symmetries are called topological
phases. Let us list the di↵erent aspects of such phases below:

• Physical systems : Local quantum systems in the thermodynamic
limit {si 2 S} described by time independent Hamiltonians {Hi 2 H}
which have a spectral gap.

• Equivalence : si ⇠ sj if 9s(�) described by H(�) 2 H|H(0) = Hi, H(1) =
Hj. In other words, the Hamiltonians describing two systems in the same
phase can be continuously interpolated without closing the gap.

• Partial classification : A class of gapped phases are believed to be
described by topological quantum field theories (TQFT) meaning the
problem of classification of gapped phases can be mapped into the clas-
sification of TQFTs. This is completed in some cases in 1+1 D and 2+1
D. The general picture is still unavailable.

• Characterization : Anyons, topological entanglement entropy, ground
state degeneracy, long-range entanglement. . .

• Examples : quantum Hall phases [10], string net models [20], quantum
double models [21]. . .

The problem of gapped phases with symmetries is a refinement of the above
with an additional condition on the set of physical systems under consideration–
quantum systems in the thermodynamic limit {si 2 S} described by time in-
dependent Hamiltonians {Hi 2 HG} which have a spectral gap and commute
with the representation Ug of some symmetry group G. The equivalence rela-
tion that defines the notion of phases is the same as that of gapped phases but
on this restricted set of physical systems. This typically increases the number
of phases possible. A trivial gapped phase without symmetry can split into
di↵erent phases with symmetry restriction. Let us list some cases of gapped
symmetric phases which are of special interest.

• Gapped phases of symmetric Hamiltonians that have trivial topologi-
cal order and no spontaneous symmetry breaking are called symmetry
protected topological (SPT) phases.
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• Gapped phases of symmetric Hamiltonians that have non-trivial topolog-
ical order and no spontaneous symmetry breaking are called symmetry
enriched topological (SET) phases.

• Gapped phases of symmetric Hamiltonians that have trivial topological
order and no SPT order correspond to the familiar Ginzburg-Landau
phases.

Clearly, there exist combinations of symmetry breaking, topological, SPT and
SET ordering that are possible beyond the list above. To classify and charac-
terize all these phases is an ongoing program.

Out-of-equilibrium phases

Unlike the case of equilibrium phases, out-of-equilibrium phases are rela-
tively ill defined poorly understood. However, increasing numerical and exper-
imental evidence points at the promise of several interesting properties present
in these systems. This motivates understanding such phases better, by devel-
oping adequate analytical tools is a worthwhile endeavor and is an ongoing
field of research. Several out-of-equilibrium phases are believed to have eigen-
state order, meaning that properties that are typically found in the ground
states of equilibrium phases are also found in the entire spectrum. However, a
clear mechanism of phase transition like gap closure is not available. We list
below some details that are known about these so-called eigenstate phases

• Physical systems : Local quantum systems in the thermodynamic
limit.

• Equivalence : Unclear.

• Classification : Unclear.

• Characterization : Violation or non-violation of ETH, scaling of entan-
glement entropy in highly excited states, transport properties, emergence
of a complete set of local conserved quantities, level-statistics, . . .

• Examples :Systems with low disorder, which satisfy ETH are called
thermal systems and systems with high disorder which violate ETH are
called MBL systems. The existence of eigenstate phases beyond these
two are speculative at best.

Like equilibrium phases, the presence of global symmetries again adds a
refinement to the study of out-of-equilibrium phases. Below, we mention some
examples of conjectured phases with non-trivial eigenstate order in the pres-
ence of global symmetries
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• When the dynamics is described by time-independent Hamiltonians, sig-
natures of equilibrium phases like SPT, SET and SSB phases that are
observed in ground states are believed to be present in highly excited
eigenstates also. These phases are named MBL-SPT [22, 23], MBL-SET
and MBL-Spin Glass [24] phases.

• When the dynamics is described by time-dependent Hamiltonians with a
single frequency (called Floquet systems), it has been shown that phases
with non-trivial eigenstate order can exist [25, 26]. Furthermore, time-
periodicity can be interpreted as a global symmetry isomorphic to the
group Z. This can be spontaneously broken when the system has non-
trivial eigenstate order, giving rise to time crystals [27, 28].

• Floquet systems with additional symmetries can have SPT phases that
are absent in undriven systems (called Floquet-MBL-SPT phases) [29–
31]. These are characterized by boundary modes that are ‘pumped out’
every Floquet cycle. Similarly, there can also exist SET phases that have
no time-independent equilibrium analog.

The third part of this thesis is concerned with the nature of eigenstate
phases in the presence of global symmetries.

Computational phases

One of the most successful methods to store and manipulate classical in-
formation is the use of magnetic materials in the ordered ferromagnetic phase.
The advantage is that small changes to the system- fluctuations in tempera-
ture, chemical composition does not change the material’s utility as a compu-
tational resource state. Such a class of systems which can be used as compu-
tational resource states is called a computational phase. The statement that
magnetic materials are useful for storing and manipulating information is to
say that some symmetry-broken phases also serve as computational phases.
It is an interesting question (that may or may not have commercial utility)
whether all computational phases useful for classical computation also coin-
cide with symmetry-breaking ordered phases. An equivalent question can be
also asked in the context of quantum information processing:

1. Can we define a computational phase of physical systems that can serve
as resource states for quantum information processing, perhaps of a given
type (topological, circuit-based, measurement-based).

2. Does such a phase coincide with any well-known phases like in the clas-
sical case?
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There has been increasing evidence to suggest that the answer to both above
questions is in the a�rmative.

1. It has been shown that anyonic excitations present in certain topologi-
cal phases can be used for topological quantum computation [21]. Such
topological phases can also be compuational phases.

2. It has been shown that the short-range-entangled ground states of certain
SPT phases can be useful for measurement based quantum computation
(MBQC) [32–36].

Let us focus on the case of computational phases useful for MBQC. We want to
look for ground states of Hamiltonians that can be resource states for MBQC.
As a result, the approach to understand such phases can be posed in a manner
similar to that of equilibrium phases.

• Physical systems : Local quantum systems in the thermodynamic
limit {si 2 S} described by time independent Hamiltonians {Hi 2 H}
whose ground state is a resource state for MBQC.

• Equivalence : si ⇠ sj if 9s(�) described by H(�) 2 H|H(0) = Hi, H(1) =
Hj.

• Classification : Largely unknown

• Characterization : The ability to simulate quantum gates, initialize
input quantum information and read out processed result.

• Examples : Certain 1+1D SPT phases [34, 35, 37].

In the second part of the thesis, we explore these questions in detail.
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Part I

Equilibrium phases of matter
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Chapter 2

Detection of gapped phases of a
1D spin chain.

The contents of this chapter are published in Ref. [38] completed in collab-
oration with Tzu-Chieh Wei and Colin West.

2.1 Introduction

The program of classifying and characterizing di↵erent phases of matter
has been revived and actively pursued in recent years. One aspect is to clas-
sify phases based on global symmetries. In the Landau-Ginzburg paradigm,
given a class of many-body Hamiltonians invariant under a global symmetry
defined by a group G, di↵erent phases of matter can be enumerated by the
spontaneous symmetry breaking of G and labeled by the residual symmetry H
that G is broken down to. One could also envision the existence of local order
parameters which arise from symmetry breaking and hence be able to distin-
guish between these phases. However, after the discovery of the Quantum Hall
E↵ect [39, 40], it was realized that the Ginzburg-Landau symmetry-breaking
picture might not be enough to classify all phases of matter [41]. Some sys-
tems like the fractional quantum hall states [40], spin liquids [42], quantum
double models [21] and string-net models [20] do not even need symmetries
and are called intrinsic topological phases or simply topological phases. Even
with symmetries, several new phases have been discovered which are not clas-
sified by symmetry-breaking or characterized by local order parameters; such
as topological insulators [11] and the Haldane phase of spin-1 chains [43–45].
These phases are called symmetry protected topological (SPT) phases [46, 47].
Furthermore, if we consider global symmetry in systems with intrinsic topo-
logical order, we can have more phases called symmetry enriched topological
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phases [48–50]. In gapped 1D spin chains, which we focus on in this chapter
however, it has been shown that there cannot be any intrinsic topological order
and hence all phases are either symmetry breaking or SPT phases [46, 51–55].

Given that the classification program has been much explored, there has
been interest in developing ways to detect which phase of matter a system be-
longs to. Since local order parameters are insu�cient to detect phases that are
not characterized by spontaneous symmetry breaking (SSB), there have been
attempts to develop other quantities that can detect SPT phases like non-local
‘string’ order parameters [54, 56–59] and Matrix Product State (MPS) order
parameters [54]. Furthermore, if we include the possibility of both symmetry
breaking and SPT phases, there is a rich set of possible phases [52]. Given a
global symmetry group G, the ground state can spontaneously break the sym-
metry to one of its subgroups H ⇢ G. However for each subgroup H, there
can exist di↵erent SPT phases that do not break symmetry spontaneously.
The situation is even more interesting if there are both internal and space-
time symmetries like parity and time reversal invariance. In this chapter, we
generalize the techniques of Ref [54] and study the phase diagram for a two
parameter Hamiltonian of a spin-1 chain which is invariant under a global on-
site (internal) A4 symmetry along with invariance under lattice translation and
lattice inversion (parity). Through suitable MPS order parameters, we detect
both the di↵erent SSB and SPT phases and label them using the classification
framework of Ref [52]. A total of eight distinct phases are identified within
the parameter space we consider. In particular, we find among these a di-
rect, continuous transition between two topologically nontrivial A4-symmetric
SPT phases, distinguished by the 1D representations of the symmetries, as
explained below.

This chapter is organized as follows. In section 2.2, we described the A4

spin-chain Hamiltonian studied here and present its phase diagram which con-
tains the main results of this chapter. In section 2.3, we review the classi-
fication of 1D gapped-spin chains and list parameters which can be used to
completely classify phases. In section 2.4, we describe the full details of the
phase diagram of the A4 model, and also enumerate the several possible phases
that can in principle exist given the symmetry group of the parent Hamilto-
nian. Section 2.5 presents, in detail, the numerical techniques by which the
states and parameters were obtained, and section 2.6 gives a summary of our
results.
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2.2 Overview of main results

2.2.1 The Hamiltonian

We will now describe an A4 and inversion symmetric Hamiltonian whose
phase diagram we study in detail. The total Hamiltonian consists of three
parts. The first is the Hamiltonian for the spin-1 Heisenberg antiferromagnet
which is invariant under the spin-1 representation of SO(3):

HHeis =
X

i

Si · Si+1, (2.1)

where Si ·Si+1 ⌘ Sx

i
Sx

i+1 + Sy

i
Sy

i+1 + Sz

i
Sz

i+1. We add two other combinations,
Hq and Hc to the Heisenberg Hamiltonian which breaks the SO(3) symmetry
to A4, the alternating group of degree four and the group of even permutations
on four elements (equivalently, the group of proper rotations a tetrahedron).
These terms are defined as:
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i
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i
(SySx)i+1 + Sy

i
(SxSz)i+1]. (2.2)

For details on how the perturbations are constructed, see Appendix A.1 or
Ref [36].

The operators in Hc are symmetrized so that the Hamiltonian is invari-
ant under inversion as well as lattice translation. With this we have a two-
parameter Hamiltonian invariant under an on-site A4 symmetry along with
translation invariance and inversion.

H(�, µ) = HHeis + �Hc + µHq. (2.3)
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Figure 2.1: The phase diagram for a two-parameter Hamiltonian 2.3 con-
structed to have an on-site A4 symmetry, as well as parity translation invari-
ance. The symmetries of the Hamiltonian spontaneously break into five di↵er-
ent residual symmetry groups in the ground states. These break down further
when classified according to the relevant topological parameters, yielding eight
distinct phases overall. The diversity of phases from the comparatively simple
Hamiltonian shows the necessity of carefully accounting for all possible sym-
metries and topological parameters when attempting to characterize the phase
of a ground state. For a description of the phases A-H, see discussions in the
main text.

2.2.2 Summary of numerical results

We employ the iTEBD algorithm [60] to numerically analyze the ground
states across a range of parameters µ = [�3, 4], � = [�2, 2] and find a wide
variety of phases. In the parameter space analyzed, a total of eight distinct
regions can be identified (labeled with letters A-H in Fig. 2.1). These regions
are distinguished both by the symmetries of the ground states, and also by
the classification parameters of Ref [52].

From the symmetry group G of the parent Hamiltonian, which contains A4,
spatial inversion, and translation symmetries, only the inversion and transla-
tion symmetries remain in the ground states of region A. Regions B, C, and
D, by contrast, all respect the full set of symmetries of the parent Hamiltoni-
ans but are di↵erentiated by one of the SPT parameters: namely, the overall
complex U(1) phase produced under A4 transformations. These U(1) phases
are di↵erent 1D irreducible representations (irreps) of A4 and correspond to
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distinct SPT phases protected by translation and on-site symmetries. In phase
E, the ground state breaks the symmetry to on-site Z2 and parity. The transla-
tion symmetry in this region is broken down from single-site translation invari-
ance to two-site. This broken, two-site translation symmetry is also present
in regions F and G, but here the remaining symmetries of A4 and parity are
completely preserved. Like regions B, C, and D, regions F and G have the
same symmetry but are distinguished from one another only by the values of
their SPT parameters. Finally, in region H, the residual symmetry group has
an internal Z2 ⇥ Z2 symmetry and parity along with an one-site translation
invariance.

Among these eight phases, five correspond to instances of SSB and the
remaining three correspond to SPT phases without symmetry breaking. The
complete set of such parameters classifying these phases will be described in
section 2.3, and the particular values which distinguish them from one another
are presented in section 2.4.

Because the phases B, C, and D are not distinguished by any symmetry-
breaking criteria (and because none of them are topologically trivial), the
boundary lines between them are of particular interest as examples of non-
trivial SPT to non-trivial SPT phase transitions. Such transitions are consid-
ered uncommon as compared to the more typical case of a transition between
SPT and symmetry breaking phases, or trivial to non-trivial SPT phase tran-
sitions and have recently attracted particular interest [61–64]. Our analysis,
however, shows that this model contains direct nontrivial SPT to SPT transi-
tions, and that the transition is second-order in nature. By directly calculating
the ground-state energy and its derivatives, we see sharp divergences in the sec-
ond derivative, but a continuous first derivative across the boundary between
these phases. Representative behavior is shown in Fig. 2.2.

The numerical methods employed here also allows us to probe the central
charge of the conformal field theory (CFT) associated with the continuous
phase transitions. As one approaches the transition, the correlation length
begins to diverge. The central charge of the CFT appears in an important
scaling relation between this diverging correlation length and the mid-bond
entanglement entropy [65, 66]. In particular, it has been shown that

S =
c

6
log ⇠ (2.4)

where c is the central charge, and ⇠ is the correlation length measured in
units of lattice spacing. S is the entanglement entropy, given by performing
a Schmidt decomposition between sites and computing the entropy of the
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Figure 2.2: Ground state energy derivatives along the line µ = 2 in the
phase diagram above show the nature of the phase transitions. The continu-
ous first derivative (blue) contrasts with divergence in the second derivative
(red), showing a second-order transition. All three regions are topologically
nontrivial SPT phases. Data shown here was computed with a bond dimen-
sion of 30, and the behavior has been seen to be stable as the bond dimension
increases.

resulting Schmidt coe�cients �i,

S = �
X

i

�i log �i. (2.5)

The MPS algorithms employed here to determine the ground state are not well-
suited at the actual critical points. This is because the numerical accuracy of
these algorithms is controlled by a tunable numerical parameter, the so called
“bond dimension.” The closer we approach the critical point, the bigger this
parameter needs be chosen for the ground states to be computed faithfully.
By gradually increasing the bond dimension near the critical point, we obtain
states with increasingly large correlation length, allowing us to fit the scaling
relation of Eq. 2.4. We can also use this data to estimate the location of the
transition, because away from the critical point, the scaling relation will not
hold, and S will saturate for large enough ⇠ (or in practice, for large enough
bond dimension). We find the critical lines to be located at � = ±0.865(2);
fits at multiple points along these lines suggest a central charge of c = 1.35(1),
as shown for example in Fig. 2.3.
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Figure 2.3: Entanglement entropy versus the log of the correlation length for
states very close to the transition point. The slope is directly proportional to
the central charge of the associated CFT, via Eq. 2.4. Data is generated by
computing ground states at the point µ = 2,� = 0.865, and increasing the
“bond dimension” of the numerical scheme to allow us to find states closer to
the critical point where the correlation length diverges. The behavior shown
here is representative of that seen elsewhere along the lines � = ±0.865. Away
from these lines, the entanglement entropy saturates at a finite value of ⇠. The
best-fit line has a slope of 0.225(1), which corresponds to a central charge of
1.35(1).

2.3 Review of classification of 1D gapped phases
of spin chains

We now review the classification of 1D gapped phases of spin chains follow-
ing [52]. Given the group of global symmetries G, the classification gives us a
set of labels whose values distinguishes all possible phases of matter that can
exist. We will systematically list these labels for various types of symmetries.
It is the value of these labels that we extract numerically to determine the
phase diagram presented in Sec 2.2. First, we must give a brief introduction
to matrix product state (MPS) representations of one dimensional wavefunc-
tions [67], which forms the backbone of the classification scheme.

2.3.1 MPS formalism

Consider a one-dimensional chain of N spins. If each spin is of d-levels
i.e. the Hilbert space of each spin is d-dimensional, the Hilbert space of the
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spin chain itself is dN -dimensional. A generic state vector in this many body
Hilbert space is of the form

| i =
dX

i1=1

. . .
dX

iN=1

ci1...iN |i1 . . . ini (2.6)

This means that the number of coe�cients ci1...iN needed to describe such a
wavefunction grows exponentially with the length of the chain. To write this
wavefunction in the MPS form, we need to associate for every spin site (labeled
by m = 1 . . . N), a Dm ⇥ Dm+1-dimensional matrix Aim

m
for each basis state

|imi = |1i . . . |di such that (assuming periodic boundary conditions without
any loss of generality here and henceforth)

ci1...iN = Tr[Ai1
1 A

i2
2 . . . AiN

N
]. (2.7)

The matrices Aim
m

(which we will call MPS matrices) can, in principle always
be obtained via sequential singular value decompositions of the coe�cients
ci1...iN , as described in [68]. In practice, it is useful to employ the canonical
form of the MPS [67, 68]. For most of the chapter, the term “MPS” shall refer
to wavefunctions written in the form

| i =
X

i1...iN

Tr[Ai1
1 A

i2
2 . . . AiN

N
]|i1 . . . iNi. (2.8)

Two important features of the MPS representation bear relevance to the
numerical methods employed in this chapter. The first is D = maxm(Dm),
called the ‘virtual’ or ‘bond’ dimension, which in general may need to be very
large. However, if the wavefunction is the ground-state of a gapped Hamil-
tonian and hence has a finite correlation length, it can be e�ciently written
as an MPS wavefunction whose bond dimension approaches a constant value
that is independent of the size of the chain [68–70]. And as one approaches a
critical point, where the correlation length diverges, an increasingly large bond
dimension is required to faithfully capture the ground states. Even though the
ground states at criticality therefore cannot be accurately represented by an
MPS, one can employ the scaling results discussed above and in Fig. 2.3, where
increasingly large correlation lengths are probed by gradually increasing the
bond dimension.

Secondly, note that when a state possesses translation invariance, the MPS
matrices themselves may be chosen to respect the same symmetry. A state
invariant under one-site translations, for example, can be represented in the
form above with the same MPS tensor at each site, Aim

m
= Aim . This, in turn,
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allows a state with translation invariance of any length to be represented by d
matrices where d is the dimension of the local Hilbert space. In general, a state
with K-site translation invariance requires Kd MPS matrices to represent it.

2.3.2 Symmetry breaking

First, we consider the possibility that the ground state spontaneously
breaks the symmetry, G of a Hamiltonian to H. This is the subgroup H ⇢ G
that still leaves the ground state invariant. This residual symmetry group it-
self acts as one of the labels to indicate the phase of matter. The case of the
ground state not breaking any symmetry itself corresponds to H = G. How-
ever there may exist di↵erent SPT phases where the ground state is invariant
under the same H. In such a case, we would need more labels along with H
to label the phase of matter. These labels depend on what H itself is and will
be reviewed next.

We now consider the action of global symmetries on the physical spins and
how it translates to the action on the MPS matrices on the virtual level. It was
observed that the representation of the symmetry on the virtual level falls into
distinct equivalence classes and these classes correspond to the di↵erent SPT
phases of matter ‘protected’ by the corresponding symmetry [47, 52–55]. Here,
we review the action of various symmetries on the MPS matrices, the di↵erent
equivalence classes and the labels which distinguish them. The discussions
here follow Ref [52].

2.3.3 Onsite/internal symmetry

Let us now consider Hamiltonians that are invariant under the action of a
certain symmetry group Gint on each spin according to some unitary represen-
tation u(g) i.e. [H,U(g)] = 0 where U(g) = u1(g)⌦ · · ·⌦uN(g). If the ground
state | i does not break the symmetry of the Hamiltonian, it is left invariant
under the transformation U(g) up to a complex phase

U(g)| i = �(g)N | i. (2.9)

Eq. (2.9) can be imposed as a condition on the MPS matrix level as [51–54]

u(g)ijA
j

M
= �(g)V �1(g)Ai

M
V (g). (2.10)

Note that we use the Einstein summation convention wherein repeated in-
dices are summed over. Because u is a group representation, group properties
constrain � to be a 1D representation and V generally to be a projective rep-
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resentation of Gint. A projective representation respects group multiplication
up to an overall complex phase.

V (g1)V (g2) = !(g1, g2)V (g1g2). (2.11)

The complex phases !(g1, g2) are constrained by associativity of group action
and fall into classes labeled by the elements of the second cohomology group
of Gint over U(1) phases H2(Gint, U(1)). In other words, the di↵erent elements
of H2(Gint, U(1)) label di↵erent classes of projective representations and hence
di↵erent SPT phases of matter. In particular, the identity element of the group
H2(Gint, U(1)) labels the set of linear representations of Gint (which respect
group multiplication exactly) and the corresponding phase of matter is trivial,
containing or adiabatically connected to product ground states.

2.3.4 Lattice translation

Note that we assume an infinite system with periodic boundary conditions
for our discussions.

Without on-site symmetry

The group of lattice translations LT is generated by single site shift S
which acts as follows

S :
X

i1...iN

ci1...iN |i1 . . . iNi !
X

i1...iN

ci1...iN |i2, . . . iN , i1i =
X

i1...iN

ciN i1...iN�1 |i1 . . . iNi.

(2.12)
In other words,

S : ci1...iN ! ciN i1...iN�1 (2.13)

S : Tr[Ai1
1 . . . AiN

N
] ! Tr[Ai1

2 . . . AiN�1

N
AiN

1 ] (2.14)

On the MPS matrix level, the single site shift acts as:

S : Ai

M
! Ai

M+1. (2.15)

The full group, LT generated by S is

LT = hSi = {e,S±1,S±2,S±3 . . .}, (2.16)

Sk : Ai

M
! Ai

M+k
, k 2 Z. (2.17)
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For a finite chain with periodic boundary conditions, we have the constraint
SN = e and hence LT ⇠= ZN . For an infinite chain, LT ⇠= Z. It was shown [52]
that there is only 1 SPT phase protected by LT alone.

If lattice translation is a symmetry, we can choose

Ai

M
= Ai

M 0 = Ai 8 M,M 0 2 {1, . . . , N}, (2.18)

that is, the MPS matrices can be chosen to be independent of the site label
and the same for all sites.

With on-site symmetry

If lattice translation is a symmetry in addition to on-site symmetry defined
by a group Gint as described in Sec (2.3.3), the di↵erent 1D irreducible repre-
sentations (irreps) � that can appear in Eq (2.10) also label di↵erent phases
of matter. The di↵erent SPT phases protected by G = Gint ⇥ LT are labeled
by {!,�}

2.3.5 Parity

Without on-site symmetry

The action of inversion or parity, P in general is generated by a combina-
tion of an on-site action by some unitary operator w and a reflection, I that
exchanges lattice sites about a point.

P = w1 ⌦ w2 · · ·⌦ wN I (2.19)

where, the action of I is as follows:

I :
X

i1...iN

ci1...iN |i1 . . . iNi !
X

i1...iN

ci1...iN |iN iN�1 . . . i1i =
X

i1...iN

ciN ...i1 |i1 . . . iNi.

(2.20)
In other words,

I : ci1...iN ! ciN ...i1 ,

I : Tr[Ai1
1 A

i2
2 . . . AiN

N
] ! Tr[AiN

1 AiN�1
2 . . . Ai1

N
]

= Tr[(Ai1
N
)T (Ai2

N�1)
T . . . (AiN

1 )T ].
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In the last equation, we have used the fact that the trace of a matrix is invariant
under transposition. On the MPS matrix level, the action is

I : Ai

M
! (Ai

N�M+1)
T (2.21)

The full action of parity is

P : ci1...iN ! wi1j1 . . . wiN jN cjN ...j1 ,

P : Ai

M
! wij(A

j

N�M+1)
T (2.22)

Since P2 = e, w is some representation of Z2. There is a special lattice site that
has been chosen as the origin about which we invert the lattice. It is sensible
for parity to be defined without any reference to such a special point. Hence
we assume that any system invariant under parity also has lattice translation
invariance which allows any site to be chosen as the origin. Note that the
action of inversion I and the generator of translations S do not commute.
They are related by

ISI = S�1 (2.23)

The full symmetry group including translation invariance and parity, which
we will call GP , generated by S and P is (for a finite chain with periodic
boundary conditions)

GP = hP ,S|P2 = SN = e, ISI = S�1i ⇠= ZN o Z2
⇠= DN . (2.24)

For an infinite chain which we are interested in, we have

GP = hP ,S|P2 = e, ISI = S�1i ⇠= Z o Z2
⇠= D1. (2.25)

If GP is a symmetry of the Hamiltonian which is not broken by the ground
state wavefunction | i, we have, under the action of P ,

P| i = ↵(P )N | i. (2.26)

The condition Eq. (2.26) can also be imposed on the level of the MPS matrices
that describe | i:

wij(A
j)T = ↵(P )N�1AiN, (2.27)

where, ↵(P ) = ±1 labels even and odd parity and N has the property NT =
�(P )N = ±N . {↵(P ), �(P )} label the 4 distinct SPT phases protected by
GP [52].
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With on-site symmetry

Let us consider invariance under the combination of an on-site symmetry
Gint as described in Sec(2.3.3) with parity. If the actions of the two symmetry
transformations commute on the physical level,

U(g)P| i = PU(g)| i, (2.28)

i.e. G = Gint ⇥ GP , this imposes constraints on the matrix N defined in
Sec. 2.3.5 as [52].

N�1V (g)N = �P (g)V
⇤(g). (2.29)

Where, �P (g) is a one-dimensional irrep of Gint that arises from the commu-
tation of on-site and parity transformations [52] and V (g) is the representa-
tion of Gint acting on the virtual space as discussed in Sec 2.3.3. Note that
we can rephase V (g) 7! ↵(g)V (g) without changing anything at the phys-
ical level. However, Eq (2.29) is modified replacing �P (g) 7! �P (g)/↵2(g).
Hence, the 1D irreps �P and �P/↵2 are equivalent labels for the same phase
for all the 1D irreps ↵ of Gint. Di↵erent SPT phases of matter protected by
G = Gint ⇥ GP are labeled by {!,�(g),↵(P ), �(P ), �P (g)} [52]. Where, as
defined before ! 2 H2(Gint, U(1)) with !2 = e and �P 2 G/G2 where G is the
set of 1D representations of Gint.

The techniques used in this chapter can be extended easily to include time-
reversal invariance. But, because our Hamiltoinian is not invariant under time
reversal, we do not review the classification of SPT phases protected by time-
reversal invariance and combinations with other symmetries here. We include
the same in the Appendix (A.2.1) for the sake of completeness.

2.4 Using the parameters to understand the
phases of the A4 Hamiltonian

2.4.1 Details of the phase diagram

Armed with the family of parameters described in the last section, {!,�,↵, �, �P},
we now describe in detail the di↵erent phases of the Hamiltonian of Eq (2.3)
seen in Fig. 2.1. The internal symmetry is A4 which is a group of order 12 and
can be enumerated by two generators with the presentation

A4 : ha, x|a3 = x2 = (ax)3 = ei. (2.30)
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The 3D representation of these generators are

a =

0

@
0 1 0
0 0 1
1 0 0

1

A , x =

0

@
1 0 0
0 �1 0
0 0 �1

1

A (2.31)

First we briefly outline the steps followed to numerically determine the
phase diagram:

1. For every point in parameter space µ = [�3, 4], � = [�2, 2] of the Hamil-
tonian of Eq (2.3), we use the iTEBD algorithm [60] to compute the
ground state.

2. We determine the residual symmetry H ⇢ G of the full symmetry group
G = A4 ⇥ GP that leaves the ground state invariant. This includes
checking the level of translation invariance, which may be broken down
from one-site to two-site or beyond.

3. We determine the the labels (subset of {!,�(g)↵(P ), �(P ), �P (g)}) that
characterizes the fractionalization of residual symmetry and measure
their values using the appropriate MPS order parameters.

Several of these steps involve important numerical considerations. Full
details of our implementation of these steps can be found in Sec 2.5.

We find that there are eight di↵erent phases in total. These phases, labeled
“A” through “H” as indicated to match the phase diagram in Fig. 2.1, are
characterized as follows:

1. Phase A: Parity and one-site translation only i.e. H = GP (all internal
symmetries are broken). This region is therefore classified by the values
of {↵(P ), �(P )} and is found to have values

• {↵(P ) = �1, �(P ) = �1}

2. Phases B, C, and D: No unbroken symmetries. The ground state in
these three regions are invariant under the full symmetry group G =
A4 ⇥ GP . The relevant labels are {!,�(g),↵(P ), �(P )} (Since all three
1D irreps of A4 are equivalent under the relation �P ⇠ �P/�2, �P (g)
is a trivial parameter). The MPS matrices in all three regions trans-
form projectively i.e. these are non-trivial SPT phases with ! = �1
where H2(A4, U(1)) ⇠= Z2

⇠= {1,�1}. Also, ↵(P ) = �1, �(P ) = �1 for
all three phases. However, they can be distinguished by the values of
�, i.e. observing that the 1D irrep produced under the A4 symmetry
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transformation (Eq (2.9)) in the three regions corresponds to the three
di↵erent 1D irreps of A4 . The values of the set of parameters which
characterize the regions are as follows.

• Phase B: {! = �1,� : {a = e
i2⇡
3 , x = 1},↵ = �1, � = �1}

• Phase C: {! = �1,� : {a = 1, x = 1},↵ = �1, � = �1}
• Phase D: {! = �1,� : {a = e�

i2⇡
3 , x = 1},↵ = �1, � = �1}

3. Phase E: Parity, Z2 and two-site translation. This region possess a
hybrid parity GP , generated not by inversion alone but rather the com-
bination of inversion and the order 2 element axa2 of A4. Additionally,
there is an unbroken on-site Z2 actions with elements {e, x}. The rele-
vant labels are {�(g),↵(P ), �(P ), �P (g)} with values

• {� : {e = 1, x = 1},↵ = 1, � = 1, �P = {e = 1, x = 1}}

4. Phases F and G: These regions possess the same parity and on-site
A4 symmetry as phases B, C, and D, but have translation invariance
which is broken down to the two-site level. They are also distinct from
the above phases because the MPS matrices transform under a linear
representaion of A4, and have a trivial representation of parity at the two
site level. The relevant labels are parameters are {!,�(g),↵(P ), �(P )}
with values

• Phase F: {! = +1,� : {a = e�
i2⇡
3 , x = 1},↵ = +1, � = +1}

• Phase G: {! = +1,� : {a = e+
i2⇡
3 , x = 1},↵ = +1, � = +1}

5. Phase H: In this final region, the on-site symmetry is broken down to a
Z2⇥Z2 subgroup with elements {e, x, a2xa, axa2}. Parity and translation
symmetry are both fully retained. It is therefore the only region in our
sample phase diagram which requires all five labels {!,�,↵, �, �P} to
characterize. The values here are

• {! = +1,� = {1,�1, 1,�1},↵ = +1, � = +1, �P = {1, 1, 1, 1}}

Note here that for compactness, the set of values given � and � refer to the
four elements {e, x, a2xa, axa2}, respectively.

The diversity of phases seen in this phase diagram show the importance of
carefully checking for both conventional symmetry-breaking phases and SPT
phases. The phases present here also underscore the importance of consider-
ing the di↵erent possible instances of parity and translation invariance which
can occur, since in addition to traditional one-site translation invariance and
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inversion, one might find e.g. translation breaking without inversion breaking
(phases F and G), or inversion which only exists when hybridized with an
on-site symmetry (phase E).

2.5 Details of numerical extraction of phase
diagram

For gapped 1D spin chains, the authors of Ref. [46, 54, 71] describe ways of
numerically determining the SPT parameters and distinguishing di↵erent SPT
orders. We build on the technique developed in Ref. [54] where the authors ob-
tain the SPT labels using the representations of symmetry at the virtual level.
The numerical characterization of the phase diagram of a general parametrized
Hamiltonian H(�, µ, . . .) proceeds according to the following steps:

1. Identify the group of symmetries, G of the Hamiltonian.

2. For each point in parameter space {�, µ, . . .}, obtain the ground state
| (�, µ, . . .)i of the Hamiltonian H(�, µ, . . .) numerically as a MPS.

3. For each point in parameter space {�, µ, . . .}, identify the subgroup of
symmetries H ⇢ G that leaves the ground state | (�, µ, . . .)i invariant.

4. Obtain the relevant virtual representations for the elements of the sub-
group H, i.e. {�, V,↵(P ), N}.

5. From the representations and their commutation relations, obtain all
other labels that completely characterize the phase.

In general, this process results in calculating the full family {�,!,↵(P ), �(P ), �(P )}
for each point in parameter space. However, in some cases, the elements of
H are such that not all such parameters are necessary or even well-defined.
For example, if the subgroup H does not contain the parity operator, then
↵(P ), �(P ) and �(P ) do not exist. Similarly, if H = Z3, there is only one
possible value of !, and hence we do not need it to distinguish the phase.

2.5.1 Ground state preparation

Having constructed our Hamiltonian with an explicit symmetry group G =
A4 ⇥ P , the next step is to obtain the ground states. For this, we use the
numerical “iTEBD” algorithm [60, 72, 73] to compute the ground states over
a range of parameters, � 2 [�2, 2] and µ 2 [�3, 4] (this range is simply chosen
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based on our results to include a large but not necessarily comprehensive
sample of di↵erent SPT phases). The algorithm computes the ground state of
a Hamiltonian H through the imaginary time evolution of an arbitrary initial
state | i, since | i can be expanded in the energy eigenbasis of Hamiltonian as
| i =

P
i
ci|Eii and hence e�⌧H | i will suppress all such components except

for the ground state |E0i in the large-⌧ limit. Except where otherwise noted,
data in this chapter were prepared with a random initial state represented
as an MPS with bond dimension � = 24, and evolved according to a fixed
sequence of timesteps which were chosen to be su�cient to converge the energy
to the level of 10�8 at the most numerically “di�cult” states. Within each
phase, a random set of points have also been recomputed using states with a
series of larger bond dimensions (� = 36, 42, and 60) and a longer sequence
of imaginary timesteps, in order to verify that the observed characteristics are
not numerical artifacts.

While the numerical details of the iTEBD algorithm have been extensively
documented elsewhere, there is one salient point which must be remarked
upon. For a Hamiltonian H with two-body interactions, the algorithm relies
on a decomposition of the Hamiltonian into two sets of terms– those acting first
on an even-numbered site (HA) and those acting first on an odd-numbered site
(HB), so that H = HA +HB. As such the imaginary time evolution operator
can be approximated by the Suzuki-Trotter decomposition [74, 75], which, to
second order, gives

e�⌧H ⇡ (e��⌧HA/2e��⌧HBe��⌧HA/2)N , (2.32)

with �⌧ = ⌧/N . The total operator can then be applied as a sequence of
smaller operators, acting either on an even site first, or an odd site first. This
distinction, then, requires the state to be represented with at least two sets
of MPS matrices, Aj

A
and Aj

B
, even if the the resulting state is expected to

possess a one-site translation invariance (which would generally allow it to be
represented by only a single tensor Aj. This fact will have relevance in later
sections, when the translational invariance of the MPS is explicitly discussed).

For now, however, let us simplify the discussion by considering a transla-
tionally invariant, infinite ground state, represented by the tensor Aj. Note
that there is some gauge freedom allowed in the representation of an infinite
MPS state–the tensors Aj and XAX�1 both represent the same one-site trans-
lationally invariant state, for example. This freedom allows us to make some
choices about the structure of the representation which will prove useful in
subsequent calculations. In particular, we can choose our MPS to be repre-
sented in the so-called “canonical form” [67, 73], in which the state satisfies
the property,
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Aj

↵,�
(A⇤)j

↵0,�0��,�
0
= �↵,↵0 (2.33)

This condition can also be thought of in terms of the state’s transfer matrix
(see Fig. 2.4)– a common construction used in MPS formalism to compute
things like expectation values:

T (↵↵0)
(��0) ⌘ Aj

↵,�
(A⇤)j

↵0,�0 . (2.34)

Now consider the dominant eigenvector of T , which will be some vector
X(�,�0). Because the outgoing indices of T are a composite of smaller indices
(�, �0), any eigenvector of this matrix can also be thought of as a (smaller) ma-
trix in its own right, by interpreting X(�,�0) as X

�

�0 . The original vector X(�,�0)

is called the vectorization of the matrix X�

�0 . Now, the condition for canonical
form can be rephrased as the requirement that the dominant eigenvector of
the state’s transfer matrix is a vectorization of the identity matrix, i.e.

(T )(↵↵
0)

(��0)�
(��0) = �(↵↵

0) (2.35)

This property of a transfer matrix in canonical form (graphically depicted in
Fig. 2.4) will be quite useful in subsequent calculations.

Because it represents a contraction of the physical indices of the tensors
Aj, the transfer matrix can be thought of as containing the overlap of the
state with itself at a single site. In other words, in an N -site periodic state
with one-site translation invariance, the norm square of the state is given by
taking a product of N transfer matrices (one for each site) and then tracing
over them.

h | i = Tr[TN ] (2.36)

This fact in turn produces a relationship between the eigenvalues �j of the
transfer matrix, and the norm of the state. Consider for example an infinite-
length, translation-invariant state with unique largest eigenvalue �1, whose
norm is given by limN!1 Tr[TN ] =

P
j
�N
j
⇡ �N1 . This state is normalized if

|�1| = 1. Hence in practice, computing the largest eigenvalue of the transfer
matrix gives us a convenient way to ensure normalization.

A general iMPS computed via iTEBD will not necessarily be in exactly
canonical form. In [73], Orus and Vidal have given an analytical prescription
for placing an arbitrary iMPS in canonical form which could be used in prin-
ciple. However, because this form is ultimately so useful, it is worthwhile to
enforce it for the ground state representations at the time of their initialization.
Successive Schmidt decompositions of a state after the application of unitary
operators is equivalent to enforcing canonical form. Of course, when one com-
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Figure 2.4: The transfer matrix of a translationally-invariant matrix product
state, demonstrated in graphical tensor notation. In (a), the construction
of the transfer matrix is shown as a contraction of two MPS matrices, with
the virtual indices grouped to form a single matrix. In (b), the relationship
between the transfer matrix and the norm square of the state is shown. Finally,
in (c) we show graphically the behavior of a matrix product state in canonical
form: such a state has a transfer matrix whose dominant eigenvector is a
vectorized version of the identity matrix.

putes a ground state using imaginary time evolution, the operators which are
used, of the form e��⌧H (see Eq. 2.32), are not in general unitary. But for
�⌧ very small, they will be quite close. Since a typical iTEBD algorithm ends
with a sequence of very small time step evolutions, the resulting states are also
typically “close” to canonical form [76]. To take this to its logical extension, it
is a good practice to terminate every iTEBD algorithm with e.g. 100 steps of
evolution in which we apply only the identity gate (which corresponds to the
exact �⌧ = 0 limit). Of course, this identity gate evolution is both explicitly
unitary and incapable of changing the underlying state. In this way, one can
ensure that the states computed via iTEBD algorithm are exactly in canonical
form (up to numerical precision). To summarize, we have described how we
obtain a ground state in MPS form in a canonical representation.
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2.5.2 Symmetry detection and extraction of order pa-
rameters

States with one-site translation invariant representations

The general numerical scheme for extracting the topological order param-
eters from a numerical MPS was presented in [54], where it was principally
used to study a specific class of SPT phases. We generalize their construction.
We consider the situation first for on-site symmetries and assume that the
infinite state possesses one-site translation invariance and is represented by a
tensors Aj. The generalization to other symmetries and to di↵erent levels of
translation invariance will be considered subsequently.

To check for symmetry and ultimately access the topological parameters,
one first defines a “generalized” transfer matrix Tu, which extends the defini-
tion in Eq. 2.34 to include the action of some on-site operator u between the
physical indices, i.e.

Tu ⌘ Ajuj,j0(A
⇤)j

0
, (2.37)

where, this time, we have suppressed the external indices of the matrix (See
Fig. 2.5 for a graphical depiction). In the same manner that the original
transfer matrix T represents the contribution of one site to the overlap h | i,
in this case the generalized transfer matrix Tu represents the contribution of
one site to the expectation value h |U | i, where U =

N
j
uj represents the

application of u to every site on the chain (see Fig. 2.5). And just as an iMPS
is not normalized unless T has largest eigenvalue 1, so too is such state only
symmetric under U if Tu has largest eigenvalue with unit modulus.

To study the SPT classification of a state, we thus begin by determining
the symmetry. To check if the state is symmetric under the application of U ,
then we first construct Tu and compute the dominant eigenvector X and the
associated eigenvalue �1. Note that, when the dimensions of Tu is large, it
is numerically far easier to use some iterative procedure such as a power or
Lanczos algorithm [77–79] to extract this, since only the largest eigenvalue is
required and not the entire spectrum. If |�1| < 1, the state is not symmetric
under U because h |U | i = limN!1T (u)N will vanish. If, however, the unique
largest eigenvalue gives |�1| = 1, then we can proceed with the analysis.

Consider now a normalized iMPS in canonical form, which is invariant
under a set of symmetries u(g) at each site for g in some symmetry group
H 2 G. As per eq. 2.10 above, this invariance implies the existence of a set
of matrices V (g), which are generally projective representations, and �(g), a
one-dimensional representation. As shown in [54], one can extract both the
projective and a 1-dimensional representation parameters directly from the
dominant eigenvector and eigenvalue of the generalized transfer matrix. In
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Figure 2.5: The notion of the transfer matrix can be generalized to include
(a) on-site operation U =

N
j
uj, or (b) a parity operation P!. Generalizations

to other symmetries are possible, but outside the scope of this work as they
are not present in our model.

particular, if X is the dominant eigenvector (or more precisely, if X�

�0 is a
matrix and it’s vectorization X(��0) is the dominant eigenvector), then V =
X�1. The one-dimensional rep �(g) is simply equal to the dominant eigenvalue
itself. In other words,

(Tu)
(↵↵0)
(��0)(V

�1)(��
0) = � · (V �1)(↵↵

0) (2.38)

To see this, consider the left hand side of the equation (In many ways, this
line of argument is clarified when represented by graphical notation; see also
Fig. 2.5.2). Combining the definition of the generalized transfer matrix, Eq. 2.37,
with the symmetry fractionalization condition in Eq. 2.10, we have

(Tu)
(↵↵0)
(��0) = � · (V �1)↵⇢Aj

⇢�
V ��(A†)j

↵0�0 = � · (V �1)↵⇢T (⇢↵0)
(��0)V

��. (2.39)

When this is inserted in the left hand side of Eq. 2.38, the resulting cancellation
of V and V �1 gives us

(Tu)
(↵↵0)
(��0)(V

�1)(��0) = � · (V �1)↵⇢T (⇢↵0)
(��0) �

��
0
. (2.40)

Then, relabeling the dummy indices ⇢ and � into ↵ and �, we can appeal to
the canonical form condition of Eq. 2.35 to see that

(Tu)
(↵↵0)
(��0)(V

�1)(��
0) = � · (V �1)↵↵

0
, (2.41)
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which proves that V �1 (vectorized) is an eigenvector with eigenvalue �. Fur-
thermore, because the state is normalized and because we required as a condi-
tion for symmetry that |�| = 1, this proves that V �1 is the dominant eigenvec-
tor, up to an overall phase factor in V . Hence, any procedure to numerically
extract the dominant eigenvector and largest eigenvalue from the generalized
transfer matrix is su�cient to extract both the 1D representation � and the
projective representation required to compute the projective parameters ! as
defined above. Above, we have considered only on-site symmetries applied
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Figure 2.6: The projective representation V of a symmetry can be obtained
from a state’s generalized transfer matrix because the dominant eigenvector
of said matrix will be the vectorization of, V �1, so long as the original state
is in canonical form. This relation is demonstrated graphically for the case of
an on-site symmetry, but easily generalizes to the parity case.

globally to every site on the state[54]. To include other types of symmetries,
one simply generalizes further the notion of the already-generalized transfer
matrix. For example, the parity symmetry defined by Eq. 2.19 can be studied
by means of the matrix

TP ⌘ Ajwj,j0(A
†)j

0
. (2.42)

In comparison to Eq. 2.37, we have simply inserted the action of the inversion
operator I by performing a transpose on the virtual indices of the second MPS
tensor. In this way, the resulting generalized transfer matrix still represents
a one-site portion of the overlap h |P| i. By the same arguments as above,
and by analogy between Eq. 2.10 and Eq. 2.27, one can see that the quantities
↵(P ) and N can be extracted from the dominant eigenvector and eigenvalue as
before, with the latter used to compute the parity parameter �(P ) as described
above.
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States without one-site translationally invariant representations

Thus far, we have also assumed a state with one-site translation invariance.
However, even when the ground state being studied does possess a one-site
translational symmetry, the tensors in the MPS representation of this state
may not, because the gauge freedom of an MPS is not itself constrained to
be translationally invariant. For example, consider a set of translationally-
invariant tensors {A1, A2, A3 . . . } and the gauge transformation

Aj !

8
><

>:

XAjZ�1, j even

ZAjX�1, j odd

(2.43)

for X and Z of appropriate dimensions. Such a gauge transformation results
in an MPS representation of the state whose tensors at even and odd sites
may look dramatically di↵erent. But both sets of tensors (before and after the
transformation) collectively represent the same translationally invariant state.
Cases like this are of particular importance here because, as noted above, the
iTEBD method (like other MPS ground-state preparation algorithms) neces-
sarily results in an MPS representation with di↵erent tensors at even and odd
sites, regardless of the translational symmetry of the physical state.

This feature does not a↵ect our numerical calculation of the SPT order
parameters ! and �(P ), which are obtained as eigenvectors of the general-
ized transfer matrices, but has important significance for the one-dimensional
parameters �,↵(P ), and �(P ). Consider, for example, a state which is repre-
sented by k sets of tensors {Aj1 ...Ajk}, either because the underlying state has
only a k-site translation symmetry, or perhaps simply because our particular
numerical representation requires it. The symmetry condition of Eq. 2.10 must
still hold on a k-site level; that is, we will have

u(g)I
J
AJ = �(g)kV �1(g)AJV (g), (2.44)

where AJ = Aj1Aj2 · · ·Ajk is now a tensor representing the entire block of
spins which are the unit cell of the translation invariance, and the composite
indices I and J are equal to (i1i2 · · · ik) and (j1j2 · · · jk). Clearly if we now
define a k-site generalized transfer matrix,

T (k)
u

⌘ AJuI,J 0(A⇤)J
0

(2.45)

then the arguments from the preceding section show that V �1 can still be
found as the dominant eigenvector of T (k)

u .
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The largest eigenvalue, on the other hand, is now equal not to �, but to
�k. In the typical case of an iTEBD state, where k = 2, this is problematic
because for many common symmetry groups, the values of �(g) will be ±1,
so a numerical calculation which gives only �2 will be unable to distinguish
between the di↵erent phases. More generally of course, a k-site representation
will always leave us unable to distinguish the cases where � is a kth root of
unity.

Of course, if the underlying state has a one-site translation invariance (de-
spite being represented by tensors with only a two-site invariance), one ex-
pects that by use of some suitable gauge transformations it should be possi-
ble to transform the representation itself back into a translationally-invariant
form. Here, we show how this can be done in practice. Suppose we have a
translationally-invariant state with, say, a two-site representation {Aj, Bj+1}
and an even number of total spins, such that the state in question is given by
either

| i =
X

j1...

Tr[Aj1Bj2Aj3 . . . BjN ]|j1j2 . . . jNi (2.46)

or | i =
X

j1...

Tr[Bj1Aj2Bj3 . . . AjN ]|j1j2 . . . jNi (2.47)

To recover a one-site representation, we first construct a new tensor of the
form:

Ãj =

✓
0 Bj

Aj 0

◆
. (2.48)

This new tensor in fact describes the same wavefunction | i upto a change
in normalization. This can be seen by considering the product:

Y

j

Ãj =

✓
Aj1Bj2Aj3Bj4 · · · 0

0 Bj1Aj2Bj3Aj4 · · ·

◆
. (2.49)

If we take Ãj to be the tensor specifying a new MPS and compute the
coe�cients, we will have

| ̃i =
X

j1···

Tr[Ãj1 . . . ÃjN ]|j1 . . . jNi =
X

j1···

Tr

 
Y

j

Ãj

!
|j1 . . . jNi (2.50)

and thus, upon substituting Eq. 2.49, we find
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| ̃i =
X

j1···

(Tr[Aj1Bj2 · · · ] + Tr[Bj1Aj2 · · · ])|j1 . . . i = 2| i (2.51)

In other words, the state described by the tensor Ãj is essentially identical
to the state specified by the original tensors {Aj, Bj+1}. The only di↵erence is
that the correct product of tensors needed to give the coe�cients of the state
in Eq. 2.46 will always appear twice, di↵ering only by an irrelevant one-site
translation (because the underlying state has a one-site translation invariance
to begin with, these two copies of the state are still equivalent).

Because the new tensor Ãj now contains two degenerate descriptions of
the same state, it can be placed in a block diagonal form by appealing to the
procedure given in Ref. [67] for block-diagonalizing an MPS representation
(see also Appendix C in [80]). The resulting blocks will each independently
represent the state, but with one-site translation invariance.

The procedure, briefly outlined, is as follows: first, one must ensure that the
tensor Ãj is itself in the canonical form, in the sense that it satisfies Eq. 2.33.
To do this, construct the transfer matrix for Ãj and compute the dominant
eigenvector. This may result in a degenerate manifold of eigenvectors, but by
properties of the transfer matrix, at least one of these will be the vectorization
of some positive matrix X [81]. Since this X is invertible, we can then take
Ãj ! X�1/2ÃjX1/2. By construction this new definition of Ãj will satisfy the
canonical form.

From this, we once again construct a transfer matrix and compute its
dominant eigenvector(s). At least one corresponds to a matrix Z which is not
proportional to the identity matrix (up to numerical precision). Furthermore,
since the vectorization of Z† is also an eigenvector of the transfer matrix in
canonical form, we can take Z ! (Z + Z†)/2 so that Z is Hermitian (unless
(Z + Z†)/2 is itself proportional to the identity, in which case one can always
choose instead Z ! i(Z �Z†)/2.) Finally, we compute the largest magnitude
eigenvalue z1 of this new matrix Z, so that we can construct a matrix W =
1 � (1/z1)Z to be a matrix which is manifestly not full rank. Let P be a
projector onto the support of W , and P? the projector onto its complement.
We can now decompose Ãj around theses spaces, as

Ãj = PÃjP + P?ÃjP? + PÃjP? + P?ÃjP. (2.52)

The reason for the construction of the matrix W from a fixed point now
becomes clear, as it has been shown that for such matrix W and its associated
projector P , we have ÃjP = PÃjP [67]. Consequently, the final term in
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Eq. 2.52, which represents one of two o↵-diagonal blocks in Ãj, vanishes
identically. This, in turn, ensures that the remaining o↵-diagonal block cannot
mix with either of the diagonal blocks in any product Ãji ˜Aji+1 · · · . It therefore
does not participate in the calculation of the coe�cients of the corresponding
states, and can be ignored.

The remaining terms, PÃjP and P?ÃjP?, represent the relevant blocks
along the diagonal of the tensor. We remark that in principle, one may need
to carry out the above procedure iteratively for each such block (PÃjP and
P?ÃjP?) to see if further block reduction is possible. But in practice, for the
two-site iTEBD ansatz, a single iteration should su�ce. Then, by construction
of Ãj, each will be an equivalent representation of the same state, and each
can represent the state with only a one-site translation invariance. In other
words, if we simply treat PÃjP as the tensor representing the state, we can
use all the procedures in the preceding section to directly compute the entire
family of SPT parameters.

An alternative method for extracting the one-dimensional parameters when
their values are kth roots of unity would be to compute the ground state
with a version of the iTEBD algorithm designed to act on an n-site unit
cell, where n does not divide k. In this case, the dominant eigenvalue of the
generalized transfer matrix will be �n, from which � can now be calculated
without ambiguity. Such generalized iTEBD algorithms have been employed
successfully (see for example [82]), but may be less numerically stable, and
cannot be used for a general state unless one is sure that n is commensurate
with the underlying translation invariance of the state. Nevertheless, both
methods are possible in practice, and we have used both to cross-check one
another in the results presented in this chapter.

States with broken translation invariance

Finally, it may also be the case that a state lacks a one-site translation-
ally invariant representation precisely because the ground state is not one-site
translationally invariant. When this occurs, one can still compute topologi-
cal order parameters for on-site symmetries, but only once they and the as-
sociated symmetries have been suitably redefined to be consistent with the
translational invariance. In other words, if the state has a k-site translation
invariance and is represented by the k tensors {Aj1Aj2 . . . Ajk}, one combines
the tensors in the same manner contemplated above, forming a new tensor
AJ = Aj1Aj2 · · ·Ajk with an enlarged physical index which is given by the
composite index J = (j1j2 . . . jk). We then also re-interpret the on-site sym-
metry operation to be uI

J
= ui1

j1
⌦ ui2

j2
⌦ . . . uik

jk
under the same convention.

Once again, with the tensors merged so they continue to represent an individ-
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ual “unit cell” of the state, then the relation of Eq. 2.10 will still hold, and we
can compute the projective representations of the symmetry from the domi-
nant eigenvalue of the transfer matrix. Unlike the situation described above,
however, where the dominant eigenvalue did not give the one-dimensional rep-
resentation � (but rather �k), in this case the eigenvalue for the merged cell
still gives an order parameter. Indeed, there is no longer a physical meaning
to the kth root of the eigenvalue, because one-site translation is no longer a
symmetry.

For such states, it is also essential to carefully verify the level of any residual
translation symmetry. As discussed above, the traditional iTEBD algorithm
assumes a two-site invariant representation of the state; hence, if this algorithm
produces a state which appears to have translation symmetry which is broken
on the one-site level but present at a two-site level, it cannot be assumed that
two-site translation is a symmetry of the true ground state; such symmetry
may instead have been forced by the algorithm. In this work, whenever one-site
translation symmetry is broken, we recompute the ground state using a version
of iTEBD with a larger (say, four-site) unit cell. If the two-site translation
invariance is still present after such a test, it can then be safely assumed to
be a genuine property of the true ground state, and not a property forced by
the numerical ansatz. In general, an algorithm with an k-site ansatz cannot
by itself confirm translation invariance at the k-site level.

2.5.3 Obtaining the SPT labels {!, �(P ), �(g)}
It is clear how the one-dimensional representations � and ↵(P ) can be used

by themselves to label a phase, since each is a single number. Now, however
we must discuss how to extract similar numerical labels from the projective
representations and other matrices obtained above (V,N, etc). Hence, we
must define a procedure to obtain an order parameter from these matrices. A
good order parameter that gives us an SPT label has to satisfy the following
conditions:

• It should be sensitive to the fractionalization of the symmetry at the
virtual level.

• It should be invariant under the allowed gauge transformations of MPS
states V 7! XVX�1, V 7! ei✓V where V is some symmetry acting on
the virtual level.
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Order parameter to detect ! 2 H2(Gint, U(1))

The authors of [54] show that tracing over products of elements of the
form V (g1)V (g2)V †(g1)V †(g2) satisfies both the above requirements and also
gives us the information to extract the class of !. We will now consider
Gint = A4 and its subgroups (H = Z2 ⇥ Z2,Z2,Z3 and the trivial group) for
which H2(Gint, U(1)) = Z2 (H = A4,Z2 ⇥Z2) or the trivial group (everything
else). For groups which haveH2(Gint, U(1)) = Z2, we will list order parameters
which picks the value ±1 depending on whether the representation is linear
or projective indicating if the SPT phase of matter is trivial or non-trivial.
(Note: as defined before, D refers to the bond dimension and V (g) is the
representation of on-site symmetry at the virtual level (2.10) )

1. • Gint = A4 = ha, x|a3 = x2 = (ax)3 = ei
• H2(A4, U(1)) = Z2

• ! = 1
D
Tr
⇥
(V (a)V (x)V †(a)V †(x))2

⇤
= ±1

2. • Gint = Z2 ⇥ Z2 = hx1, x2|x2
1 = x2

2 = (x1x2)2 = ei
• H2(Z2 ⇥ Z2, U(1)) = Z2

• ! = 1
D
Tr
⇥
V (x1)V (x2)V †(x1)V †(x2)

⇤
= ±1

3. • Gint = Z3 or Z2 or the trivial group

• H2(G,U(1)) = trivial group

• ! = 1 (no projective representations)

Order parameter to detect �(P ) and �(g)

It was shown in [54] that �(P ) can be obtained as

�(P ) =
1

D
Tr [NN⇤] (2.53)

From Eq (2.29) we can see that �(g) that results from the commutation of
on-site and parity can be obtained as

�(g) =
1

D
Tr
⇥
N�1V (g)NV T (g)

⇤
(2.54)

Here, however, an important technical point arises. Although eq (2.54)
has a similar form to the equations used to compute ! and �, it di↵ers in
an important respect. Recall that, as calculated above, the matrices V and
N are obtained only up to arbitrary overall phase factors. These phases are

43



irrelevant to the calculation of ! and �, as both V and V ⇤ appear equally in
the equations which define them. In Eq. 2.54, however, the matrix V T will fail
in general to cancel the phase contributed by V .

Since the V (g) can carry a di↵erent phase for each g, we must find a way
to self-consistently fix the phase factors of each. In principle, this can always
be done by appealing to the properties of projective representations. The
extracted matrices V should satisfy a set of relationships

V (g1)V (g2) = !(g1, g2)V (g1g2), (2.55)

with the phases !(i, j) forming the “factor system” of the representation. Since
the matrices which we numerically extract by the above procedure do not au-
tomatically satisfy this relationship, let us label them Ṽ , with Ṽ (g) = ✓gV (g)
for some phase factor ✓g. From this, one can conclude that the numerical
matrices obey a similar relation:

Ṽ (g1)Ṽ (g2) =
✓g1g2
✓g1✓g2

!(g1, g2)Ṽ (g1g2). (2.56)

By analogy to Eq. 2.55, let us define

!̃(g1, g2) =
✓g1g2
✓g1✓g2

!(g1, g2). (2.57)

Note that these phases !̃(g1, g2) can be computed numerically from

(1/D)Tr[Ṽ (g1)Ṽ (g2)Ṽ (g1g2)
�1]. (2.58)

Furthermore, since parity is assumed to be a symmetry of the state in question
(if it is not, then the concept of a � parameter is undefined and the phase
factors ✓ are irrelevant), then we must have !(g1g2)2 = 1 [52]. Inverting
Eq. 2.57 and applying this condition tells us that

✓2
g1
✓2
g2
!̃(g1, g2)

2 = ✓2
g1g2

. (2.59)

Since the !̃ are known, this set of equations, which run over all the group
elements g, are su�cient to solve for the phases ✓. In fact, when V is unitary,
it is clear from the definition of � in Eq. 2.54 that only ✓2, and not ✓ itself, is
needed to correct for the spurious phase factors, which further simplifies the
system of equations which must be solved.

In practice, another convenient way to fix these phase factors is by inter-
preting the projective representations of the group, Ṽ as linear representations
of the covering group (or at least, one of the covering groups). For example,
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in the case of Z2 ⇥ Z2, the quaternion group Q8 is a covering group. Hence
the elements of the projective representation of Z2 ⇥ Z2, V (g) can have their
overall phases fixed so that they obey the structure of this group; in particular,
for the representation of the identity element we must have V (e)2 = 1, and
for all others, V (g)2 = �1.

2.6 Summary and outlook

In this chapter, we have studied the phase diagram of a quantum spin-1
lattice with an on-site A4 symmetry along with invariance under lattice trans-
lation and inversion. Using numerical methods, we obtain the ground state
of the Hamiltonian for a range of parameters and using appropriate matrix
product state order parameters, we study the phase diagram. In the parame-
ter range we study, we detect 8 gapped phases characterized by a combination
of symmetry breaking and symmetry fractionalization. In a recent paper [63],
the authors study continuous phase transitions between two SPT phases and
determine that the central charge of the conformal field theory (CFT) that
describes that system at the phase boundary has a central charge c � 1. In
our phase diagram, we observe that the phase boundaries separating phases
B and C and also C and D by continuous phase transitions are characterized
by a CFT with c ⇡ 1.35 which is consistent with c � 1. However, there is
a distinction that must be noted. The authors of Ref [63] state their result
for phase transitions between two distinct SPT phases protected by on-site
symmetries i.e. when two phases have linear and projective representations in
the virtual space. For our case, the phases B, C and D are distinct because
of the presence of translation invariance in addition to the internal A4 sym-
metry. Specifically, the ground states belonging to three phases are invariant
under A4 transformations up to U(1) factors that corresponds to the three 1D
representations of A4 rather than projective representations. In fact, all three
phases have non-trivial projective representations in the virtual space. Fur-
thermore, the authors of Ref [61] conjecture that there can exist no continuous
phase transitions between non-trivial SPT phases when the internal symmetry
is discrete at all length scales. The phase transitions mentioned above appear
to be counter examples. However, at the moment we do not know whether
the discrete symmetry in our model is enhanced to a continuous one at the
transitions between the A4 SPT phases. It seems that the transitions seen in
this model are not the result of fine-tuning, as they appear in a finite range of
the parameter µ. These observations suggest that it is interesting to study the
nature of phase transitions and the physics involved in the phase boundary
when the protecting symmetry has both internal and on-site symmetries.
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Chapter 3

Unwinding symmetry protected
topological phases.

The contents of this chapter are published in Ref.[83] completed in collab-
oration with Juven Wang and Tzu-Chieh Wei.

3.1 Introduction and summary of main results

Gapped phases of quantum matter can be thought of as equivalence classes
of physical systems, whose dynamics are governed by local Hamiltonians with
a spectral gap. Two gapped Hamiltonians are said to be equivalent, i.e., the
physical systems described by them belong to the same phase i↵ they can be
interpolated without closing the spectral gap. The presence of global symme-
tries, which is natural in many condensed matter systems adds an additional
degree of complexity and results in an increase in the number of possible fine-
grained phases. A Hamiltonian that belongs to the trivial phase within the
space of gapped Hamiltonians without any symmetry constraint may become
non-trivial in the space of symmetric gapped Hamiltonians. One well known
mechanism by which phases can appear due to the presence of symmetries is
when the global symmetry is spontaneously broken á la Ginzburg and Landau.
Interestingly, even when symmetry is unbroken, it was recently discovered that
we can have di↵erent phases that cannot be connected without a phase tran-
sition. Such phases are called symmetry-protected-topological (SPT) phases
which are the focus of our current study.

There has been a great deal of interest in recent years in characterizing and
classifying SPT phases in various spatial dimensions. This is in part due to
the successful prediction and experimental detection of topological insulators
and in part due to the rich theoretical structure that has been uncovered
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in understanding these phases (see [84–88] for reviews). Let us review some
important facts about non-trivial SPT phases with a global symmetry G:

Fact 1: The ground state of any Hamiltonian describing a non-trivial SPT
phase cannot be mapped to a trivial state (product state for bosons, slater
determinant state for fermions) using a finite-depth unitary circuit (FDUC)
with each layer being invariant under G.

An FDUC is a unitary operator that can be written as the product of a
finite number of ultra-local unitary operators of the form

N
i
ui where each

ui operates on a disjoint Hilbert space associated to a finite number of lattice
points close to the site i. Clearly, any FDUC can only produce short-range
entanglement. Fact 1 is an alternative way of phrasing the fact that the Hamil-
tonian cannot be connected to a trivial one via a path of gapped Hamiltonians
that are invariant under G. We can ask important questions about the precise
conditions under which a non-trivial SPT phase can or cannot be unwound to
a trivial one. For instance,

Q1: How much symmetry needs to be broken to be able to map the ground
state of a non-trivial SPT phase to a product state using an FDUC?

To answer this, let us consider the famous example of the AKLT model [89],
which is invariant under an on-site action of the group SO(3) and belongs to
the so-called Haldane phase. It is known that certain essential features of
the Haldane phase, such as the emergent fractionalized boundary modes are
present even if SO(3) is explicitly broken down, using weak perturbations, to
its Abelian subgroup, Z2 ⇥ Z2 comprising of ⇡ rotations about the x, y and z
axes [90, 91]. However, if the symmetry is broken down further to Z2 (leaving
behind no other accidental symmetries like inversion), generated by ⇡ rota-
tions only about one of the axes, then the phase becomes trivial! This means
that we cannot use a Z2⇥Z2 invariant path to unwind the AKLT gound state
but we can use a Z2 invariant one. This above result can be understood within
the group-cohomology classification framework which posits that in d spatial
dimensions, bosonic SPT phases are classified by the elements of the coho-
mology group Hd+1(G,U(1)). The 1+1 D AKLT model is non-trivial in the
sense that it corresponds to the non-trivial element of H2(SO(3), U(1)) ⇠= Z2.
Now, upon restricting the group SO(3) to Z2 ⇥ Z2 by introducing symmetry-
breaking perturbations to the AKLT Hamiltonian, it turns out that the system
still belongs to a non-trivial SPT phase, now labeled by the non-trivial ele-
ment of H2(Z2 ⇥ Z2, U(1)) ⇠= Z2. However, since H2(Z2, U(1)) ⇠= 1, upon
further breaking the symmetry down to Z2, we are only left with the trivial
SPT phase. In summary, the answer to Q1 is:

An SPT phase with global symmetry G classified by Hd+1(G,U(1)) can
be trivialized by breaking G to K ⇢ G such that Hd+1(K,U(1)) ⇠= 1. As a
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corollary, a guaranteed way to trivialize any SPT phase is by breaking all
symmetries i.e. K ⇠= 1. In this chapter, we explore a second question which
is, in some sense converse to Q1:

Q2: Instead of breaking the symmetry, can we find a way to unwind an
SPT phase by extending the global symmetry?

We demonstrate that the answer to the above quesion is in the a�rmative.
The theoretical justification is established in a recent work [92] where the
authors provide a new perspective on another fact about SPT phases:

Fact 2: The symmetry action on the boundary of a non-trivial SPT phase
su↵ers from an ’t Hooft anomaly. This presents an obstruction to gauging
the symmetry and also producing a short-range-entangled symmetric gapped
Hamiltonian for the boundary degrees of freedom. However, if the symmetry on
the boundary is broken, the boundary Hamiltonian can be short-range entangled
and gapped.

The authors of [92] show that the boundary anomaly can be trivialized
by suitably extending the global symmetry G ! G̃ and dynamically gauging
the extra part, G̃/G. This produces a symmetric gapped Hamiltonian at the
boundary. Furthermore, the presence of emergent gauge degrees of freedom
leads to long-range entanglement. This result helps us answer Q2:

The ground state of a non-trivial SPT phase can be mapped to a trivial
state using a finite-depth unitary circuit in which each layer is invariant under
the extended symmetry G̃ which trivializes the boundary anomaly.

The rest of the chapter is organized as follows. In Sec. 3.3 we discuss un-
winding of nontrivial bosonic SPT phases, including representative states in
the Haldane phase under di↵erent symmetry considerations and the cluster
state. We provide a general picture for unwinding nontrivial (1+1)D SPT
phases protected by onsite symmetry. In Sec 3.4 we turn to unwinding non-
trivial fermionic SPT phases. Five of the ten Altland-Zirnbauer symmetry
classes in (1+1)D have a non-trivial classification in the free-fermionic limit
and some of these are reduced in the presence of interactions. These classes are
D, DIII, BDI, AIII and CII. We show that representative models of non-trivial
SRE phases belonging to all of these classes can be constructed by stacking
Kitaev’s Majorana chains [93] (henceforth referred to as the Kitaev chain). We
show that some of these non-trivial fermionic models that can be understood
as bosonic SPT phases can be unwound by a suitable symmetry extension. In
Sec. 3.5, we summarize and make some concluding remarks.

We remark on the notation of symmetry groups. We use the ‘math-
cal’ convention for symmetry groups that contains the fermionic parity op-
erator (�1)Nf in the group center. For example, the group of time rever-
sal symmetry generated by T such that T 2 = (�1)Nf is denoted as ZT

4 =
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{1, T , (�1)Nf , (�1)NfT }. On the other hand, the group of time reversal sym-
metry generated by T such that T 2 = 1 is denoted as ZT

2 = {1, T }.

3.2 Two known roads to unwinding SPT phases
and a third one

In this section, we review two known ways of mapping (using a FDUC) a
non-trivial SPT state to a trivial one– symmetry breaking and inversion. We
then introduce the third way– symmetry extension which will form the subject
matter for the rest of the chapter. We use a representative caricature of an
SPT state shown in Fig. 3.1 formed by considering two qubits per unit site
and maximally entangling the neighboring qubits on di↵erent sites.

| i =
Y

k

✓
| "iB,k| #iA,k+1 + | #iB,k| "iA,k+1p

2

◆
(3.1)

This state represents a non-trivial SPT ground state protected symmetry
group Z2 ⇥ Z2 generated by the two commuting operators,

Q
k
�x

A,k
�x

B,k
andQ

k
i�z

A,k
i�z

B,k
in that it cannot be mapped to a trivial product state using a

FDUC where each layer commutes with the symmetry generators. We will
return to this state and also write down its zero correlation length fixed-point
Hamiltonian explicitly in Sec. 3.3. We now proceed to trivializing the state.

Figure 3.1: A representative SPT state.

3.2.1 Explicit symmetry breaking

Consider the 2-layer FDUC, W = W2W1

W1 =
Y

k

⇥
| "ih" |B,k ⌦ �x

A,k+1 + | #ih# |B,k ⌦ 1A,k+1

⇤
(3.2)

W2 =
Y

k

⇥
| "ih" |B,k ⌦ �x

A,k
+ | #ih# |B,k ⌦ 1A,k

⇤
(3.3)
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Applying W to | i leaves us with the trivial product state, | 0i as shown in
Fig. 3.2.

W| i = | 0i =
Y

k

✓
| "iA| #iB + | #iA| "iBp

2

◆

k

(3.4)

However,W1 andW2 do not commute with the symmetry operators
Q

k
�x

A,k
�x

B,k

and
Q

k
i�z

A,k
i�z

B,k
and hence this is a case of unwinding by explicit symmetry-

breaking.

Figure 3.2: Unwinding by explicit symmetry-breaking.

3.2.2 Inversion

SPT phases are said to be invertible. This means that for every non-trivial
SPT phase, we can find its inverse phase, which, if stacked on the original
SPT phase can be unwound to a trivial one. This follows from the fact that
SRE phases have an Abelian group structure with respect to stacking. If a
phase, labeled by an element ↵ is stacked on another phase, labeled by �,
the net system is a phase labeled by ↵ + �. The non-trivial SPT state we
are considering has a Z2 classification from group-cohomology (see sec (3.3)).
This means that the non-trivial phase is its own inverse and by stacking two
layers of the system, we should be able to map it to a trivial state using a
FDUC that commutes with the Z2 ⇥ Z2 symmetry generators at each layer.
Let us check this explicitly.

First, let us consider the ground state of two stacked SPT phases.

| ̃i = | i1 ⌦ | i2 =
Y

k

Y

↵=1,2

✓
| "iB,k| #iA,k+1 + | #iB,k| "iA,k+1p

2

◆

↵

We can use the following two-layer FDUC to map this state to two layers
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of the trivial state of Eq. 3.4.

W1 =
Y

k

1

2
(1 + �B,1,k.�A,2,k+1) (3.5)

W2 =
Y

k

1

2
(1 + �A,1,k.�B,2,k) (3.6)

W| ̃i =
Y

k

Y

↵=1,2

✓
| "iB,k| #iA,k + | #iB,k| "iA,kp

2

◆

↵

, (3.7)

Figure 3.3: Unwinding by inversion.

where W = W2W1. The operator 1
2 (1 + �A.�B) is a swap operator that

exchanges the basis states | "i, | #i on two sites, A and B and is easily checked
to commute with the Z2 ⇥ Z2 symmetry generators. Thus, we have unwound
the SPT phase without breaking symmetry but by stacking an ‘inverse phase’.

3.2.3 Symmetry extension

Let us now consider coupling the original SPT state to a product state of
dimers:

| ̃i = | i ⌦
Y

odd k

(| #ik| "ik+1 + | "ik| #ik+1)Cp
2

(3.8)

This state can be unwound by the application of the following FDUC:
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Figure 3.4: Unwinding by symmetry extension.

W = W1W2 (3.9)

W1 =
Y

odd k

1

2
(1 + �C,k.�A,k+1) (3.10)

W2 =
Y

odd k

1

2
(1 + �C,k.�A,k)

Y

even k

1

2
(1 + �C,k.�B,k) (3.11)

W| ̃i =
Y

k

✓
| "iB,k| #iA,k+1 + | #iB,k| "iA,k+1p

2

◆ Y

even k

(| #ik| "ik+1 + | "ik| #ik+1)Cp
2

However, notice that the extended state, as well as the layers of W is invariant
under the larger symmetry group, generated by the operators

Q
k
�x

A,k
�x

B,k
�x

C,k

and
Q

k
i�z

A,k
i�z

B,k
i�z

C,k
which do not commute with each other. These genera-

tors are a faithful representation of the dihedral group of 8 elements, D8. This
is an example of unwinding by extension which we will explore. The relation-
ship between the original symmetry group, Z2 ⇥ Z2 to the extended one, D8

as well as a number of other details and generalities will be made clear in the
following sections.

3.3 Unwinding bosonic SPT phases

In this section, we demonstrate how fixed-point bosonic SPT states and
their parent Hamiltonians can be trivialized by symmetry extension. We be-
gin with a short review of the group cohomology classification of bosonic SPT
phases, first in 1+1 D and then in general dimensions. We also review key
results from the paper by Wang, Wen and Witten [92] on how the boundary ’t
Hooft anomaly can be trivialized using symmetry extension to produce sym-
metric gapped boundary. We then demonstrate our trivialization procedure
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for (1+1)D bulk using the same symmetry-extension procedure on a few spe-
cific examples of well known bosonic SPT phases, and we also state a general
picture for the case of arbitrary on-site finite unitary symmetry. Note that ev-
erywhere in this chapter, unless stated otherwise, we consider one dimensional
systems of length L assumed to be in the thermodynamic limit (L >> 1) with
lattice constant set to 1 and employ periodic boundary conditions.

3.3.1 A quick recap of the classification of bosonic SPT
phases in 1+1D and beyond

We start with a quick recap of the classification of bosonic SPT phases
in (1+1)D following Ref [52]. Let us first recall that SPT phases are gapped
phases of matter with a unique ground state. In (1+1)D, this allows us to rep-
resent any such ground state faithfully as a matrix product state (MPS) with a
su�ciently large but finite bond dimension � that does not scale with the sys-
tem size [94, 95]. Let us focus on a spin chain with an on-site Hilbert space of
dimension J and choose some basis appropriately labeled |ii = |1i, |2i, . . . , |Ji.
For convenience of notation, let us also assume lattice translation invariance.
An MPS representation of a gapped ground state of such a system can be
written using J matrices of size �⇥ �, A1, . . . , AJ as follows

| i =
JX

i1=1

. . .
JX

iL=1

Tr [Ai1Ai2 . . . AiL ] |i1 . . . iLi. (3.12)

First, note that changing Ai 7! MAiM † with any unitary M leaves | i in-
variant and hence is a redundancy in the MPS representation. Let us now
consider | i, a unique ground state which invariant under the group of sym-
metry operations, g 2 G of Hamiltonian, g : | i 7! | i. We can re-express
the invariance condition of | i as a condition on the set of matrices Ai. The
di↵erent inequivalent ways of this symmetry action on the matrices Ai e↵ec-
tively give us a classification of di↵erent SPT phases. Let us demonstrate this
using a few examples starting with time reversal symmetry.

Consider the action of time-reversal symmetry with an anti-unitary rep-
resentation, T such that T 2 = 1. Any time-reversal symmetry operator can
be written using an on-site unitary operator, UT combined with complex-
conjugation, K,

T =

"
LO

i=1

UT

#
K, (3.13)

The invariance condition T | i = | i can translated to the matrices Ak as
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follows
JX

k=1

UT

ik
A⇤

k
= V AiV

†. (3.14)

The condition T 2 = 1 imposes the condition V ⇤V = ±1 and thus divides the
virtual space (sometimes also called the bond space) symmetry representation
V into two classes labeled by ±. This gives us the Z2 classification of T
invariant spin-chains.

Let us now consider the case of internal unitary symmetries, which is de-
scribed by an on-site unitary representation of the elements of some group G,N

L

i=1 U(g). The invariance condition,
N

L

i=1 U(g)| i = | i can be translated
to the level of Ak matrices as follows

JX

k=1

U(g)ikAk = V (g)AiV
†(g). (3.15)

Firstly, note that re-phasing the representation of G on the virtual dimension
V (g) by a 1D representation, �1(g) as follows is a gauge freedom that leaves
Eq. 3.15 invariant

V (g) 7! �1(g)V (g). (3.16)

Group theoretic constraints on U(g) further impose conditions on V (g). The
composition rule U(g)U(h) = U(gh) requires V (g) only closes up to a U(1)
factor

V (g)V (h) = !2(g, h)V (gh), (3.17)

where !2(g, h) is a U(1) phase factor dependent on g and h. This means that
V (g) are projective representations of G. Furthermore, associativity imposes
the following cocycle constraint on the phases !2

!2(g, h)!2(gh, l)!
�1
2 (g, hl)!�1

2 (h, l) ⌘ (�!2)(g, h, l) = 1. (3.18)

Eq. (3.16) defines the following coboundary equivalence relation

!2(g, h) ⇠ !2(g, h)�1(g)�1(h)�
�1
1 (gh) ⌘ !2(g, h)(��1)(g, h). (3.19)

The di↵erent SPT phases in 1+1 D with symmetry group G are classified by
the di↵erent equivalence classes of !2 with the equivalence relation of Eq. 3.19
subject to the condition of Eq. 3.18. These classes are labeled by the elements
of the second cohomology group of G with U(1) coe�cients, H2(G,U(1)).

A natural generalization of the H2(G,U(1)) classification of bosonic SPT
phases in 1+1 dimensions to d+1 dimensions is replacing H2(G,U(1)) by
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Hd+1(G,U(1)) [96] which labels equivalence classes of d+1 cocycles, !d+1({gi})
subject to generalizations of Eqs.3.18,3.19. This classification is known to cap-
ture a large class of bosonic SPT phases although exceptions are known to ex-
ist [97–99]. One important feature of bosonic SPT phases classified by group
cohomology is the presence of an ’t Hooft anomaly on the boundary [100, 101]
which has several consequences. First, it presents an obstruction to gauging
the symmetry on the boundary by forcing it to have a non on-site representa-
tion [102]. Second, it forbids the boundary from being symmetric, gapped and
short-range-entangled (see [103] for a nice proof-by-contradiction). However,
it has been known that the boundary can be gapped by breaking symmetry
(spontaneously or explicitly), or, more interestingly, when accompanied by sur-
face topological order with long-range-entanglement [104–109]. Ref.[92] puts
the latter route to gapping symmetric boundary for bosonic phases classified
by group cohomology in a systematic footing by symmetry extension which we
briefly review below.

Consider a bosonic SPT phase with a boundary ’t Hooft anomaly classified
by a (d+1) cocycle !d+1({gi}) belonging to a non-trivial class ofHd+1(G,U(1))
meaning !d+1({gi}) 6= ��d({gi}). It was shown in [92] that given the above
data, there exists a group extension G̃ which fits into the following short exact
sequence.

1 �! K
i�! G̃

s�! G �! 1. (3.20)

As usual, i is an injective map and s is a surjective map (see [110] for an
introduction to short exact sequences and group extensions). The short exact
sequence is such that if we consider the cocycle for the bigger group, G̃, as
defined via pullback of the surjective map s, then it belongs to the trivial class:

!d+1({g̃i}) = s⇤!d+1({gi}) = !d+1({s(g̃i)}) = ��d({g̃i}). (3.21)

This fact was used in [92] to produce gapped boundaries by considering a G̃
invariant boundary theory but with the extra symmetry K, being dynamically
gauged, leaving the true global symmetry to be G̃/K ⇠= G.

Another consequence of the above result, which is the focus of this chapter,
is that if we extend the symmetry G to G̃ as prescribed by the short exact
sequence (3.20), we can unwind the non-trivial G SPT to a trivial one in a
G̃ invariant path in Hamiltonian space. The rest of the chapter is concerned
with demonstrating this by constructing a G̃ invariant FDUC to map a non-
trivial G SPT state to a trivial one for various symmetries. For each case, we
state the extension used and demonstrate unwinding but do not explain how
the extension is arrived at. We relegate the reader to [92] for those technical
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details.

3.3.2 Unwinding an AKLT-like spin chain

Figure 3.5: The AKLT-like model.

The A✏eck-Kennedy-Lieb-Tasaki model [45] is a chain of spin-1 particles
with the following Hamiltonian

HAKLT =
X

j


Sj · Sj+1 +

1

3
(Sj · Sj+1)

2

�
, (3.22)

where S↵ are the spin-1 generators of the SU(2) algebra. This Hamiltonian
has a unique MPS ground state which can be written in the basis of the Sz

operator, |+ 1i, |� 1i, |0i as follows

| i =
X

i1=±1,0

. . .
X

iL=±1,0

Tr [Mi1Mi2 . . .MiL ] |i1 . . . iLi. (3.23)

M±1 = ±
r

2

3

✓
�x ± i�y

2

◆
, M0 =

�1p
3
�z.

This ground state can also be interpreted as a valence-bond-solid state by
first starting with two spin-12 ’s per unit site, entangling neighboring spins to
form SU(2) singlets and then projecting each site onto the spin-1 sector of the
Clebsch-Gordan decomposition 1

2 ⌦
1
2
⇠= 1� 0.

We now consider a simplified version of the AKLT model shown in Fig.3.5,
whose ground state, |Gi is the same as | i of Eq. 3.23 except for the projection
onto the spin-1 sector on each site. This leaves us with a 4 dimensional local
Hilbert space coming from the two spin halves, which we will call A and B,
that still transforms as a faithful 1 � 0 representation of SO(3). We can also
write a parent commuting-projector Hamiltonian H, that has |Gi as its unique
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ground state:

|Gi =
Y

k

| iBk,Ak+1 =
Y

k

(| "iB,k| #iA,k+1 � | #iB,k| "iA,k+1)p
2

, (3.24)

H = �
X

k

| ih |Bk,Ak+1. (3.25)

This model has all the appealing features of the AKLT model like fraction-
alized boundary spins, unique ground state with periodic bounary conditions
and a spectral gap, with the added advantage of being exactly solvable. We
now unwind this model by interpreting it as two di↵erent non-trivial SPT
phases protected by two di↵erent global symmetries.

As an SO(3)-invariant SPT phase

Figure 3.6: The AKLT-like model with extension.

If we disregard all other symmetries except for SO(3) with the following
on-site unitary representation

U(✓) =
Y

k

exp
h
i✓
n · �
2

i

A,k

exp
h
i✓
n · �
2

i

B,k

, (3.26)

we can interpret the model (3.24) as a non-trivial SPT phase protected by
SO(3) which has a H2(SO(3), U(1)) ⇠= Z2 classification. We now use the
following extension to unwind the model:

1 �! Z2
i�! SU(2)

s�! SO(3) �! 1. (3.27)

In order to make the system transform faithfully under SU(2), we introduce
an additional spin-12 particle at each site, which we will label C as shown
in Fig.(3.6). We extend H with a trivial SU(2) invariant Hamiltonian such
that the ground state of the additional spins is a product of dimers of SU(2)
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singlets:

|G̃i = |Gi ⌦
Y

odd k

�| iCk,Ck+1 = |Gi ⌦
Y

odd k

✓
| #ik| "ik+1 � | "ik| #ik+1p

2

◆

C

,

H̃ = H �
X

odd k

| ih |Ck,Ck+1.

The on-site Hilbert space now transforms as the 1
2 ⌦ 1

2 ⌦ 1
2
⇠= 3

2 � 1
2 � 1

2
representation, which is faithful to SU(2). It can be checked that the symmetry
representation commutes with the extended Hamiltonain H̃ and leaves the
ground state |G̃i invariant:

Ũ(✓) =
Y

k

exp
h
i✓
n · �
2

i

k,A

exp
h
i✓
n · �
2

i

k,B

exp
h
i✓
n · �
2

i

k,C

. (3.28)

Figure 3.7: Unwinding of the AKLT-like model.

We use the two-layer FDUC W = W2W1 constructed using a series of
entanglement swap operations to trivialize the system as shown in Fig.3.7

W1 =
Y

odd k

SCk,Ak+1, (3.29)

W2 =
Y

odd k

(SC,A)k
Y

even k

(SC,B)k, (3.30)

SAB =
X

↵=",#

X

�=",#

|↵ih�|A|�ih↵|B =
1

2
(1 + �A.�B) . (3.31)

Each 2-qubit swap operator, SAB is manifestly SU(2) invariant and, as a result,
so are W1 and W2. W maps |G̃i and H̃ to the following trivial ground state,
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|G0i and Hamiltonian H0 thereby unwind the SPT phase.

W|G̃i =
Y

k

�| iAk,Bk ⌦
Y

even k

| iCk,Ck+1 = |G0i, (3.32)

WH̃W† = �
X

k

| ih |Ak,Bk �
X

even k

| ih |Ck,Ck+1 = H0. (3.33)

As a time-reversal ZT

2 -invariant SPT phase

Let us now take the same model but consider it as an SPT protected by
the anti-unitary time reversal symmetry, ZT

2 generated by

T =
Y

k

exp


i⇡�y
2

�

k,A

exp


i⇡�y
2

�

k,B

K, (3.34)

where, K is the complex conjugation operation, and disregarding all other
symmetries. Since each site contains two spin-1/2 particles (A and B), it is
clear that the time-reversal operator squares to identity locally, i.e. T 2 = 1.

We now use the following extension to trivialize the model

1 �! Z2
i�! ZT

4
s�! ZT

2 �! 1. (3.35)

It turns out that we can repurpose the unwinding procedure involving SO(3)
to SU(2) extension to also define a ZT

2 to ZT

4 extension, with the ZT

4 being
generated by

T̃ =
Y

k

exp


i⇡�y
2

�

k,A

exp


i⇡�y
2

�

k,B

exp


i⇡�y
2

�

k,C

K. (3.36)

It can be checked that, because of the extra spin-1/2 particle on each site,
T̃ 2 = �1 locally on each site, which means T̃ is an order-4 group element
and generates the ZT

4 symmetry that we seek. It can easily be checked that
H̃ and |G̃i are invariant under T̃ as are W1 and W2. Thus, using the FDUC
W = W2W1, we obtain the trivial Hamiltonian and ground state just as before.

To summarize, we have demonstrated how we can trivialize the AKLT-like
model by symmetry extension. When viewed as an SPT phase protected by
SO(3), it can be trivialized using extension (3.27) and when viewed as an
SPT phase protected by time-reversal symmetry, it can be trivialized using
extension (3.35).

For completeness, let us consider a simpler demonstration that this SPT
phase can be trivialized by symmetry extension– instead of unwinding the
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Figure 3.8: Gapping out the boundary modes by symmetry extension.

entire chain to a trivial one, we might be interested in simply gapping out the
degenerate boundary spins by extending symmetry just on the boundary. This
is very easy to do as shown in [92]. Consider an open chain as shown in Fig. 3.8
with a dangling spin 1/2 at each end giving rise to a 4-fold degeneracy. We
can introduce additional spins that extends the symmetry on the boundary
to SU(2) and then tune in SU(2) invariant boundary interaction terms, h =
�| ih | where | i is the SU(2) singlet, that favors entangling the two dangling
spins into a singlet in the ground state thus lifting the degeneracy. This also
applies to the interpretation of the boundary modes coming from time-reversal
symmetry. Such a boundary gapping can be done for all the examples below
but we will not mention it. We will focus on unwinding the entire system.

3.3.3 Unwinding the Cluster state

Figure 3.9: The cluster state before and after change of basis.

We now consider another famous model of an SPT phase, the cluster state
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| Ci and the Hamiltonian it is the ground state of, Hc:

| ci =
Y

k

CZk,k+1

Y

j

|+ij, (3.37)

Hc = �
X

k

�z

k�1�
x

k
�z

k+1, (3.38)

where, |+i is the positive eigenstate of �x and CZab is the two-qubit operator

CZab =
1

2
(1 + �z

a
+ �z

b
� �z

a
�z

b
) (3.39)

The cluster state [111] was introduced as a resource state for measurement-
based quantum computation (MBQC) [112, 113]. This model was later on
understood to be a non-trivial SPT phase protected by a unitary on-site Z2⇥Z2

symmetry [114, 115], generated by the following two operators

U(x) ⌘
Y

odd k

�x

k
, U(z) ⌘

Y

even k

�x

k
. (3.40)

We also comment that the short-range entanglement structure that facilitates
quantum computation is now understood as arising from the non-trivial SPT
nature and the study of the utility of SPT phases for MBQC is a field of active
research (See[32, 34, 35, 116]).

For our purpose, it will be helpful to apply an on-site change-of-basis to
change the cluster state into a more convenient form. First, let us collect two
spins together and label them A and B to form a four dimensional local Hilbert
space as shown in Fig.(3.9). The symmetry generators can now be rewritten
as

U(x) =
Y

k

�x

A,k
, U(z) =

Y

k

�x

B,k
. (3.41)

Next, we apply the on-site change of basis, M defined as below to obtain
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the new form of the Hamiltonian, ground state and symmetry generators

M =
Y

k

exp


�i⇡�y

4

�

A,k

[CZAB]k , (3.42)

MU(x)M † ⌘ V (x) =
Y

k

�x

A,k
�x

B,k
, (3.43)

MU(z)M † ⌘ V (z) =
Y

k

i�z

A,k
i�z

B,k
, (3.44)

MHCM
† ⌘ HC =

X

k

�
�z

B,i
�z

A,i+1 � �x

B,i
�x

A,i+1

�
, (3.45)

M | CiM † ⌘ |�Ci =
Y

k

|�iBk,Ak+1 =
Y

k

(| "iB,k| #iA,k+1 + | #iB,k| "iA,k+1)p
2

.

This is the same state that was briefly studied in Sec. 3.2. We now use the
following symmetry extension to unwind this phase:

1 �! Z2
i�! D8

s�! Z2 ⇥ Z2 �! 1. (3.46)

D8 is the order 8 dihedral group generated by two elements with the following
presentation

D8 = ha, x|a4 = x2 = 1, xax = a�1i. (3.47)

To achieve this, like before, we introduce a third qubit at each site, which
we call C and whose dynamics is governed by a dimerizing Hamiltonian that
belongs to the trivial phase. The new ground state and Hamiltonian are as
follows,

|�̃Ci = |�Ci ⌦
Y

odd k

|�iCk,Ck+1 = |Gi ⌦
Y

odd k

(| #ik| "ik+1 + | "ik| #ik+1)Cp
2

,

H̃C = HC +
X

odd k

�
�z

C,i
�z

C,i+1 � �x

C,i
�x

C,i+1

�
. (3.48)

The symmetries of this model are generated by

Ṽ (x) =
Y

k

�x

A,k
�x

B,k
�x

C,k
, Ṽ (z) =

Y

k

i�z

A,k
i�z

B,k
i�z

C,k
. (3.49)

It can be checked that these generators satisfy the presentation of Eq.3.47 and
are a faithful representation of D8. With this, just like before, we can use a
FDUC that commutes with this extended symmetry to unwind the system.
In fact, we can use the exact same FDUC, W = W2W1 used in the previous
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section to do the job.

W1 =
Y

odd k

SCk,Ak+1, (3.50)

W2 =
Y

odd k

(SC,A)k
Y

even k

(SC,B)k, (3.51)

SAB =
1

2
(1 + �A.�B) . (3.52)

Using this, we get the following trivial ground state and Hamiltonian

Figure 3.10: Unwinding the cluster state.

W|�̃Ci = |�0i =
Y

k

|�iAk,Bk ⌦
Y

even k

|�iCk,Ck+1, (3.53)

WH̃CW† = H0 =
X

k

�
�z

A,k
�z

B,k
� �x

A,k
�x

B,k

�
+
X

even k

�
�z

C,k
�z

C,k+1 � �x

C,k
�x

C,k+1

�
.

3.3.4 General picture for finite on-site unitary symme-
tries: proof based on Schur cover

We now describe a general procedure to unwind fixed-point states of SPT
phases with any on-site unitary symmetry of a finite group, G classified by
! 2 H2(G,U(1)). To construct the on-site Hilbert space, we consider one
spin that transforms as a projective representation belonging to class ! and
another that transforms as !⇤, the inverse of ! in the group H2(G,U(1)). To
be more precise, let |i!i = |1!i . . . |J!i be the basis states for some faithful J
dimensional projective represenation of G belonging to class ! 2 H2(G,U(1)).
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Under group transformations, we have

g : |i!i 7!
JX

i0=1

V (g)ii0 |i0!i, (3.54)

V (g)V (h) = !(g, h)V (gh), (3.55)

where !(g, h) is a U(1) phase factor. Now consider another spin of the same
dimension J that transforms as !⇤, with basis states |i!⇤i = |1!⇤i . . . |J!⇤i and
the transformation property,

g : |i!⇤i 7!
JX

i0=1

V ⇤(g)ii0 |i0!⇤i, (3.56)

V ⇤(g)V ⇤(h) = !⇤(g, h)V ⇤(gh). (3.57)

If we consider a physical site to contain both spins, the representation of the
symmetry that acts on the site, U(g) ⌘ V (g) ⌦ V ⇤(g) can be checked to
be a linear representation of G by observing that U(g)U(h) = U(gh). To
construct a non-trivial SPT state, we maximally entangle neighboring spins
from di↵erent sites to form a symmetric state |�!i as shown in Fig. (3.11),

|�!iBA =
1p
J

JX

i=1

|i!⇤iB|i!iA. (3.58)

Figure 3.11: SPT state with finite on-site symmetry.

Using this, we can write down the following ground state and parent Hamil-
tonian

| !i =
Y

k

|�!ikk+1, (3.59)

H = �
X

k

|�!ih�!|kk+1. (3.60)

For general dimensions, it is a di�cult task to find the symmetry extension
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that will trivialize the SPT phase. However, in 1+1 D, we use the following
theorem [117, 118]

Theorem: Every finite group G has associated to it at least one finite group
G̃, called a Schur cover, with the property that every projective representation
of G can be lifted to an ordinary representation of G̃.

The Schur cover, G̃ is precisely the extension we need to trivialize the
system, as we now show. Consider an extension to the original system by in-
troducing an ancillary degree of freedom, which we label C which transform as
! and !⇤ projective representations on alternating sites. With this extension,
each site transforms as a projective representation under either the following
two representations,

Ũ!(g) ⌘ V (g)⌦ V ⇤(g)⌦ V (g) or Ũ!⇤(g) ⌘ V (g)⌦ V ⇤(g)⌦ V ⇤(g), (3.61)

both of which, from the theorem above is a faithful representation of the Schur
cover, G̃. Let us also write down the ground state and Hamiltonian for the
extended system

| ̃i = | i
Y

odd k

|�!⇤iCkCk+1, (3.62)

H̃ = H �
X

odd k

|�!⇤ih�!⇤ |CkCk+1. (3.63)

To trivialize the extended system, we use the following swap operator

S!
AB

⌘
JX

i=1

JX

j=1

|i!ihj!|A ⌦ |j!ihi!|B. (3.64)

Finally, we define the following FDUC W = W2W1 to trivialize the system as
shown in Fig (3.12),

W1 =
Y

odd k

S!
C,k,A,k+1, (3.65)

W2 =
Y

odd k

S!
A,k,C,k

Y

even k

S!⇤

B,k,C,k
. (3.66)

(3.67)

Applying W , we end up with the following trivial ground state and Hamil-
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Figure 3.12: Unwinding SPT state with finite on-site symmetry.

tonian

W| ̃i =
Y

k

|�!⇤iAkBk

Y

even k

|�!iCkCk+1, (3.68)

WH̃W† = �
X

k

|�!⇤ih�!⇤ |AkBk �
X

even k

|�!ih�!|CkCk+1. (3.69)

3.4 Unwinding fermionic SPT phases

3.4.1 Realizing fermionic SPT phases by stacking Ki-
taev chains

In this section, we present model Hamiltonians using layers of the so-called
Kitaev Majorana chain, which realize short-range-entangled fermionic phases
corresponding to the five Altland-Zirnbauer classes that have a non-trivial
classification in the free limit in 1+1 d. These classes are D, DIII, BDI, AIII
and CII. To connect with the classification in the presence of interactions, we
consider particular global symmetries of D, DIII, BDI, AIII and CII – Zf

2 , ZT

4 ,

ZT

2 ⇥ Zf

2 , U(1)⇥ ZT

2 ,
(U(1)oZC

4 )

Zf
2

⇥ ZT

2 -symmetries. In the next section, we will

demonstrate how a subset of these fermionic phases, which can be interpreted
as bosonic SPT phases, can be trivialized by symmetry extension.

A note about the notation used in describing global symmetries in fermionic
systems– any Hamiltonian describing the dynamics of fermions commutes with
the fermion parity operator, P̂f = (�1)N̂f . While this can be thought of as
a symmetry, which we will call Zf

2 , it is important to note that it can never
be explicitly broken. One way to understand this is that this ‘symmetry’ is
imposed by the condition of locality on the Hamiltonian. If we explicitly break
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Zf

2 by adding a term to the Hamiltonian that does not commute with P̂f like
�H =

P
k
 †
k
+ k, the local terms in the Hamiltonian that are far-separated no

longer commute rendering the Hamiltonian non-local. Hence, the Zf

2 symme-
try is sometimes implicitly assumed when defining global symmetries in the
literature. In this chapter however, we choose to list Zf

2 explicitly for clar-
ity to avoid any potential confusion. Furthermore, whenever Zf

2 is part of a
symmetry group, we indicate it using a ‘mathcal’ font.

Class D (Zf

2 -symmetry)

Let us start with the Hamitonian for the Kitaev chain [93] which is a
model of spinless fermions (on-site Hilbert space of a single fermionic mode)
on a one-dimensional chain as shown in Fig. 3.13:

HD = i
X

k

dkck+1. (3.70)

ci and di are Majorana operators which are defined in terms of creation and
annihilation operators of the fermion mode,  i, 

†
i
as follows

ci =  †
i
+  i, di = i

⇣
 †
i
�  i

⌘
. (3.71)

Figure 3.13: The Kitaev chain.

If no other symmetries except Zf

2 is taken into consideration, this model
of free fermions belongs to class D. SRE phases of this class has a Z2 classi-
fication in the non-interacting limit [119, 120] and HD is a representative of
the non-trivial phase. Since this phase is stable to interactions [121, 122],
HD is a representative of a non-trivial phase of interacting fermions with no
symmetries other than Zf

2 . For completeness, we also mention a representative
of the trivial phase with the same symmetries shown in Fig .3.14.

H0
D
= i
X

k

ckdk. (3.72)
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Figure 3.14: The trivial Majorana chain.

Class DIII (ZT

4 -symmetry)

Figure 3.15: Non-trivial DIII chain.

We now consider a Hamiltonian with two species of fermions per unit site,
which we will label as " and #, constructed using two layers of Kitaev chains
as shown,

HDIII = i
X

k

X

�=",#

d�,k c�,k+1. (3.73)

This Hamiltonian commutes with the anti-unitary time-reversal operator T ,

T =
Y

k

e�
⇡
4 (c"c#+d"d#)k K =

Y

k

(1� c"c#)kp
2

(1� d"d#)kp
2

K, (3.74)

T 2 =
Y

k

(ic",kd",k) (ic#,kd#,k) = P̂f , (3.75)

where P̂f is the fermion parity and K denotes complex conjugation which has
the following action

KiK = �i, Kc↵K = c↵, Kd↵K = �d↵. (3.76)

We denote this symmetry group as ZT

4 and should be distinguished from ZT

4

defined in the previous section. The action of T can be seen in a more con-
ventional form on creation and annihilation operators defined in the usual
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way.

 �,k =
1

2
(c� + id�)k ,  †

�,k
=

1

2
(c� � id�)k , (3.77)

T =
Y

k

⇣
e�i

⇡
2 �

y
↵� 

†
↵ �

⌘

k

K =
Y

k

⇣
e�i⇡Ŝy

⌘

k

K, (3.78)

T  ↵,kT �1 = i�y

↵,�
 �,k. (3.79)

With the symmetry G = ZT

4 , this free fermion model belongs to class
DIII. SRE phases of this class has a Z2 classification in the non-interacting
limit [119, 120] and HDIII is a representative of the non-trivial phase. Since this
phase is stable to T invariant interactions [121, 122], HDIII is a representative
of a non-trivial phase of interacting fermions with G = ZT

4 symmetry. For
completion, we also mention a representative of the trivial phase with the
same symmetries

H0
DIII = i

X

k

X

�=",#

c�,k d�,k, (3.80)

which is simply two copies of the trivial Hamiltonian (3.72).

Class BDI (ZT

2 ⇥ Zf

2 -symmetry)

Figure 3.16: Stacked Kitaev chains.

Let us once again consider the Kitaev chain Hamiltonian of Eq. 3.70. It
can be checked that the Hamiltonian is invariant under an anti-unitary time-
reversal operation that only involves complex conjugation, T = K which
satisfies T 2 = 1 and we call the group ZT

2 . The full symmetry group is
G = ZT

2 ⇥ Zf

2 . With this symmetry being considered, the free-fermion Ki-
taev Hamiltonian (3.70) belongs to class BDI. SRE phases of this class has a
Z classification in the non-interacting limit [119, 120]. We can think of the
Kitaev chain to be a generating Hamiltonian for all the non-trivial phases in
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this class by stacking as shown in Fig. 3.16. Let us list representatives of each
non-interacting phase labeled by n 2 Z:

H(n)
BDI = i

|n|X

↵=1

X

k

d↵,k c↵,k+1 8n 2 Z+, (3.81)

H(n)
BDI = i

|n|X

↵=1

X

k

c↵,k d↵,k+1 8n 2 Z�, (3.82)

H(0)
BDI = i

X

k

ckdk. (3.83)

In the presence of interactions, it was shown in [123] that the n = 8 Hamil-

tonian can be smoothly deformed to eight copies of H(0)
BDI without closing

the gap. This means that in the presence of interactions, the SPT phases
for this global symmetry has a Z8 classification whose representatives are
H(1)

BDI, . . . , H
(8)
BDI.

Class AIII (U(1)⇥ ZT

2 -symmetry)

If we consider the even members of H(n)
BDI, we can associate a U(1) sym-

metry in addition to time-reversal and commutes with it. Let us consider
H(2)

BDI

H(2)
BDI = i

2X

↵=1

X

k

d↵,kc↵,k+1, (3.84)

and the following U(1) operator which commutes with T = K,

D(✓) =
Y

k

e�
✓
2 (c1c2+d1d2)k . (3.85)

To show invariance of (3.84) under D(✓), let us first look at the action on the
Majorana operators,

D(✓)

✓
c1
c2

◆

k

D(✓)† =

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆✓
c1
c2

◆

k

, (3.86)

D(✓)

✓
d1
d2

◆

k

D(✓)† =

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆✓
d1
d2

◆

k

. (3.87)
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Now, we write the Hamiltonian (3.84) in a suggestive form which makes in-
variance under D(✓) manifest,

H(2)
BDI = i

X

k

�
d1 d2

�
k

✓
c1
c2

◆

k+1

, (3.88)

D(✓)H(2)
BDID(✓)† = i

X

k

�
d1 d2

�
k

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆✓
c1
c2

◆

k+1

= H(2)
BDI. (3.89)

Hence, the symmetry group is G = U(1) ⇥ ZT

2 . Note that D(⇡) = P̂f and
hence we have used calligraphic script to denote the U(1) symmetry. This
free model belongs to class AIII and SRE phases of this class has a Z clas-
sification. The representatives of each phase n 2 Z can be obtained by con-
sidering the even members, H(2n)

BDI . In the presence of interactions respecting
U(1) ⇥ ZT

2 , the classification reduces to Z4 whose representatives are simply

H(2)
BDI, H(4)

BDI, H(6)
BDI, H(8)

BDI.
To make things clearer and for future convenience, we perform an on-site

basis change using the unitary operator,M ⌘
Q

k
e

⇡
4 (c2d1)k as shown in Fig.3.17.

Let us see the action on H(2)
BDI:

HAIII ⌘ MH(2)
BDIM

† = i
X

k

(c2,kc1,k+1 � d2,kd1,k+1) , (3.90)

S ⌘ MT M † = MMTK =
Y

k

(c2d1)k K, (3.91)

V (✓) ⌘ MD(✓)M † =
Y

k

e
✓
2 (c1d1�c2d2)k . (3.92)

Figure 3.17: Non-trivial AIII chain before and after change of basis.

Let us rewrite the new Hamiltonian HAIII in terms of the following fermion
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creation and annihilation operators,

 1,k ⌘ 1

2
(c1 � id1)k ,  †

1,k =
1

2
(c1 + id1)k , (3.93)

 2,k ⌘ 1

2
(c2 + id2)k ,  †

2,k =
1

2
(c2 � id2)k , (3.94)

HAIII = 2i
X

k

⇣
 †
2,i 1,i+1 +  2,i 

†
1,i+1

⌘
. (3.95)

First, note that the U(1) represented by V (✓) is now manifest in this form of
the Hamiltonian. If we interpret fermions labeled 1 and 2 to be residing on
even and odd sites of a chain, HAIII can be viewed as the bipartite hopping
model [86, 124, 125]

P
m,n

tmn †
m
 n with tmn = t⇤

nm
and has the following

chiral symmetry:

S mS�1 = (�1)m †
m
, (3.96)

SiS�1 = �i. (3.97)

For clarity, let us write down the Hamiltonian representatives and the sym-
metry operators of the four SRE phases written in the new form, labeled
n = 1, 2, 3, 4.

H(n)
AIII = i

nX

↵=1

X

k

(c↵,2,kc↵,1,k+1 � d↵,2,kd↵,1,k+1) , (3.98)

S =
Y

k

nY

↵=1

(c↵,2d↵,1)k K, (3.99)

V (✓) =
Y

k

e
✓
2

Pn
↵=1(c↵,1d↵,1�c↵,2d↵,2)k . (3.100)

Class CII ( (U(1)oZC
4 )

Zf
2

⇥ ZT

2 -symmetry)

Let consider two layers of HAIII (3.90) and label them as " and # as shown
in Fig.3.18,

H(2)
AIII ⌘ HCII = i

X

k

X

�=",#

(c�,2,kc�,1,k+1 � d�,2,kd�,1,k+1) . (3.101)

Note that this contains four fermion species per unit cell labeled by a = 1, 2
and � =", #. We can now define a unitary charge conjugation symmetry that
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Figure 3.18: Non-trivial CII chain.

commutes with HCII as follows,

C =
Y

k

e
⇡
4

P2
a=1(c#,ac",a�d#,ad",a)k . (3.102)

The action of C is best viewed on the creation and annihilation operators
defined previously:

 �,1,k =
1

2
(c�,1 � id�,1)k ,  †

�,1,k =
1

2
(c�,1 + id�,1)k , (3.103)

 �,2,k =
1

2
(c�,2 + id�,2)k ,  †

�,2,k =
1

2
(c�,2 � id�,2)k , (3.104)

C a,↵,kC�1 = i�y

↵,�
 †
a,�,k

. (3.105)

Note that C2 = P̂f and the group generated by it is ZC

4 . Furthermore, C
commutes with the chiral symmetry S but not with the U(1) symmetries

making the symmetry group G = (U(1)oZC
4 )

Zf
2

⇥ ZT

2

S =
Y

k

nY

�=",#

(c�,2d�,1)k K, CSC�1 = S, (3.106)

V (✓) =
Y

k

e
✓
2

Pn
�=",#(c�,1d�,1�c�,2d�,2)k , CV (✓)C�1 = V (�✓). (3.107)

With this symmetry, the free fermion Hamiltonian (3.101) belongs to class CII.
SRE phases of this class has a Z classification in the non-interacting limit and
HCII is the generating representative of the non-trivial phases via stacking in
the manner described in the previous subsections. In the presence of symmetry
respecting interactions however, the classification breaks down to Z2 and HCII

is a representative of the non-trivial phase. Finally, for completion, let us also
state the Hamiltonian that corresponds to the trivial phase for this symmetry
group,

H0
CII = i

X

k

X

�=",#

(c�,1,kc�,2,k � d�,1,kd�,2,k) . (3.108)
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3.4.2 Unwinding four-layer fermionic SPT phases: Class
CII, AIII and BDI

Figure 3.19: Trivialization of the non-trivial CII chain.

In this section we consider the fermion SPT phases that are constructed
using 4 layers of Kitaev chains. Even though these are fermionic SPT phases,
it has been understood that the non-trivial SPT nature for these phases can
be understood as bosonic SPT phases belonging to Haldane phase [53, 126].
We trivialize these using an extension that was used before for the bosonic
SPT phases that is we extend the anti-unitary ZT

2 part of the symmetry to ZT

4

and leave the other symmetry generators of unchanged.

1 �! Z2
i�! ZT

4
s�! ZT

2 �! 1. (3.109)

Note that the symmetry groups described in the previous section for various
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symmetry classes have the following embedding

CII

✓
(U(1)o ZC

4 )

Zf

2

⇥ ZT

2

◆
Disregard�����!

ZC
4

AIII (U(1)⇥ ZT

2 )
Disregard�����!

U(1)
BDI (ZT

2 ⇥ Zf

2 ).

As a result by disregarding successive symmetries as mentioned above, trivial-
izing HCII results in trivializing the SPT phase of H(2)

AIII (n=2 in Z4 classifica-

tion) and H(4)
BDI (n=4 in the Z8 classification). Let us now go into the details

of how this is achieved. As we did for the bosonic case, we add additional
degrees of freedom corresponding to two extra fermions per unit site. We will
label the Majorana operators that correspond to these as c3,�,k, d3,�,k for odd
sites k and c4,�,k, d4,�,k for even sites k. We will see that this makes the local
Hilbert space transform as a faithful representation of the extended symmetry

G̃ =
⇣

(U(1)oZC
4 )

Zf
2

⇥ ZT

4

⌘
. Furthermore, we add terms to the Hamiltonian HCII

corresponding to a trivial dimerized state for the new degrees of freedom. The
new Hamiltonian and symmetry operators are

H̃CII = i
X

�=",#

"
X

k

(c�,2,kc�,1,k+1 � d�,2,kd�,1,k+1)�
X

odd k

(c�,3,kc�,4,k+1 � d�,3,kd�,4,k+1)

#
,

S̃ =
Y

odd k

Y

�=",#

i (c2,�d1,�d3,�)k
Y

even k

Y

�=",#

i (c2,�d1,�c4,�)k K,

V (✓) =
Y

odd k

e
✓
2

P
�=",#(c�,1d�,1�c�,2d�,2+c�,3d�,3)k

Y

even k

e
✓
2

P
�=",#(c�,1d�,1�c�,2d�,2�c�,4d�,4)k ,

C =
Y

odd k

e
⇡
4

P
a=1,2,3(c#,ac",a�d#,ad",a)k

Y

even k

e
⇡
4

P
a=1,2,4(c#,ac",a�d#,ad",a)k .

It can be seen that S̃2 is locally -1 on both even and odd sites and hence
is an extension of the original symmetry. This system can be trivialized using
a 2-layer FDUC W = W2W1 as shown in Fig.3.19 where

W1 =
Y

odd k

exp

"
�⇡
4

X

�=",#

(c�,3,kc�,1,k+1 + d�,3,kd�,1,k+1)

#
, (3.110)

W2 =
Y

odd k

exp

"
�⇡
4

X

�=",#

(c�,3c�,1 + d�,3d�,1)k

#
Y

even k

exp

"
⇡

4

X

�=",#

(c�,4c�,2 + d�,4d�,2)k

#
.

With a bit of straight forward algebra, it can be checked that W1 and W2

commute with the symmetry generators and the application of this FDUC
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does indeed leave us with a trivial Hamiltonian.

WH̃CIIW�1 = i
X

�=",#

"
X

k

(c�,1,kc�,2,k � d�,1,kd�,2,k)�
X

even k

(c�,4,kc�,3,k+1 � d�,4,kd�,3,k+1)

#
.

(3.111)
We conclude this section by summarizing the result of symmetry extension

presented above on the classification of fermionic SPT phases in 1+1D.

Cartan class Symmetry group G Extended group G̃ Reduced classification

BDI ZT

2 ⇥ Zf

2 ZT

4 ⇥ Zf

2 Z8 ! Z4

AIII U(1)⇥ ZT

2 U(1)⇥ ZT

4 Z4 ! Z2

CII (U(1)oZC
4 )

Zf
2

⇥ ZT

2
(U(1)oZC

4 )

Zf
2

⇥ ZT

4 Z2 ! 1

Table 3.1: Summary of fermionic SPT phases and the change classification by
symmetry extension.

3.5 Summary and outlook

In this chapter, using several examples, we have demonstrated how SPT
phases can be unwound by symmetry extension. While the situation for
bosonic SPT phases classified by group cohomology is clear, we have only
been able to demonstrate this for fermionic SPT phases which can be inter-
preted as bosonic ones. Whether such an unwinding by symmetry extension
is possible for inherently fermionic SPT phases is interesting to explore. Fur-
thermore, for bosonic SPT phases, as shown in Ref. [92], the extended groups
have a physical interepretation in terms of the data that can describe a sym-
metric long-range-entangled boundary theory for the SPT phase. It would
also be interesting to see if a similar thing is also possible for fermionic SPT
phases. Finally, working out concrete examples in higher dimensions might be
instructive where the possibilities are more numerous and complex. We leave
these questions for future investigation.
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Part II

Computational phases of matter
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Chapter 4

SPT phases for MBQC

The contents of this chapter are published in Ref. [36] completed in collab-
oration with Tzu-Chieh Wei. Follow up work, briefly mentioned in the last sec-
tion is published in Refs.[34, 35] in collaboration with David Stephen, Robert
Raussendorf, Dongsheng Wang and Tzu-Chieh Wei as well as in Ref. [127] in
collaboration with Yanzhu Chen and Tzu-Chieh Wei.

4.1 Introduction

Symmetry-protected topological (SPT) phases have topological order that
is not characterized by a local order parameter and their existence requires
symmetry to be preserved [51–55]. Ground states of topologically non-trivial
SPT phases cannot be continuously connected to trivial product states without
either closing the gap or breaking the protected symmetry. In one dimension,
a particularly useful way to describe ground states is the matrix-product-
state (MPS) representation [67, 69, 128] and this has led to many interesting
results including a complete classification of SPT phases [52]. In addition to
classifying SPT phases, an intriguing connection of SPT phases to quantum
computation was identified in Ref. [32] that SPT ground states of Z2 ⇥ Z2

symmetry can serve as resource states for realizing certain gate operations in
quantum computation by local measurement.

Measurement-based quantum computation (MBQC) [112, 113, 129] is a
quantum computational scheme that makes use of only local measurements on
a suitably entangled resource state. It was originally invented with a specific re-
source state, i.e., the cluster state [112] but was subsequently shown to be sup-
ported by a variety of systems [130–133], in particular, the A✏eck-Kennedy-
Lieb-Tasaki (AKLT) states [45, 134] on various one- and two-dimensional sys-
tems [135–140]. In Ref. [32] it was observed that both the 1D cluster and

78



AKLT states, which are capable of supporting arbitrary single-qubit gates,
belong to a 1D SPT phase protected by Z2 ⇥ Z2 on-site symmetry. Moreover
other ground states of this phase also support a protected identity gate oper-
ation and can act as perfect wires for transmission of quantum information.
The results in Ref. [32] hinge on features of specific Abelian groups, i.e., groups
whose projective representation possesses a maximally non-commutative fac-
tor system. This brings forth several interesting questions:

1. Can we extend the results of Ref [32] to get the ground-state form of SPT
phases protected by an arbitrary group (both Abelian and non-Abelian)?

2. Are there SPT phases protected by other groups which protect the per-
fect operation of the identity gate?

3. Are there SPT phases where other non-trivial operations are also al-
lowed? Is it possible to find an entire SPT phase whose ground states
support universal one-qubit gates?

Here we develop a formalism that addresses (1) and allows us to treat an
arbitrary finite groupG, either Abelian or non-Abelian, so that we can examine
the associated SPT ground states and protected gate operations. The results of
Ref. [32] on the spin-1 system with Z2⇥Z2 are reproduced in this formulation.
To address (2), we find that in addition to Z2⇥Z2, 1D topologically non-trivial
SPT phases associated with the symmetry groups A4 (the alternating group
of degree 4) and S4 (the symmetric group of degree 4), see Sec 4.4, acting
on a three-dimensional on-site irreducible representation (i.e., physical spin-1
entities) also protect the identity gate operation. The latter group was also
studied in Ref. [37].

We only make partial progress in answering (3) in this chapter. We consider
an example Hamiltonian with A4 and parity invariance and study its ground
states in various parameter regimes. This Hamiltonian can be regarded as per-
turbing the AKLT Hamiltonian. We find an extended region in the parameter
space where the ground state is exactly the AKLT state and hence can be used
as a resource state capable of universal single-qubit gate operations. Whether
or not it is generic that the imposition of an appropriate set of symmetries
can allow the entire region of an SPT phase to support protected universal
single-qubit gates remains an open question. There has however been progress
in reducing certain SPT ground states into resource states that support uni-
versal single-qubit operations by a ‘bu↵ering’ technique [37], which in some
sense gives an a�rmative answer to (3).

The rest of the chapter is organized as follows. In Sec 4.2, we review the
matrix-product state formalism and its connection to quantum computation,
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and their utility in SPT phases. In Sec 4.3, we present the key results of
our formalism that can determine, in terms of MPS, the structure of SPT
ground states constrained by symmetry. The method we used was inspired by
Refs. [141–144] where they consider imposing global symmetries such as SU(2)
and U(1) for application in numerical simulations. The formalism we develop
here might also find its application in numerical simulations with discrete
symmetries imposed [71]. In Sec. 4.4, we use our formalism to examine SPT
phases and their non-trivial ground states protected by symmetries such as
Z2 ⇥ Z2, D4, A4 and S4. In Sec. 4.5, we study a specific Hamiltonian that
is A4 symmetric by perturbing the AKLT Hamiltonian and study its ground
states. We find an extended region where the ground states are identical to
the AKLT state, which allows universal single qubit operations. We conclude
in Sec. 4.6.

4.2 Review of relevant definitions and results

4.2.1 Definition of a gapped phase of matter

In Ref. [51], it was argued that in order to talk about phases of matter,
we need to specify the class of Hamiltonians we are considering. Two gapped
Hamiltonians from a given class are in the same phase if we can ‘connect’
them smoothly without closing the spectral gap. Otherwise, there is a bound-
ary in the space of Hamiltonians where the gap closes separating di↵erent
phases of matter [51, 52]. In 1D, if we consider the class of all gapped local
Hamiltonians, it has been shown [51] that they all belong to the same phase
and we can connect any two such Hamiltonians without closing the gap by
adding suitable local operators. Thus, there is no intrinsic topological order
in 1D and all Hamiltonians can be connected to those in the trivial phase with
product ground states. In other words, any ground state can be connected
to a product state. On the other hand, if we restrict ourselves to a class of
Hamiltonians that respect some global symmetry, there are generally phase
boundaries which arise. We cannot connect Hamiltonians in di↵erent phases
through symmetry respecting operators without closing the gap. Di↵erent
phases are characterized by a combination of symmetry fractionalization and
symmetry breaking [52]. When symmetry is not broken, the unique ground
states of these Symmetry Protected Topological (SPT) phases respect the sym-
metry of the Hamiltonian and allow us to write down their form using tools
from the representation theory of groups. Much of this is possible by using
the matrix-product-state representation of gapped ground states of 1D spin
chains which we shall briefly review below.
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4.2.2 Matrix product states

We begin by giving a brief review of the Matrix Product State represen-
tation of many-body wavefunctions in 1D [67] which was introduced in Ch.2.
Consider a one-dimensional chain of N spins. If the Hilbert space of each spin
is d-dimensional, the Hilbert space of the spin chain itself is dN -dimensional.
This means that the number of coe�cients needed to describe the wavefunction
of the spin chain grows exponentially with the length of the chain. However,
if the spin chain is in the ground-state configuration of a gapped Hamiltonian,
it can be e�ciently written as an MPS wavefunction [68–70]. To do this, we
need to associate for every spin site (labeled by m = 1 . . . N), a Dm ⇥Dm+1-
dimensional matrix Aim

m
for each basis state |imi = |1i . . . |di. D = maxm(Dm)

is the maximum ‘virtual’ or ‘bond’ dimension and approaches a constant value
that is independent of the size of the chain for gapped spin chains [69]. With
these matrices (which we shall refer to as MPS matrices), we can write the
wavefunction with periodic boundary conditions as:

| i =
X

i1...iN

Tr[Ai1
1 A

i2
2 . . . AiN

N
]|i1i . . . |iNi. (4.1)

We can also write down the wavefunction for a finite chain as

| i =
X

i1...iN

hL|Ai1
1 A

i2
2 . . . AiN

N
|Ri|i1i . . . |iNi, (4.2)

where, the vectors |Li and |Ri live in the virtual space and encode the bound-
ary conditions for the finite chain. If we consider the class of local gapped
Hamiltonians without any symmetry constraint, Eqs. (4.1,4.2) would represent
the general form of ground states. This means we need about Nd matrices to
specify the ground state.

4.2.3 Matrix product states and measurement-based quan-
tum computation

To demonstrate the motivation for this work, we first see how we can
use MPS wavefunctions for MBQC in the virtual space. Consider encoding
quantum information that needs to be processed in one of the virtual boundary
vectors of Eq. (4.2), say |Ri [131, 132, 145, 146]. If we perform a projective
measurement of the N -th spin in some basis {|�i

N
i} with the outcome being a

projection of the spin onto state |�0
N
i 2 {|�i

N
i}, we can write the wavefunction
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of the remaining N � 1 spins as | 0i = h�0
N
| i i.e

| 0i =
X

i1...iN�1

hL|Ai1
1 A

i2
2 . . . AiN�1

N�1 |R0i|i1i . . . |iN�1i, (4.3)

where |R0i = A0
N
|Ri can be regarded as resulting from |Ri undergoing a linear

transformation A0
N
=
P

iN
h�0

N
|iNiAiN

N
.

Thus, if we know all the MPS matrices Aim
m

and if these matrices span
the space of relevant operations on the virtual vector, we can hope to induce
any transformation on the vector by measurement in an appropriate choice of
basis. Usually, there is also an overall residual operator which we can account
for by adapting subsequent bases of measurement.

Let us demonstrate this using two translationally invariant canonical re-
source states. First, the cluster state [113, 134] is a d = 2 spin chain whose
wavefunction can be written in terms of D = 2 MPS matrices:

A0 =

✓
1 0
1 0

◆
, A1 =

✓
0 1
0 �1

◆
(4.4)

Measuring in the |±i = 1p
2
(|0i± |1i) basis results in the operation |Ri 7!

H(�z)s|Ri where s labels the measurement outcome and is 0/1 if the outcome

is |±i and H is the Hadamard gate H ⌘ 1p
2

✓
1 1
1 �1

◆
. The measurement thus

induces the Hadamard operation up to residual operators (�x)s as H(�z)s =
(�1)s(�x)sH.

We can induce a di↵erent operation, say Rz(✓) = e�i✓�z/2 by measuring
in the basis |�,±i = 1p

2
(|0i ± ei�|1i). This results in the operation |Ri 7!

H(�z)se�i��z/2|Ri where s is the measurement outcome which is 0/1 if the
outcome is |�,±i. This is a single-qubit rotation by � about the Z axis up to
the operator H(�z)s.

Similarly, we can also perform rotations about the other orthogonal axes
and using sequential rotations about di↵erent axes by appropriate angles (us-
ing, for example, the Euler angle parametrization for rotations), we can per-
form any arbitrary single-qubit rotation.

The second prominent resource state is the AKLT state [45, 134, 135] which
is a spin-1 (d = 3) system whose wavefunction can be described by D = 2 MPS
matrices:

Ai = �i (i = x, y, z), (4.5)
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where the basis of the spins {|xi, |yi, |zi} is chosen as

|xi ⌘ 1p
2
(|� 1i � |1i), |yi ⌘ ip

2
(|� 1i+ |1i), |zi ⌘ |0i,

with | ± 1i and |0i being eigenstates of the spin-1 Sz operator. If we measure
the spin in {|xi, |yi, |zi} basis, we can induce the operation |Ri 7! �s|Ri
which is the identity operation up to the residual operator �s. We can also
induce Rz(✓) = e�i✓�z/2 by measuring in the basis {|✓, xi = cos( ✓2)|xi �
sin( ✓2)|yi, |✓, yi = sin( ✓2)|xi + cos( ✓2)|yi, |zi}. If the measurement outcome is
|zi then we have the identity operation with residual operator �z. However,
if the outcome is |✓, xi or |✓, yi then the operation is |Ri 7! �ie(�i✓�z/2)|Ri
where i = x/y if the outcome is |✓, ii. Thus, if we keep measuring till we get
either |✓, xi or |✓, yi as the outcome, we can induce the required operation up
to Pauli residual operators. The extension to rotations about other axes and
ultimately to a full set of single-qubit rotations is straightforward. An impor-
tant di↵erence between the AKLT and cluster states is that for the latter, the
length of the spin chain needed for computation is fixed while for the former,
it is not.

It was noted that both the 1D AKLT and cluster states belong to a non-
trivial topological phase protected by Z2⇥Z2 symmetry [46, 54] and there have
been investigations to see if the ability to support quantum computation can
be a property of the phase [32, 33, 116, 147, 148]. In particular, the authors
of [32, 33] deduce that any non-trivial MPS ground state in the non-trivial Z2⇥
Z2 invariant spin-1 Hamiltonians (Haldane phase) must have the form Ai =
Bi ⌦ �i (i = x, y, z). Thus, there always exists a ‘protected’ two-dimensional
virtual subspace in the ground states of the Haldane phase on which the Pauli
matrices act and in which quantum information can in principle be encoded
and processed. While the ground states of the Haldane phase in general do
not support non-trivial gate operations, they do allow a protected identity
gate operation by measurements in the {|xi, |yi, |zi} basis that only induces
Pauli operation on the boundary vectors.
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4.3 Main result: Tensor decomposed ground-
state form in the presence of a global sym-
metry

4.3.1 SPT phases with an on-site internal symmetry

Let us now consider symmetric phases of Hamiltonians that are invariant
under the action of a certain symmetry group G on each spin according to some
representation u(g). i.e. [H, Û(g)] = 0 where Û(g) = u1(g)⌦ · · ·⌦ uN(g). We
consider ground states that do not break the symmetry of the Hamiltonian
and are hence left invariant under the transformation Û(g) up to a complex
phase

Û(g)| i = �(g)N | i. (4.6)

Eq. (4.6) can be imposed as a condition on the MPS matrix level (Suppressing
the site labels for brevity) as [51–54]

u(g)ijA
j = �(g)V �1(g)AiV (g). (4.7)

Note that here and henceforth, when no confusion will arise, we use the Ein-
stein summation convention wherein repeated indices are summed over. Be-
cause u is a group representation, group properties impose � to be a 1D
representation and V to be a projective representation of G. A projective
representation respects group multiplication up to an overall complex phase.

V (g1)V (g2) = !(g1, g2)V (g1g2). (4.8)

The complex phases !(g1, g2) are constrained by associativity of group action
and fall into classes labelled by the elements of the second cohomology group of
G H2(G,U(1)) (See Appendix B.1 for some comments on projective represen-
tations). In other words, the di↵erent elements of H2(G,U(1)) label di↵erent
classes of projective representations. It was also shown in [51–55] that the
di↵erent elements of H2(G,U(1)) represent di↵erent SPT phases of matter.
In particular, the identity element labels the set of linear representations of
G (which respect group multiplication exactly) and the corresponding phase
of matter is trivial, containing product ground states. We now use the sym-
metry constraint of Eq. (2.10) to deduce the form of the MPS matrices for a
given phase labelled by ! 2 H2(G,U(1)) using a technique similar to the one
presented in [141].

With only on-site symmetry, the di↵erent 1D representations � all corre-
spond to the same SPT phase [51, 52]. Hence, we just consider the case when
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�(g) = 1 i.e. the trivial 1D irreducible representation (irrep) of G. With this,
we can rewrite Eq. (2.10) in a more illuminating form:

u(g)ii0V (g)↵↵0V �1(g)�0�A
i
0

↵0�0 = Ai

↵�
. (4.9)

Eq. (4.9) shows that the matrices Ai are invariant 3 index tensors. We now
organize the vector space of each index as a reduced representation constructed
out of copies of linear or projective irreps of G.

V ⇠=
M

a

naVa
⇠=
M

a

Da ⌦ Va. (4.10)

If V is the vector space of any index, a runs over the irreps, na is the degeneracy
(number of copies) of the irrep a and Da is the corresponding degeneracy
vector space of a. Any basis element in the vector space V can be labelled
by three numbers as |ai,mi, dii where ai labels the irreducible representation
and is analogous to the angular momentum label in SU(2), mi labels the state
in ai and is analogous to the azimuthal quantum number mi and di labels
which copy of the irreducible representation ai is being considered. Symmetry
transformations are block-diagonal and act on the mi labels of each sector ai
but leave the di labels alone. So if U(g) is a symmetry that acts on the vector
space Eq. (4.10) and if Ua(g) is the representation of the a-th irrep then

U(g) ⇠=
M

a

1a ⌦ Ua(g). (4.11)

Note that for a given physical system, we assume that the vector space of the
physical index is known in terms of which irreps and how many copies are
contained. However, for a given ! 2 H2(G,U(1)) which labels the phase we
are trying to study the ground-state form of, we have to allow an arbitrary
number of copies of each projective irrep from the class ! to appear in the
virtual space indices. Using this organization, Eq. (4.9) and an application of
Schur’s lemma after decomposing the fusion of the irreps ai and a↵ determined
by the Clebsch-Gordan (CG) series i ⌦ ↵ = ��n

�

i↵
� (see Appendix 4.3.2 for

more details), we can write down the MPS matrices for the SPT phase labelled
by ! using a generalized Wigner-Eckart theorem as follows

A[!]aimidi
(a↵m↵d↵)(a�m�d�)

=

n
�
i↵X

n=1

Baidi
(a↵d↵)(a�d� ;n)

C[!]
a�m� ;n
aimi,a↵m↵ , (4.12)

where C[!]
a�m� ;n
aimi,a↵m↵ denotes the CG coe�cients associated with the change of
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basis of the direct product of linear irrep i and the irrep ↵ of projective class !,
to the n-th copy of irrep � of the same projective class ! (See Appendix 4.3.2
for more details)

|a�,m�;ni =
X

ai,mi,a↵,m↵

C[!]
a�m� ;n
aimi,a↵m↵ |ai,mii|a↵,m↵i. (4.13)

The entries Baidi
(a↵d↵)(a�d� ;n)

of the MPS matrices are not determined by on-
site symmetry considerations alone and depend on the parameters of the
Hamiltonian amongst other things. Finally, putting back the site dependence,
m = 1 · · ·N in the MPS matrices, we have

A[!]aimidi
(a↵m↵d↵)(a�m�d�);m

=

n
�
i↵X

n=1

Baidi
(a↵d↵)(a�d� ;n);m

C[!]
a�m� ;n
aimi,a↵m↵ , (4.14)

We see that to construct the ground-state form of an SPT phase labelled
by !, we need the CG coe�cients for the direct product of the linear represen-
tation of the physical spins and the projective irreps of class !: |ii and |↵i. To
make sense this, we use the result that every finite group G has associated to it
at least one other finite group G̃, called a Schur cover, with the property that
every projective representation of G can be lifted to a linear representation of
G̃ [149]. So we can reinterpret the CG coe�cients of a linear and projective
representation of G simply as the CG coe�cients of two linear representations
of G̃. For example, half odd integer j representations are projective repre-
sentations of SO(3) while integer j are linear representations. However, if we
consider the group SU(2) which is the cover of SO(3), both half odd integer
and integer j are linear representations and we know that we can find CG
coe�cients for decompositions of the kind 1⌦ 1

2 = 1
2 �

3
2 .

To summarize, in order to find the ground-state forms of di↵erent SPT
phases of a spin chain that transforms under a certain representation u(g) of
G, we need to follow the following steps:

1. Obtain the second cohomology group of G, H2(G,U(1)) whose elements
! will label the di↵erent SPT phases.

2. Obtain the covering group G̃

3. Identify the irreps ‘i’ of the physical spin among the irreps of G̃.

4. Identify the irreps ‘↵’ that correspond to the projective class !.

5. Obtain CG coe�cients corresponding to the fusion of the irreps of the
physical spin with each irrep of the projective class !. (Ref. [150] and
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Appendix B.4 gives a technique to calculate the CG coe�cients for cer-
tain types of decompositions of finite group irreps)

6. Use the CG coe�cients in Eq. (4.14) allowing ↵ and � to run over all the
irreps of class ! and i to run over the irreps of the physical spin. Each
block of the MPS matrices split into a part that is calculated purely from
the group G for each phase ! and a part that is undetermined.

4.3.2 Obtaining the tensor decomposition of Eq. (4.12)

For what follows, it is useful to employ a basis independent representation
of the tensor A,

Â =
X

i↵�

Ai

↵�
|i↵ih�| (4.15)

We organize the vector space of each index and label it by three quantum
numbers–the irrep aj (analogous to the spin label j), the irrep multiplicity mj

(analogous to the azimuthal quantum number mj) and the irrep degeneracy
(the number of copies of the irrep, dj), i.e., |ii = |ai,mi, dii, |↵i = |a↵,m↵, d↵i
and so on.

Â = Aaimidi
(a↵m↵d↵)(a�m�d�)

|ai,mi, di; a↵,m↵, d↵iha�,m�, d�|.

The invariance condition is
Û(g)Â = Â, (4.16)

where Û(g) e↵ects a symmetry transformation on the basis bras and kets of
each irrep as

Û(g)Â ⌘ Aaimidi
(a↵m↵d↵)(a�m�d�)

U(g)i
mim

0
i
V (g)↵

m↵m
0
↵
V (g)�1�

m
0
�m�

|ai,m0
i
, di; a↵,m

0
↵
, d↵iha�,m0

�
, d�|. (4.17)

Note that symmetry transformations act on the m indices for each irrep but
leave the d indices unchanged. Eqs. (4.16) and (4.17) together give us back
the tensor invariance condition

U(g)i
mim

0
i
V (g)↵

m↵m
0
↵
V (g)�1�

m
0
�m�

A
aim

0
idi

(a↵m0
↵d↵)(a�m

0
�d�)

= Aaimidi
(a↵m↵d↵)(a�m�d�)

. (4.18)

This condition is valid for each set of irreps labelled by (ai, di, a↵, d↵, a�, d�).
Now consider the Clebsch-Gordan (CG) series i ⌦ ↵ = ��n

�

i↵
�. On the basis
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level we have,

|a�,m�;ni =
X

ai,mi,a↵,m↵

C
a�m� ;n
aimi,a↵m↵ |ai,mii|a↵,m↵i. (4.19)

C[!]
a�m� ;n
aimia↵m↵ denotes the CG coe�cients associated with the change of basis

of the direct product of irreps i and ↵ to the n-th copy of irrep �. With this,
we rewrite Eq. (4.15) as

Â = Aaimidi
(a↵m↵d↵)(a�m�d�)

(C�1)a�m� ;n
aimi,a↵m↵

|a�,m�;n, di, d↵iha�,m�, d�| (4.20)

The ket |a�,m�;n, di, d↵i denotes a basis in the n-th copy of a� irrep ob-
tained from fusing the di-th copy of irrep ai and d↵-th copy of irrep a↵. If we
impose invariance Eq. (4.16) in this new form, we get

V (g)�;n
m�m

0
�
(C�1)

a�m
0
� ;n

aimi,a↵m↵A
aimidi

(a↵m↵d↵)(a�m0
�d�)

V (g)�1�
m

0
�m�

= (C�1)a�m� ;n
aimi,a↵m↵

Aaimidi
(a↵m↵d↵)(a�m�d�)

, (4.21)

which is equivalent to

V (g)�;n
m�m

0
�

h
(C�1)

a�m
0
� ;n

aimi,a↵m↵A
aimidi
(a↵m↵d↵)(a�m�d�)

i
=

h
(C�1)a�m� ;n

aimi,a↵m↵
Aaimidi

(a↵m↵d↵)(a�m0
�d�)

i
V (g)�

m
0
�m�

(4.22)

Using Schur’s lemmas, we can now determine that

� 6= � : (C�1)a�m� ;n
(aimi)(a↵m↵)

Aaimidi
(a↵m↵d↵)(a�m�d�)

= 0,

� = � : (C�1)a�m� ;n
(aimi)(a↵m↵)

Aaimidi
(a↵m↵d↵)(a�m�d�)

/ �m�m�
.

This gives us
h
(C�1)

a�m� ;n
aimi,a↵m↵A

aimidi
(a↵m↵d↵)(a�n�d�)

i
= �m�n�

Baidi
(a↵d↵)(a�d� ;n)

(4.23)

This is again a condition valid for each set of irreps labelled by (ai, di, a↵, d↵, a�, d�).
Finally, moving C to the right hand side, we get

Aaimidi
(a↵m↵d↵)(a�m�d�)

=

n
�
i↵X

n=1

Baidi
(a↵d↵)(a�d� ;n)

C
a�m� ;n
aimi,a↵m↵ (4.24)

If we restrict V to contain only irreps of a class !, we get Eq. (4.12).
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4.3.3 SPT phases with on-site symmetry and lattice
translation invariance

Gapped Hamiltonians with only lattice translation invariance all belong
to the same phase [51, 52]. Ground-states of such Hamiltonians and can be
described by MPS matrices Aim

m
that are site independent i.e. Aim [67]. This

means that unlike the case for an arbitrary gapped phase where we needed Nd
matrices to describe a ground state, we now only need d matrices. Eq. (4.1)
is simplified to

| i =
X

i1...iN

Tr[Ai1Ai2 . . . AiN ]|i1i . . . |iNi. (4.25)

If we consider gapped Hamiltonians invariant under translation and an on-
site symmetry transformation u(g), the conditions of Eqs. (4.6, 2.10) again
hold. However, unlike the case for just on-site symmetry, the di↵erent 1D
irreps, �(g) that appear in Eq. (2.10) now label distinct phases of matter [51,
52]. Di↵erent SPT phases are now labelled by {!,�} where, ! 2 H2(G,U(1))
labels the di↵erent projective classes and � labels the di↵erent 1D irreps of
the group G. We now see how we can constrain the ground-state form of these
SPT phases extending the results of Sec 4.3.1

Let us rewrite Eq. (2.10) by absorbing �(g) on the right hand side into
u(g) on the left and call ũ(g) = �⇤(g)u(g)

ũ(g)ijA
j = V �1(g)AiV (g), (4.26)

Since re-phasing a representation with a 1D irrep is still a representation,
we can find the new irrep content of ũ(g). With this, we can repeat the
procedure of Sec 4.3.1 and obtain the MPS matrices for ground states of a
given spin system in any phase labelled by {!,�} as

A[!,�]aimidi
(a↵m↵d↵)(a�m�d�)

=

n
�
i↵X

n=1

Baidi
(a↵d↵)(a�d� ;n)

C[!,�]
a�m� ;n
ai0mi0 ,a↵m↵ . (4.27)

Where i ⌦ � ⇠= i0 is some linear irrep of G that can easily be identified by
calculating the characters of i0 and C[!,�]

a�m� ;n
ai0mi0a↵m↵ denote the CG coe�cients

associated with the change of basis of the direct product of linear irrep i0 and
the irrep ↵ of projective class !, to the n-th copy of irrep � of the same
projective class !.

To summarize, in order to find the ground-state forms of di↵erent SPT
phases for a spin chain that transforms under a certain representation u(g) of
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G and that is translationally invariant, we need to follow the steps below:

1. Obtain H2(G,U(1)) and the covering group G̃.

2. Identify the irreps ‘i’ of the physical spin among the irreps of G̃.

3. Identify the di↵erent 1D irreps of G, � among the 1D irreps of G̃.

4. Identify the irreps ‘i0’ corresponding to re-phasing the physical spin irreps
‘i’ with �.

5. Identify which irreps ‘↵’ correspond to the projective class !.

6. Obtain CG coe�cients corresponding to the fusion of the re-phased irreps
of the physical spin with each irrep of the projective class !.

7. Use the CG coe�cients in Eq. (4.27) allowing ↵ and � to run over all the
irreps of class ! and i0 to run over the re-phased irreps of the physical
spin.

We can also consider the ground-state forms constrained by other space-
time symmetries like inversion and time-reversal and combinations with on-
site symmetry which have also been classified. While there are constraints
imposed on the entries of the MPS matrices, we do not immediately see a
useful structure like we do with on-site symmetries with or without translation
invariance mentioned above. However, for the sake of completeness, we have
presented the results in the Appendices. B.2,B.3.

4.4 Examples of ground-state forms for vari-
ous on-site symmetries

In this section, we use the results of the decomposition scheme discussed in
the previous section to write down several ground-state forms of SPT phases
protected by various on-site symmetries.

We will focus on some subgroups of SO(3) that have a particular non-
trivial second cohomology group H2(G,U(1)) = Z2 and hence one class of
non-trivial projective representations. (But our formalism can be applied to
groups of other second cohomology group as well.) We will also focus on
constructing ground states that are topologically non-trivial i.e. states that
cannot be connected to the product state and whose virtual space represen-
tation corresponds to non-trivial projective representation. This is because
these non-trivial states are su�ciently entangled and may o↵er advantages for
information processing. We shall use the following conventions:
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1. Groups are defined by a presentation hS|Ri i.e. by listing the set S of
generators and the set R of relations between them.

2. Representations are written by listing those of the generating set S. Any
element in the group can always be written as the product of powers of
the subset of S.

3. G̃ denotes the Schur cover of G that contains the linear and projective
irreps of G.

4. We list the irreps of G̃ and label di↵erent classes of irreps by elements of
H2(G,U(1)). These correspond to the linear and projective irreps of G.
Many of the irreps of the examples considered have been found collected
in Ref [151].

5. �i denotes di↵erent 1D irreps of G (and G̃).

6. MPS matrices are constructed up to a similarity transformation for a
particular basis of the physical spin that will be mentioned.

7. Pauli matrices are denoted as �i = {�x, �y, �z} or �i = {�1, �2, �3}.

4.4.1 Haldane phase (Z2 ⇥ Z2)

Consider a chain of three level spins (d=3) that is invariant under a three-
dimensional representation of Z2 ⇥ Z2 written as a restricted set of spin-1
SO(3) rotations,

u(g) = {1, Rx(⇡), Ry(⇡), Rz(⇡)}. (4.28)

Z2 ⇥ Z2, also known as the Klein four-group, is the group of symmetries of
a rhombus or a rectangle (which are not squares) generated by ⇡ flips about
perpendicular axes in the plane of the object. Some information about the
group are follows:

• G = Z2 ⇥ Z2 : ha, x|a2 = x2 = (ax)2 = ei

• H2(G,U(1)) = Z2 = {e, a}

• G̃ = D8 : ha, x|a4 = x2 = (ax)2 = ei

• Class e irreps of G̃:
1(p,q) : a 7! (�1)p, x 7! (�1)q, (p, q) 2 {0, 1}

• Class a irreps of G̃:
2̃ : a 7! i�z, x 7! �x
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The three-dimensional representation can be shown to be u(g) ⇠= 1(0,1)�1(1,0)�
1(1,1). Which means, with an appropriate choice of basis, each basis state of the
3 level spin transforms as one of the non-trivial 1D irreps. We can check that
{|xi ⌘ 1p

2
(|�1i� |1i), |yi ⌘ ip

2
(|�1i+ |1i), |zi ⌘ |0i} is such an appropriate

basis where u(g) is block diagonal. Calculating the CG coe�cients, we get the
following MPS matrices:

Ai = Bi ⌦ �i, (4.29)

where Bi are undetermined and �i are the Pauli matrices. We thus have
reproduced the result of Ref. [32] using our general framework.

4.4.2 D4 invariant SPT phase

Dn, the dihedral group is the symmetry group of a planar n sided polygon
and has projective representations when n is even. Some information about
the group are as follows. We only look at the case of even n.

1. G = Dn : ha, x|an = x2 = (ax)2 = ei

2. H2(G,U(1)) = Z2 = {e, a}

3. G̃ = Qn: ha, x|a2n = x4 = e, an = x2, xax�1 = a�1i.

4. Class e irreps of G̃ :

(a) 1(p,q) : a 7! (�1)p, x 7! (�1)q, (p, q) 2 {0, 1}

(b) 2(k) : a 7!
✓
e�ik⇡/n 0

0 eik⇡/n,

◆
, x 7! �y, k = 2, 4, . . . n� 2

5. Class a irreps of G̃ :

(a) 2̃(k) : a 7!
✓
e�ik⇡/n 0

0 eik⇡/n

◆
, x 7! �i�y , k = 1, 3, . . . n� 1

Let us now consider the group D4. This is the group of symmetries of a square
generated by ⇡

2 rotations about the symmetry axis perpendicular to the plane
and reflections about symmetry axes in the plane of the square. We consider
the following irreps (using a di↵erent choice of basis than the one mentioned
above).

1. Linear irrep 2(2) : a 7! �i�y, x 7! �z

2. Projective irreps: 2̃(1/3) : a 7! ±1p
2
(1 � i�y), x 7! i�z
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If we consider a d = 2 physical spin transforming under the 2D irrep 2(2) the
non-trivial MPS matrices associated with the two basis states |ii = |0i, |1i are
obtained by calculating the CG coe�cients:

A0 = B0 ⌦ �z (4.30)

A1 = B1 ⌦ �x (4.31)

Bi =

✓
B11 (�1)i B13

(�1)i B31 B33

◆
(4.32)

Similar to Eq. (4.29) the MPS matrices are factorized into to two parts, and
the indenity gate is protected by the symmetry 1.

4.4.3 A4 invariant SPT phase

A4, the alternating group of degree four, is the group of chiral or rotational
symmetries of a regular tetrahedron generated by rotations (no reflections)
about various symmetry axes. It is also the group of even permutations on
four elements, i.e. a subgroup of S4 to be discussed next. Some information
about the group are as follows.

1. G = A4 = ha, x|a3 = x2 = (ax)3 = ei

2. H2(G,U(1)) = Z2 = {e, a}

3. G̃ = T̃ : ha, x|a3 = x2 = v, v2 = (ax)3 = ei.

4. Class e irreps of G̃ :

(a) 1(p) : a 7! e2⇡ip/3, x 7! 1, p = 0, 1, 2

(b) 3 : a 7!

0

@
0 1 0
0 0 1
1 0 0

1

A, x 7!

0

@
1 0 0
0 �1 0
0 0 �1

1

A

5. Class a irreps of G̃ :

(a) 2̃(p) : a 7! e
2⇡ip/3

2 [1 + i(�x + �y + �z)],
x 7! i�x, p = 0, 1, 2

1
In the paper this result was published [36], we state that the MPS matrices do not

factorize and cannot be used for protected identity gate operation. It was later realized

that this was just because of a bad choice of basis and the right choice does indeed lead to

decomposition as stated in this chapter
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If we consider the physical spin transforming under the only 3D linear ir-
rep, the non-trivial MPS matrices associated with the three basis states |ii =
|1i, |2i, |3i are obtained by calculating the CG coe�cients:

Ai = Bi ⌦ �i (4.33)

Bi = V i�1BV ⇤i�1 (4.34)

V =

0

@
1 0 0
0 ! 1 0
0 0 !⇤ 1

1

A , ! = e2⇡i/3

B =

0

@
B00 B01 B02

B10 B11 B12

B20 B21 B22

1

A .

Similar to Eq. (4.29) the MPS matrices are factorized into to two parts, and
the indenity gate is protected by the symmetry. We remark that imposing in-
version or time-reversal symmetry does not further simplify the B’s structure.

4.4.4 S4 invariant SPT phase

S4, the symmetric group of degree four, is the group of achiral or full sym-
metries of a tetrahedron generated by rotations and reflections about various
symmetry axes. It is also the group of all permutations of four elements. Some
information about the group are as follows.

1. G = S4 = ha, b, c|a2 = b3 = c4 = abc = ei

2. H2(G,U(1)) = Z2 = {e, a}

3. G̃ = O0 : ha, b, c|a2 = b3 = c4 = abc = v, v2 = ei

4. Class e irreps of G̃ : (a = tk, b = s, c = s2kt)

(a) 1(p) : t 7! (�1)p, k 7! 1, s 7! 1, p = {0, 1}

(b) s : t 7! �x, k 7! 1, s 7!
✓
e2⇡i/3 0
0 e�2⇡i/3

◆

(c) 3(p): k 7!

0

@
1 0 0
0 �1 0
0 0 �1

1

A, s 7!

0

@
0 1 0
0 0 1
1 0 0

1

A,

t 7! (�1)p

0

@
1 0 0
0 0 1
0 1 0

1

A, p = 0, 1
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5. Class a irreps of G̃ :

(a) 2̃(p) : t 7! (�1)p ip
2
(�z � �y), k 7! i�x,

s 7! 1
2 [1 + i(�x + �y + �z)] , p = 0, 1

(b) 4̃ = 2⌦ 2̃(0)

If we consider the physical spin transforming under one of the 3D linear irreps,
3(1) the non-trivial MPS matrices associated with the three basis states are
obtained by calculating the CG coe�cients:

Ai = Bi ⌦ �i (4.35)

Bi =

0

@
B2020 0 B204 ⌦ u†

i�1

0 B2121 B214 ⌦ v†
i�1

B420 ⌦ ui�1 B421 ⌦ vi�1 B44 ⌦ 12 + B̃44 ⌦ fi�1

1

A

ui =

✓
!⇤i

!i

◆
, vi =

✓
!⇤i

�!i

◆

fi =

✓
0 !i

!⇤i 0

◆
, ! = e2⇡i/3

We observe that if we restrict the Bi matrix to only the bottom right block
and set the two matrices to scalars, B44 = cos( ✓2) and B̃44 = ei� sin( ✓2), then it
reduces to the one used for the bu↵ering scheme in Ref. [37] up to a change of
basis.

4.4.5 Summary of new SPT phases with identity gate
protection

We see that all the examples in the previous section allow the perfect
operation of the identity gate according to the scheme reviewed in Sec. 4.2.3
as the MPS matrices for non-trivial ground states all have the form

Ai = Bi ⌦ �i. (4.36)

This is because the groups considered D4, A4, S4 all have a Z2⇥Z2 subgroup
which gives the protected subspace. The additional symmetry only constrains
the junk matrices, Bi to have more structure. Note that following the conven-
tion of Ref. [32], we call Bi the junk part and �i the protected part. We also
note that our convention of placing the protected and junk parts is in reverse
order as compared to the convention used in Refs. [32, 33, 37]. This is for
notational consistency in this chapter.
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Consider encoding qubit information | i in the protected part of the right
boundary virtual space with the junk part arbitrarily set to some state |Ji in
any of these ground states.

|Ri = |Ji ⌦ | i (4.37)

If we perform a measurement on the rightmost i.e N -th spin in the basis
|xi, |yi, |zi in which the MPS matrices have the form of Eq. (4.36) with an
outcome |kNi, we induce a transformation of the boundary vector by (4.2.3)

|Ri 7! AkN |Ri (4.38)

=) |Ji ⌦ | i 7! BkN |Ji ⌦ �kN | i (4.39)

The qubit information | i is unchanged upto an inconsequential Pauli operator
�kN which can be corrected for by a change of readout basis. In fact, we can
measure several spins (say m from the right) and we still have the perfect
operation of the identity gate upto a residual operator �kN�m . . . �kN . This
means all these ground states allow a protected subspace with perfect identity
gate operation, which allows for perfect transmission of quantum information
encoded in the projected subspace.

However, note that if we measure in a di↵erent basis formed by a lin-
ear combination of |xi, |yi, |zi, it is easy to check that the boundary vector
|Ri = |Ji ⌦ | i no longer remains decomposed into protected and junk parts
and, in general, there will be mixing between the two vector spaces. As an
illustration, if a measurement outcome of 1p

2
(|xi+|yi) is obtained, the induced

transformation on |Ri is (up to an overall factor)

|Ji ⌦ | i 7! Bx|Ji ⌦ �x| i+By|Ji ⌦ �y| i. (4.40)

Thus, in general only the identity gate is protected in the ground states of
these phases. However, if it were possible that Bi is independent of physical
index i, then arbitrary single-qubit gates would be possible, as mixing will
not occur. It is worth noting that when Bi is independent of the index i,
the corresponding wavefunction is identically the AKLT state. We had hoped
that imposing additional symmetry like parity and/or time reversal invariance
might give further constraints on the matrices Bi’s and thereby allow non-
trivial gate operations. But we checked (using results of Appendix. B.3) that
imposing these additional symmetries on the Z2 ⇥ Z2, D4, A4 and S4 SPT
ground states listed above does not induce ground states that could provide
universal qubit operations.
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4.5 An A4 symmetric Hamiltonian

Here we ask a slightly less general question: can one find a particular
Hamiltonian with symmetry such that there is an extended region (not nec-
essarily at all points of a phase) in the phase diagram that the ground states
can provide universal qubit operations in the framework of MBQC? Below we
first construct a specific Hamiltonian that possesses A4 and parity symmetry,
which can be regarded as perturbing the spin-1 AKLT Hamiltonian. Then we
present a numerical investigation and show that indeed there exists a finite
parameter region where the ground states are exactly (here and henceforth,
exact is defined up to machine precision) the AKLT state, and can therefore
serve as a resource state for implementing universal single-qubit gates. After
the numerical investigation, we present analytic understanding why such an
extended region of AKLT ground states can exist.

Figure 4.1: Fidelity of ground states with the AKLT state. It is seen that
there is an extended region such that the ground state is exactly the AKLT
state.

The A4 and inversion symmetric Hamiltonian we will study is the following:

H = HAKLT + �Hc + µHq, (4.41)

HAKLT =
X

i


Si · Si+1 +

1

3
(Si · Si+1)

2

�
, (4.42)

where Si · Si+1 ⌘ Sx

i
Sx

i+1 + Sy

i
Sy

i+1 + Sz

i
Sz

i+1.
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Hq =
X

i


(S2

i
· S2

i+1)�
1

3
(Si · Si+1)

2

�
, (4.43)

where S2
i
· S2

i+1 ⌘ (Sx

i
Sx

i+1)
2 + (Sy

i
Sy

i+1)
2 + (Sz

i
Sz

i+1)
2,

and

Hc =
X

i

[(SxSy)iS
z

i+1 + (SzSx)iS
y

i+1 + (SySz)iS
x

i+1

+ (SySx)iS
z

i+1 + (SxSz)iS
y

i+1 + (SzSy)iS
x

i+1

+ Sx

i
(SySz)i+1 + Sz

i
(SxSy)i+1 + Sy

i
(SzSx)i+1

+ Sx

i
(SzSy)i+1 + Sz

i
(SySx)i+1 + Sy

i
(SxSz)i+1]. (4.44)

This Hamiltonian is constructed using invariant operators built out of A4

invariant polynomials using the technique detailed in Appendix. A.1. However,
the form of Hc and Hq are di↵erent from that used in Appendix. A.1 and
Chapter. 2. Also, the {�, µ} = {0, 0} Hamiltonian of Eq. 2.3 corresponds to
the AKLT Hamiltonian which can be thought of as a particular combination
of A4 invariant operators but which has a larger symmetry group, SO(3) and
is known to have the AKLT state as the unique ground state.

4.5.1 Checking AKLT as the ground state

The AKLT state | AKLTi has the MPS representation Ax = �x, Ay = �y,
and Az = �z in the basis of {|xi, |yi, |zi} defined earlier. We know that
at � = µ = 0 the ground state of the Hamiltonian (4.41) is uniquely the
AKLT state. We would like to know whether there is an extended region of
(�, µ) around (0, 0) such that the ground state is also the AKLT state. We
do this numerically by first solving the ground state | Gi of the Hamilto-
nian (4.41) using the infinite time-evolving bond decimation (iTEBD) algo-
rithm invented by Vidal [60] and then calculating the fidelity between these
two states f = |h G| AKLTi|2. As shown in Fig. 4.1 we indeed see that there is
an extended region in this Hamiltonian such that the ground state is exactly
the AKLT state and thus a useful resource state for universal single-qubit
MBQC.

4.5.2 Analytic understanding

We now analyze why such an extended region of AKLT is possible and
calculate analytically the boundary of the AKLT region in the �-µ plane,
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shown in Fig. 4.1. First we recall that the interaction between sites i and i+1
of HAKLT is a projection to the joint S = 2 subspace. More precisely,

(HAKLT )i,i+1 = 2
2X

m=�2

P|S=2,mi �
2

3
1, (4.45)

where we have defined the projector P| i ⌘ | ih | associated with the state
| i, |S = 2,mi denotes the eigenbasis of the joint spin-2 states for neighboring
sites i and i+ 1, and 1 is the identity operator in the spin-2 subspace.

For the quartic Hamiltonian, it is seen by straightforward calculation that

(Hq)i,i+1 = P(|S=2,2i+|S=2,�2i)/
p
2 + P|S=2,0i +

2

3
1. (4.46)

For the cubic Hamiltonian, it is seen that

(Hc)i,i+1 = 2
p
3
⇣
P|�+i � P|��i

⌘
, (4.47)

where

|�±i ⌘ (|S = 2,m = 2i+ |S = 2,m = �2i
±i

p
2|S = 2,m = 0i)/2. (4.48)

Since the AKLT state is annihilated by any spin-2 projectors, it will remain
the ground state if the following operator is positive,

h(�, µ) ⌘ 2P|S=2,m=2i + 2P|S=2,m=�2i + 2P|S=2,m=0i

+2
p
3�
⇣
P|�+i � P|��i

⌘
+ µP|S=2,m=0i

+µP(|S=2,m=2i+|S=2,m=�2i)/
p
2, (4.49)

which, in the basis of |S = 2,m = {±2, 0}i is the following 3⇥ 3 matrix,

h(�, µ) =

0

@
2 + µ/2 µ/2 �i

p
6�

µ/2 2 + µ/2 �i
p
6�

i
p
6� i

p
6� 2 + µ

1

A . (4.50)

By direct diagonalization, we find that the matrix h(�, µ) is non-negative when
µ± 2

p
3�+ 2 > 0 which indeed gives the region of the AKLT in Fig. 4.1.
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4.6 Summary and Outlook

We have presented a straightforward and general formalism for investigat-
ing the structure of a wavefunction as constrained (or protected) by a discrete
symmetry group. The wavefunction is organized into two parts: (1) a CG part,
whose form is inferred from the symmetry group and (2) a part whose form is
not constrained by the symmetry. From the viewpoint of measurement-based
quantum computation, one can then use this formalism to discuss whether the
ground state of an SPT phase protected by a given symmetry group allows
protected gate operations. This happens when, for example, the MPS matrices
Ai decompose into the form Ai = Bi ⌦ �i i.e. the virtual vector space decom-
poses into junk and protected parts. Generically speaking, the identity gate is
not necessarily protected in an arbitrary SPT phase. With the new formalism,
we recovered the results of the Z2 ⇥ Z2 case previously obtained in Ref. [32]
and obtain the MPS forms for several other groups– D4, A4 and S4. We also
constructed a Hamiltonian with A4 and inversion symmetry and found that
in an extended region of a two-parameter space, the ground state is exactly
the AKLT state. Using the formulation developed here, further exploration of
1D SPT phases and gate protection can be made with arbitrary finite groups.
The MPS forms can also allow the study of the properties of 1D SPT phases
which would be of interest to the condensed matter community.

Our hope was to find a computational phase in an SPT phase that can
generically support arbitrary single-qubit gates. However, in the scheme of
MBQC mentioned here on pure states corresponding to SPT ground states, it
might be the case that the only gate that can be naturally protected gener-
ically in an entire SPT phase is the identity gate which is useful in terms of
transmitting quantum information over long distances. One way around this is
the bu↵ering technique invented in Ref. [37] is one way to bring forth universal
gates, as demonstrated for the S4 symmetry.

In a follow-up work, published in Refs [34, 35], an alternative protocol based
on mixed states for MBQC was introduced as compared to the one introduced
in Refs [131, 132] which was also used in this chapter. Using the mixed-
state protocol, we can use the ground states corresponding to several SPT
phases (including the ones mentioned in this chapter) which have a protected
identity gate operation in the pure-state protocol, for universal single qubit
MBQC! Thus, indeed providing support that SPT phases can be potentially
computational phases.

The real challenge is to find a computational phase that is not only use-
ful for single qubit MBQC, but for universal MBQC. It is known that one-
dimensional systems cannot host universal quantum computation and we need
to go to atleast two dimensions. There has been increasing evidence to show
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that certain two dimensional SPT phases [127, 153, 154] can potentially be
universal computational phases. A concrete proof, example and protocol is
still lacking and is left for future work. In particular, a class of SPT phases
with a so-called decorated domain wall construction considered in [127] have
an appealing structure where we can hope for a general proof.
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Part III

Out-of-equilibrium phases of
matter
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Chapter 5

Eigenstate phases with finite
on-site non-abelian symmetry

The contents of this chapter are published in Ref.[155] completed in col-
laboration with Sriram Ganeshan, Lukasz Fidkowski and Tzu-Chieh Wei.

5.1 Introduction

Statistical mechanics and thermodynamics are bridges that connect micro-
scopic laws such as Newtonian and quantum mechanics to macroscopic phe-
nomena that we measure in the laboratory. The validity of statistical physics
relies on the existence of thermal equilibrium. For an isolated quantum sys-
tem, the notion of thermalization is understood in the form of the Eigenstate
Thermalization hypothesis (ETH) [17, 156]. ETH posits that for a quantum
system, an eigenstate embodies an ensemble and thermalization can be diag-
nosed by monitoring if subsystems are thermal with respect to the rest of the
system. Furthermore, if the system thermalizes, all eigenstates are thermal.
Integrable systems violate ETH due to the existence of an extensive number of
conserved quantities that prevent the system from acting as a bath for itself.
However, quantum integrable models are highly fine tuned and one recovers
thermalization by any infinitesimal deviation from the integrable point.

Recently, many-body localization (MBL) has emerged as a generic class
of interacting and disordered isolated systems which violate ETH. Basko et
al. [15] showed that all many-body eigenstates remain localized to all or-
ders in perturbation for an e↵ective interacting disordered model. Several
numerical works subsequently verified that all many-body eigenstates are lo-
calized in one dimensional disordered lattice models with short-range interac-
tions [16, 24, 157–160]. Furthermore, there has been a mathematical proof by
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Imbrie [161] for the existence of MBL in a particular disordered spin model
with short range interactions. The absence of thermalization has been further
quantified as a consequence of emergent integrability due to the presence of a
complete set of local integrals of motion (LIOMs). The key distinction from
fine tuned integrable models is that the LIOMs or ‘lbits’ (for localized bits) in
the MBL phase are robust against perturbations. One can use these lbits to
construct a phenomenological lbit Hamiltonian that captures the entanglement
dynamics [162–165].

Having established the existence of MBL and its violation of ETH in certain
models, natural questions that arise are “what is the most robust version of
MBL?” and “does it lead to a refined notion of ETH?” To this end, it is worth-
while to consider instabilities to the MBL phase that lead to delocalization and
thereby the restoration of thermalization. Recent works have considered insta-
bilities to the MBL phase due to a small bath [166, 167], external drive [168],
Gri�ths e↵ects and dimensionality [169, 170], topologically protected chiral
edge [171] and a single particle mobility edge [172, 173]. Contrary to the com-
mon wisdom that these instabilities would lead to the complete restoration of
thermalization, preliminary numerical results have indicated that the lack of
thermalization tends to survive in some form in all these cases. However, the
fate of these exotic phases in the thermodynamic limit is still an open question.

Potter and Vasseur [174] have recently added another instability to this list.
It was argued that the l-bit Hamiltonian ‘enriched’ with non-abelian symmetry
that is not spontaneously broken is unstable to perturbations. This instability
arises from the extensive degeneracy in the spectrum of the l-bit Hamiltonian
associated with the higher-dimensional irreducible representations (irreps) of
the non-abelian group. Any perturbation of such a spectrum results in reso-
nant delocalization making MBL unstable, driving the system to thermaliza-
tion or a quantum critical glass (QCG)-like phase [175, 176]. On the other
hand, if the non-abelian symmetry was spontaneously broken to an abelian
subgroup, the system could localize and be driven to the so-called many-body
localized spin-glass (MBL-SG) phase which is characterized by MBL as well
as long range order arising from spontaneous symmetry breaking [24, 25, 177].

Thus symmetry provides a platform to search for exotic violations of ETH
beyond MBL in strongly interacting systems. To this end, in this chapter, we
develop a procedure to construct general Hamiltonians with global symmetries
and analyze the thermalization and localization indicators for individual eigen-
states. As a particular example, we construct a two-parameter Hamiltonian
with on-site S3 symmetry. Using numerical exact diagonalization of our model
Hamiltonian, we calculate cut-averaged entanglement entropy (CAEE) distri-
butions and level statistics which are indicators of localization and a spin-glass
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diagnostic which detects symmetry breaking. Within the accuracy of our nu-
merical analysis, we are able to distinctly observe both a thermal phase and an
MBL-SG phase with spontaneous symmetry breaking of S3 to Z3 symmetry.

We also employ the same diagnostics to quantify an intermediate region
between the aforementioned two phases where the full S3 symmetry is intact.
However, we cannot ascertain the fate of this region in thermodynamic limit,
due to the possibility of quantum critical cone like finite-size e↵ects [178]. The
chapter is organized as follows. In Sec. 5.2 we construct a general S3 symmetric
Hamiltonian using group theory methods. We numerically diagonalize our
model and compute indicators of localization and symmetry breaking in 5.3.
We end the chapter with discussion of results and conclusion. We provide a
review of the conjecture by Potter and Vasseur [174] on the incompatibility
of MBL with non-abelian symmetries and other details of our analysis in the
Appendices.

5.2 Model S3 invariant Hamiltonian

In this section, we analyze a specific spin-1 Hamiltonian that is invari-
ant under the smallest non-abelian group, S3. In terms of the spin angular
momentum basis |S = 1, Sz = +1, 0,�1i, the spin operators are

Sx =
1p
2

0

@
0 1 0
1 0 1
0 1 0

1

A , Sz =

0

@
1 0 0
0 0 0
0 0 �1

1

A ,

Sy =
1p
2

0

@
0 �i 0
i 0 �i
0 i 0

1

A , S± =
1p
2
(Sx ± iSy). (5.1)

The symmetry group S3 contains six elements: S3 = {1, a, a2, x, xa, xa2}, and
the two generators, a and x, satisfy the properties a3 = x2 = 1 and xax = a�1.
Note that in this chapter, we refer to the identity element of the group simply
as 1. In the spin basis, they are chosen to have the following representations,

V (a) =

0

@
! 0 0
0 1 0
0 0 !⇤

1

A , V (x) =

0

@
0 0 1
0 �1 0
1 0 0

1

A , (5.2)
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where ! = e2⇡i/3. It can be verified that the spin operators transform under
the generators as follows,

V (a)S± V (a)† = !±1S±, V (a)Sz V (a)† = Sz (5.3)

V (x)S± V (x)† = �S⌥, V (x)Sz V (x)† = �Sz. (5.4)

Using the symmetry arguments detailed in Appendix C.2, we construct the
following Hamiltonian:

H(�,) = �Hd() +Ht, (5.5)

Hd() =
LX

i=1

(1� ) hi (S
z

i
)2 +  Ji S

z

i
Sz

i+1,

Ht = �t [Ha +Hb +Hc] ,

Ha = a
LX

i=1

(S+
i
)2(S�

i+1)
2 + (S�

i
)2(S+

i+1)
2 + h.c,

Hb = b
LX

i=1

(S+
i
Sz

i
)(S�

i+1S
z

i+1) + (S�
i
Sz

i
)(S+

i+1S
z

i+1) + h.c,

Hc = c
LX

i=1

(S+
i
)2(S+

i+1S
z

i+1) + (S�
i
)2(S�

i+1S
z

i+1) + h.c.

The above Hamiltonian consists of two parts: 1) The disordered part Hd

with a one body (disordered hi term) and a two-body l-bit term (disordered
Ji term). The two-body term is designed to drive spontaneous symmetry
breaking of non-abelian S3 symmetry down to an abelian Z3 symmetry. The
relative strengths of these two terms are controlled by the  2 [0, 1] parameter,
where  = 1 is expected to be the SSB limit. 2) The second term Ht, the
thermalizing term, contains a representative subset of the most general two-
body symmetric operators. The intention is to keep Ht su�ciently generic
while retaining invariance under symmetry action (see Appendix C.2 for details
of how this Hamiltonian is constructed and can be generalized to arbitrary
symmetry groups). The � parameter controls disorder strength.

Using the transformation of the spin operators listed above, it is straight-
forward to verify that the Hamiltonian has the desired symmetry, that is,
8g 2 S3

U(g)H(�,)U(g)† = H(�,), U(g) =
LO

i=1

V (g)i. (5.6)
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For numerical analysis, the parameters in the Hamiltonian are selected as
follows, (a) hi = wh gh(i), Ji = wJ gJ(i) and gh/J(i) are random numbers
drawn from a normal distribution with mean 0 and standard deviation 1;
(b) (wh, wJ ,�t, a, b, c) are free real parameters. We arbitrarily fix these to
the values (1.0, 0.6, 0.17, 0.74, 0.67, 0.85) respectively for our numerical study
without loss of generality.

5.3 Numerical Results

We perform exact diagonalization of the Hamiltonian in Eq. 5.5. The lo-
cal Hilbert space for the S3 symmetric Hamiltonian is three dimensional, in
contrast to the spin 1

2 case and this constraints our maximum system size acces-
sible to be L = 10 sites. We study the properties of the eigenstates pertaining
to localization and thermalization of this Hamiltonian for various values of
� 2 (0,1) and  2 [0, 1]. For clarity of presentation of certain analysis, we
use the rescaled variable �

1+� 2 (0, 1) instead of � (wherever mentioned). We
employ periodic boundary conditions for all our analysis. To characterize the
phases, we study below several relevant diagnostics that quantify the nature
of localization and thermalization of the eigenstates. First, we consider the
full entanglement distributions evaluated using the cut averaged entanglement
entropy.

5.3.1 Cut averaged entanglement entropy distributions

Since MBL is a characteristic of a single eigenstate, it is useful to quan-
tify this phase without averaging across di↵erent eigenstates. Recent work by
Yu, Luitz and Clark [179] has proposed cut averaged entanglement entropy
(CAEE) to quantify the MBL phase at the level of a single eigenstate. CAEE
for a subsystem size, d, is obtained by taking the average of the entanglement
entropy computed for all subsystems of a specific size d (contiguous spins
contained in a segment of length d) located on the spin chain with periodic
boundary conditions. The CAEE scaling, S(d) is then evaluated by repeat-
ing this procedure for di↵erent subsystem sizes, d. The key advantage of the
CAEE is that strong sub-additivity condition constrains the shape of the en-
tanglement scaling as a function of subsystem size, i.e. , S(d) is guaranteed
to be a smooth convex function of the subsystem size, d without any average
over disorder or eigenstates [179]. This allows us to quantify the entanglement
scaling of each eigenstate using the slope of the CAEE (SCAEE), S 0(d⇤), at
some fixed subsystem size, d⇤ as in Ref [179]. We can then construct the
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full distribution of the slopes across the disorder snapshots and eigenstates.
Fig. 5.1 shows sample CAEE, along with a spline fit for 200 randomly chosen
eigenstates for 4 di↵erent {�,} from a few disorder realizations of a 10-site
Hamiltonian [5.5]. It can be seen that the eigenstates for small � are mostly

Figure 5.1: CAEE and spline fit for 200 eigenstates randomly sampled from
the spectra of 19 disorder realizations of the 10 site Hamiltonian (5.5).

volume law, while for large �, there exists mixture of area-law and volume-law
states. In order to identify the nature of the eigenstate transitions for various
parameter regimes, we monitor the full distribution of the slope of the CAEE
(SCAEE) evaluated at subsystem size L/4 (S 0(L/4)) for di↵erent values of �
and  and disorder realizations. Operationally, we compute SCAEE as follows:
for each eigenstate, we obtain the CAEE scaling, S(d) for d = 0 . . . L, fit the
data to a curve using a spline fit and then evaluate the slope, S 0(d) for this fit
curve at d = L/4.

There is however a potential issue because of the non-abelian nature of the
S3 symmetry of the Hamiltonian. Generally, at finite-sizes, the eigenstates of
a Hamiltonian invariant under the action of a symmetry group G transform
as irreps of the same group. For our case, S3 has 3 irreps- two 1D irreps
(1, 10) and one 2D irrep (2). Eigenstates that transform as the 2 are two-
fold degenerate. We may get di↵erent entanglement scaling depending on
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which precise orthonormal states in this 2D vector space is produced as the
eigenstates 1. To avoid this issue, we diagonalize the Hamiltonian in the 1D
irrep sector. In addition to ensuring that we only sample non-degenerate
eigenstates which transform as 1D irreps, this also helps us in reaching higher
system sizes (See Appendix [C.3] for more details).

Figure 5.2: Slope histograms for 9 sites and 879 disorder samples for repre-
sentative {�,}. 243 Eigenstates that transform as 1D irreps chosen sampled
for each disorder realization. The plot is normalized to have unit area.

Fig. 5.2 shows the distribution of S 0(L/4) for di↵erent � and . The values
of � are chosen so as to show what the distribution looks like when the system
has strong, weak and intermediate disorder strength. For all values of the
SSB parameter , for weak disorder �, we see that the S 0(L/4) distribution
becomes increasingly narrow with system size with a peak located close to
1.1 ⇡ log(3) which is the maximum value possible for S 0(d) for any state
of spin-1 chain. This is also evident from the large number of eigenstates
with volume-law entanglement entropy scaling S(d) / d in Fig. 5.1. These
properties are consistent with an ergodic/ thermal phase. For high disorder
however, we see that the distribution for  = 0 in Fig. 5.2 is di↵erent from
 = 1. For the former, there is a relatively extended thermal tail which
is suppressed for the latter. To gain a better understanding we present the
first two moments (mean and variance) of this slope distribution which are
indicators of a potential MBL transition.

1
We thank Bela Bauer for pointing this out.
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 = 1 with S3 ! Z3 symmetry breaking: The entanglement distribution
for the  = 1 limit Fig. 5.2 and its moments, displayed in the upper panels
of Figs. 5.3,5.4 are consistent with the existence of an MBL phase for the
large disorder limit and transitions to a fully thermal phase for weak disor-
der. One way to estimate the transition point is by locating where the mean,
S 0(L/4) curves for di↵erent system sizes cross on the � axis in Fig. 5.3. This is
roughly at �/(1 + �) ⇡ 0.72. Another is by locating the peak of the variance,
�2(S 0(L/4)) curve on the � axis which is believed to be close to the point of
phase transition in the thermodynamic limit [26, 178]. The drift of this point
towards the disorder side i.e. larger � with increase in system size is considered
to be typical for exact diagonalization (ED) studies of MBL [178]. Since our
model has a non-abelian symmetry, the existence of a full MBL phase must
accompany SSB to an abelian subgroup. We confirm SSB (S3 to Z3 in this
case) by computing a spin-glass diagnostic in 5.3.2.

 = 0 with full S3 symmetry: The entanglement distribution for the  = 0
limit, shown in Fig. 5.2, and its moments, displayed in the lower panels of
Figs. 5.3 and 5.4 shows an enhanced variance and mean at the  = 0 for the
large disorder limit. The enhanced mean value is an indication of the presence
of sub-thermal volume law states and area law states. However, the crossing
of the S 0(L/4) curves persists (roughly at �/(1 + �) ⇡ 0.70) as does the peak
in the �2(S 0(L/4)) plot. How this peak value changes as we approach the
thermodynamic limit is an open question and we hope that better tools of
numerical analysis like matrix product state methods can shed some light on
this issue. We leave this for future work.

Figure 5.3: Mean of S 0(L/4) distribution (with spline fit) as a function of
�/(1 + �) for  = 0 and  = 1. 243 eigenstates per disorder realization that
transform as 1D irreps sampled for 800 (7,8 sites), 879 (9 sites) and 654 (10
sites) disorder realizations respectively.
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Figure 5.4: Variance of S 0(L/4) distribution (with spline fit) as a function of �
for  = 0 and  = 1. 243 eigenstates per disorder realization that transform as
1D irreps sampled for 800 (7,8 sites), 879 (9 sites) and 654 (10 sites) disorder
realizations respectively.

5.3.2 Spontaneous symmetry breaking in excited states

As indicated by the entanglement distributions, the full MBL phase ap-
pears only in the  = 1 limit. This is the limit where the disordered ‘l-bit’
term is dominated by

P
i
Ji Sz

i
Sz

i+1 which triggers the spontaneous symmetry
breaking (SSB). To confirm that SSB has indeed taken place for the many-
body excited states, we use a spin-glass diagnostic which we describe below. In
the study of classical spin glasses [180, 181], one is interested in order param-
eters sensitive to the spin-glass phase characterized by long-range order in the
presence of disorder. One such important quantity of study is the spin-glass
susceptibility [182]

� =
1

N

NX

i,j=1

⇥
hsisji2

⇤
, (5.7)

where, si are classical Ising variables, h⇤i indicates statistical averaging and
[⇤] indicates disorder averaging. In Ref [24], the authors defined a similar
quantum mechanical diagnostic to detect spin-glass (SG) order arising from
SSB of Z2 ! trivial group in a Z2 invariant Ising- like disordered spin chain:

�SG =
1

L

LX

i,j=1

|h✏|�z

i
�z

j
|✏i|2, (5.8)

where, |✏i is an energy eigenstate and �z is the Pauli-Z operator. In their
model, it was shown that the average �SG scales with system size as �SG ⇠ L
in the MBL-SG phase and approaches a constant value set by normalization
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for the paramagnetic phase. Similar to eq. 5.8, for our model, we define the
following spin-glass diagnostic that looks for signatures of spin glass order
arising from SSB of S3 ! Z3

�SG

Z3
=

1

L� 1

LX

i 6=j=1

|h✏|Sz

i
Sz

j
|✏i|2. (5.9)

Note that we choose to exclude the i = j term in the summation unlike Eq [5.8].
We look at the statistics of �SG

Z3
across randomly sampled eigenstates and

disorder realizations. We find signatures for transition to an MBL-SG phase
as we vary � similar to what was found in Ref [24]. Fig. 5.5 shows �SG

Z3
versus

� for  = 0, 1. For  = 1, we indeed observe that the SG diagnostic increases

Figure 5.5: �SG

Z3
versus � (with spline fit) for  = 0 and  = 1. 243 eigenstates

per disorder realization that transform as 1D irreps sampled for 800 (7,8 sites),
879 (9 sites) and 715 (10 sites) disorder realizations respectively.

with system size for large disorder. For  = 0, we see that the SG diagnostic
at best saturates to a constant value independent of system size and at worst
reduces with system size but certainly does not increase with it indicating the
lack of SSB. To rule out SSB to other subgroups in the  = 0 regime, we have
to use other SG diagnostics that can detect spontaneous breaking of S3 down
to one of the other subgroups like Z2 and trivial group. In Appendix C.4, we
construct appropriate SG diagnostics and present numerical evidence that the
full S3 is indeed intact for  = 0.

5.3.3 Level statistics

Level statistics is a basis independent diagnostic that indicates localization
and thermalization based on the statistics of the adjacent gap ratio (�n =
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En+1 � En) defined as,

rn = min(�n, �n+1)/max(�n, �n+1). (5.10)

Figure 5.6: r versus �/(1 + �) for  = 0 and  = 1 . 243 eigenstates per
disorder realization that transform as 1D irreps sampled for 800 (7,8 sites),
879 (9 sites) and 715 (10 sites) disorder realizations respectively.

In the presence of symmetry, no interaction term in the Hamiltonian can
mix eigenstates that transform as di↵erent irreducible representations of the
symmetry group. Thus, it is meaningful to compute rn(�), the level statistics
ratio for the eigenstates that transform as each irrep � of the group separately.
In this chapter, in Fig. 5.6, we present r̄ = r(1)+r(10)

2 as a function of � where
r(�) is obtained by averaging rn(�) computed for randomly sampled eigen-
states which transform as the � irrep (see Appendix C.3 for details on how we
detect the irrep of each eigenstate), across disorder realizations. On the side
with low disorder, for both  = 0 and  = 1, we observe r̄ ⇡ 0.53. This is
typical for a fully thermal phase indicating a Wigner-Dyson (WD) distribu-
tion. For a fully localized phase, typically, r̄ ⇡ 0.39, corresponding to Poisson
distribution. However, the application of this diagnostic to the degenerate
spectrum of our S3 invariant Hamiltonian can be tricky. In particular, closer
to the l-bit point of large �, the extensively degenerate spectrum may mimic
level clustering and result in r̄ < 0.39 which we do indeed observe. Hence, this
diagnostic is only reliable at the thermal side, where we obtain the WD value
of r̄ ⇡ 0.53. For the strong disorder, the level statistics approaches Poisson
value but a clear reading is plagued by the degeneracies for both  = 0, 1.
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5.3.4 Finite size scaling

In order to determine the location and nature of the putative transitions,
we perform finite size scaling collapse for MBL and SG diagnosics using the
following scaling ansatz used in Ref [24].

g(�, L) = Laf((�� �c)L
1
⌫ ) (5.11)

Fig. 5.7 shows the scaling collapse of the diagnostics S 0(L/4), �2(S 0(L/4)) and

�SG

Z3
for 8, 9 and 10 site data. For  = 1, we obtain a good collapse for both

the MBL and SG diagnostics at �c ⇡ 2.65 and ⌫ ⇡ 2.5. For  = 0, we do not
get a scaling collapse for the SG diagnostic �SG

Z3
for non-zero �c and positive

⌫ which is consistent with the absence of SSB. On the other hand, we get a
reasonable collapse for S 0(L/4) and �2(S 0(L/4)) at �c ⇡ 2.35 and ⌫ ⇡ 2.5.

Note that the value of the finite size exponent ⌫ used in Fig. 5.7 is consistent
with the Harris [183]/CCFS [184, 185]/CLO [186] criterion of ⌫ � 2 for one
dimensional spin chains with quenched disorder. However, we emphasize that
the our estimate is very rough and even for values of ⌫ that violates the crite-
rion (eg: ⌫ ⇡ 1.5 ), we still get a decent collapse. This violation is a common
feature of ED studies of small system sizes [24, 187]. Indeed, recent work by
Khemani and Huse [188] suggests that this might be an indication of the sys-
tem not exhibiting true thermodynamic behavior and is expected to undergo
a crossover after which we obtain ⌫ consistent with the Harris/CCFS/CLO
bounds. Within the accuracy of our numerical investigation however, we can
neither confirm nor rule out the possibility of our system being en-route to
such a crossover.

5.4 Discussion

Based on the above analysis, we are in a position to put together an ap-
proximate phase diagram for the model Hamiltonian H. Fig. 5.8 shows a
color map of S 0(L/4), �SG

Z3
and r plotted in the ,� space. Fig. 5.9 shows a

schematic plot that indicates a thermal phase for the weak disorder limit and
a MBL+SSB phase for strong disorder limit. In addition to these two phases,
there is a hint of a third regime for strong disorder and no SSB, where there
seems to be a coexistence of localized and delocalized states in the many-body
spectrum. We now discuss each of this regimes separately.

Thermal phase. For the thermal phase, the distribution of slopes has a
mean that saturates at the maximal entropy per unit site. This indicates a
substantial presence of volume law scaling eigenstates. The distribution of
�SG

Z3
has mean that does not increase with system size and implies absence of
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Figure 5.7: Scaling collapse of MBL and SG diagnostics for 8, 9 and 10 sites.

SSB. The level statistics clearly show Wigner-Dyson distribution highlighting
the thermal nature of this regime.

MBL+SSB phase. For the MBL+ SSB phase, the distribution of slopes has
mean close to 0. This indicates the presence of area-law scaling eigenstates.
The distribution of �SG

Z3
parameter (designed to detect S3 ! Z3 symmetry

breaking) increases with system size. This indicates a substantial presence of
eigenstates with SSB. The above results are consistent with a spin-glass phase
with a residual abelian symmetry group that supports a full MBL states with
strong signatures of SSB at all eigenstates. The level statistics data is more
noisy due to the level clustering as a result of degeneracies in this regime but
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Figure 5.8: Color map of S 0(L/4), �SG

Z3
and r for �/(1 + �) 2 [0.1, 0.9] and

 2 [0, 1]. 200 eigenstates of the 7 site Hamiltonian [5.5] that transform as 1D
irreps sampled randomly for 238 disorder realizations.

Figure 5.9: The three regions labeled in a schematic plot.

hovers around the Poisson value.
Intermediate phase. This case is shown as dashed region in the schematic

Fig 5.9. The full S3 symmetry is intact in this regime and is incompatible with
the full MBL phase. At the l-bit point (� ! 1), the many-body spectrum
has extensive number of states with extensive degeneracy. Any infinitesimal
thermal perturbation is expected to split this extensive degeneracy down to
the minimal values set by the size of the irreps of the group (2 and 1 in our
case). This is expected to result in resonant delocalization of an extensive
number of states. Thus the most plausible scenario is a fully thermal phase.
Our numerical results, however, are not fully consistent with a thermal phase,
but do not have the strong signatures of MBL-SG or MBL phases, either. A
possibility for this regime is a marginal MBL phase that may be separating
another MBL+SSB phase that is not explored within our parameter space.
This can be uncovered introducing disorder to some of the relevant two-body
thermal terms which are non-disordered in our current analysis. We leave this
investigation for future work.

Finite-size e↵ects such as the critical-cone region [178] are important in this
putative intermediate phase. Indeed, such finite-size e↵ects play an important
role at large �, and one has to be careful about the order of the thermodynamic
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and large � limits. At finite-size L, large � corresponds to adding a small per-
turbation of Ht on top of the lbit Hamiltonian, and for 1/� much smaller than
the lbit many-body level spacing ⇠ 3�L one can apply first-order perturbation
theory. One e↵ect is to split the exponentially degenerate lbit states, resulting
presumably in volume law eigenstates. However, there are also states in the
lbit spectrum which are not highly degenerate, corresponding to sectors where
most of the sites sit in the one dimensional irrep, and only a few sit in the two
dimensional irrep. These are area law states, and could remain area law upon
the addition of such a small perturbation. Thus some vestiges of localization
are expected to remain at large � for a finite-size L. More numerical work
at larger sizes will have to be done to distinguish these e↵ects from a truly
thermodynamic intermediate phase.

5.5 Summary and outlook

In this chapter, we construct and study a spin-1 Hamiltonian invariant un-
der an on-site S3 symmetry using various disorder and symmetry diagnostics.
We study the eigenstate phases that can arise via ergodicity and symmetry
breaking. Within the accuracy of our numerical analysis, we can identify three
regions in the two-parameter Hamiltonian space two of which are consistent
with thermal, MBL- spin-glass phases and a third whose identity is not estab-
lished with certainty in the present study. We state our observations about
various characteristics of this region and speculate with regard to its identity.

There are other interesting questions that are left for future study. In this
work, we are limited to small system sizes by the tools of numerical analysis
employed i.e. exact diagonalization. There is much to be gained in designing
and employing other numerical techniques to study larger system sizes. In
this regard, it would be useful to explore the extension of tensor network
techniques, which have been shown to be e↵ective in the case of full-MBL,
where eigenstates are expected to have area-law properties, to other settings, in
particular to further study the disordered region with unbroken S3 symmetry.
Another extension of is to repeat our study in a Floquet setting where exotic
possibilities have been conjectured in the presence of global symmetries [27–
31]. Here, the arguments for instability of disordered Floquet systems with
non-abelian symmetries to thermalization would be stronger because of energy
pumping. However, as we saw in the equilibrium case, such a system might
have interesting features worth exploring. Furthermore, we could consider
relaxing the setting of indefinitely stable phases, like MBL, to the so-called
‘pre-thermal’ setting [189, 190] where the system is stable for large times and
study the role of non-abelian symmetries.
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Appendix A

Appendix to Chapter 2

A.1 Constructing the symmetric Hamiltonian

We provide details of the construction of the Hamiltonian in Sec 2.2. We
remind the reader that the group of on-site symmetries we consider is A4,
the alternating group of degree four and the group of even permutations on
four elements. The order of this group is 12 and can be enumerated with two
generators,

ha, x|a3 = x2 = (ax)3 = ei. (A.1)

The on-site representation, u(g) we consider that the spins transform under is
the faithful 3D irrep of A4 with generators

a =

0

@
0 1 0
0 0 1
1 0 0

1

A , x =

0

@
1 0 0
0 �1 0
0 0 �1

1

A (A.2)

We use group invariant polynomials as building blocks to construct Hermitian
operators invariant under group action. A groupG invariant n-variable polyno-
mial f(x1, x2, . . . xn) is unchanged when the n-tuplet of variables (x1, x2 . . . xn)
is transformed under an n-dimensional representation of the group U(g).

f(x0
1, x

0
2 . . . x

0
n
) = f(x1, x2 . . . xn), (A.3)

where x0
i
= U(g)ijxj. If we have n Hermitian operators Xi=1...n that are n-

dimensional and transform covariantly like the n variables of the polynomial
xi=1...n, i.e. U(g)XiU †(g) = U(g)ijXj, then we can elevate the group invariant
polynomials to group invariant operators as f(x1, x2, . . . xn) ! f(Xi, X2 . . . Xn)
carefully taking into account that unlike the numbers xi, the operators Xi do
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not commute.
Since we need three-dimensional operators of A4, we consider the set of

independent three variable polynomials invariant under the action of the 3D
irrep of A4 [152]:

f1(x, y, z) = x2 + y2 + z2, (A.4)

f2(x, y, z) = x4 + y4 + z4, (A.5)

f3(x, y, z) = xyz. (A.6)

We know that the spin operators Si satisfying [Si, Sj] = i✏ijkSk transform
covariantly under any SO(3) rotation, in particular for the finite set of rota-
tions that corresponds to the subgroup A4 ⇢ SO(3). Thus, to find invariant
operators for the three-dimensional representation, we need to take the spin
operators in the appropriate three-dimensional basis in terms of the Spin-1
states |J = 1,mzi ⇠= |mzi = {| ± 1i, |0i} so as to get the irrep defined above.

|xi = 1p
2
(|� 1i � |1i), |yi = ip

2
(|� 1i+ |1i), |zi = |0i,

and elevate the polynomials f1, f2, f3 to operators as

F1 = Sx

a
Sx

b
+ Sy

a
Sy

b
+ Sz

a
Sz

b
,

F2 = (Sx

a
Sx

b
)2 + (Sy

a
Sy

b
)2 + (Sz

a
Sz

b
)2,

F3 = Sx

a
Sy

b
Sz

c
+ Sz

a
Sx

b
Sy

c
+ Sy

a
Sz

b
Sx

c
+ Sy

a
Sx

b
Sz

c
+ Sx

a
Sz

b
Sy

c
+ Sz

a
Sy

b
Sx

c
,

where the indices a, b, c label any other quantum numbers collectively like
lattice sites and can be chosen as per convenience, say to make the operators
local as we will do next. As a model Hamiltonian, we could use any function of
the invariant operators F1, F2 and F3 and ensure that everything is symmetric
under the exchange of lattice labels to impose inversion symmetry.

We start with the Hamiltonian for the Spin-1 Heisenberg antiferromagnet
which is constructed using F1 with {a, b} chosen to make the interactions
nearest neighbor:

HHeis =
X

i

Si · Si+1 where Si · Si+1 ⌘ Sx

i
Sx

i+1 + Sy

i
Sy

i+1 + Sz

i
Sz

i+1.

We add the two other combinations to the Heisenberg Hamiltonian so as to
break the SO(3) symmetry to A4 by using F2 and F3 as follows:

Hq =
X

i

S2
i
· S2

i+1 where, S2
i
· S2

i+1 ⌘ (Sx

i
Sx

i+1)
2 + (Sy

i
Sy

i+1)
2 + (Sz

i
Sz

i+1)
2,
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and

Hc =
X

i

[(SxSy)iS
z

i+1 + (SzSx)iS
y

i+1 + (SySz)iS
x

i+1

+ (SySx)iS
z

i+1 + (SxSz)iS
y

i+1 + (SzSy)iS
x

i+1

+ Sx

i
(SySz)i+1 + Sz

i
(SxSy)i+1 + Sy

i
(SzSx)i+1

+ Sx

i
(SzSy)i+1 + Sz

i
(SySx)i+1 + Sy

i
(SxSz)i+1]. (A.7)

The operators are symmetrized so that the Hamiltonian is invariant under
inversion as well as lattice translation. With these pieces, we arrive at the
total Hamiltonian which is invariant under A4 ⇥GP :

H = HHeis + �Hc + µHq. (A.8)

A.2 Review of classification of SPT phases
protected by Time reversal symmetry

A.2.1 Without on-site symmetry or parity

The time reversal symmetry group GT is generated by the anti-unitary
action T which is a combination of an on-site unitary operator v and complex
conjugation, ✓

T = v1 ⌦ v2 · · ·⌦ vN ✓ (A.9)

where, if the basis at each site |ii is real, the action of ✓ is simply

✓ : ci1...iN ! c⇤
i1...iN

(A.10)

✓ : Tr[Ai1
1 . . . AiN

N
] ! Tr[(Ai1

1 )
⇤ . . . (AiN

N
)⇤] (A.11)

T 2 = ±1 in general. However, it was shown in Refs. [51, 52] that only the case
of T 2 = 1 corresponds to gapped phases and we will consider only this case.
GT = {e, T }. The action on the MPS matrices is

T : Ai

M
! vij(A

j

M
)⇤ (A.12)

If GT is a symmetry of the Hamiltonian which is not broken by the ground
state | i, we have, under the action of T ,

T | i = | i. (A.13)
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Note that the possibility of ↵(T ) analogous to ↵(P ) of Sec. (2.3.5) can be
eliminated by re-phasing the spin basis (See Refs. [36, 52]). The condition
Eq. (2.26) can also be imposed on the level of the MPS matrices that describe
| i:

vij(A
j

M
)⇤ = M�1Ai

M
M, (A.14)

Here, M has the property MT = �(T )M = ±M . �(T ) = ±1 labels the two
SPT phases protected by GT . [52]

A.2.2 With parity

If the actions of parity and time reversal commute, the 8 SPT phases
protected by GP ⇥GT are labeled by {↵(P ), �(P ), �(T )} as defined before in
Secs (2.3.5,A.2.1). [52].

A.2.3 With on-site symmetry

If the action of the on-site symmetry transformation U(g) commutes with
T , we have a similar result to Eq. (2.29).

U(g)T | i = T U(g)| i, (A.15)

this imposes constraints on the matrix M defined as [52].

M�1V (g)M = �T (g)V
⇤(g). (A.16)

The di↵erent SPT phases protected by G⇥ T are labeled by {!, �(T ), �T (g)}
where, ! 2 H2(Gint, U(1)) which satisfy !2 = e, �T 2 G/G2 using the same
arguments as Sec (2.3.5). If translation invariance is also a symmetry, the
set of 1D representations �(g) in Eq (2.10) which satisfy �(g)2 = 1 also label
di↵erent phases in addition to the ones already mentioned before. [52]

A.2.4 With on-site and parity

The di↵erent SPT phases protected by G⇥ T ⇥GP are labeled by

{!,�(g),↵(P ), �(P ), �(T ), �(g), �T (g)},

where, ! 2 H2(Gint, U(1)) which satisfy !2 = e, �(g) and �T (g) 2 G/G2,
�(g)2 = 1 and G is the set of 1D representations of Gint. [52]
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Appendix B

Appendix to Chapter 4

B.1 Some remarks on projective representa-
tions

A projective representation respects group multiplication up to a complex
phase i.e.,

V (g1)V (g2) = !(g1, g2)V (g1g2), (B.1)

Group associativity places constrains the phase !:

V (g1)(V (g2)V (g3)) = (V (g1)V (g2))V (g3) (B.2)

=) !(g1, g2g3)!(g2, g3) = !(g1, g2)!(g1g2, g3). (B.3)

The possible !’s fall into di↵erent classes and each class has its own set of
irreducible representations. These classes are labelled by the elements of the
second cohomology group of G, H2(G,U(1)). The identity element of this
group labels the familiar set of linear irreducible representations.

We also note that there exists a gauge freedom that preserves the equiva-
lence class of !: If we re-phase ! as

!(g1, g2) 7! !̃(g1, g2) = !(g1, g2)
�(g1)�(g2)

�(g1g2)
, (B.4)

it still satisfies the condition (B.2) and !̃ ⇠ !. This means that while
the re-phasing transforms each element of the projective representation as
V (g) 7! Ṽ (g) = �(g)V (g), the new Ṽ belongs to the same class of projective
representations as V i.e. Ṽ (g1).Ṽ (g2) = !̃(g1, g2)Ṽ (g1.g2).
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B.2 SPT phases with spatial-inversion and
time-reversal invariance

The action of spatial-inversion or parity, P̂ can be e↵ected by a combina-
tion of an on-site action by some unitary operator w and a reflection, R̂ that
exchanges lattice sites n and �n.

P̂ = w1 ⌦ w2 · · ·⌦ wN R̂. (B.5)

Since we cannot talk about inversion in disordered systems, we assume the
system also has lattice translation invariance. If parity is a symmetry of a
wavefunction | i, we have

P̂ | i = ↵(P )N | i. (B.6)

The condition Eq. (B.6) can also be imposed on the level of the MPS matrices
that describe | i:

wij(A
j)T = ↵(P )N�1AiN, (B.7)

where, ↵(P ) = ±1 labels parity even or odd and the action of parity on the
virtual space N has the property NT = �(P )N = ±N . {↵(P ), �(P )} label
the 4 distinct phases protected by parity [52].

The anti-unitary action of time-reversal T̂ on the other hand is e↵ected by
a combination of an on-site unitary action acting on the internal spin degrees
of freedom, v and a complex conjugation K̂: T̂ = v1 ⌦ v2 · · ·⌦ vn K̂. If this is
a symmetry of a wavefunction | i, we have

T̂ | i = | i. (B.8)

We no longer need to allow an overall phase ↵(T )N because of the anti-unitary
nature of T̂ that allows it to be absorbed into redefining each basis |ii !p
↵(T )|ii.

Proof.

T̂ | i = ↵(T )N | i, (B.9)p
↵⇤(T )N T̂ | i =

p
↵(T )N | i, (B.10)

T̂
p
↵(T )N | i =

p
↵(T )N | i, (B.11)

T̂ | 0i = | 0i. (B.12)
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The condition of Eq. (B.6) can also be imposed on the level of the MPS
matrices that describes | i

vij(A
j)⇤ = M�1AiM, (B.13)

where, MM⇤ = �(T )1 = ±1 and �(T ) labels the two distinct phases of time-
reversal invariant Hamiltonians.

Finally if we consider systems invariant under both parity and time-reversal,
there are 8 distinct phases labelled by {↵(P ), �(P ), �(T )} as defined before.
However, since the action of parity and time-reversal should commute, this
imposes constraints on the matrices M and N as

MN †MN † / ei✓1 (B.14)

We direct the reader to Ref. [52] for details on several results used in this
section.

B.3 SPT Phases with combination of on-site
symmetry, spatial-inversion and time-reversal
invariance

We now look at ground states of SPT phases of gapped Hamiltonians with
on-site symmetry combined with parity, time-reversal invariance or both. We
find that the ‘B’ matrices of decomposition of Sec. 4.3.1 have further con-
straints in the way described in Sec. B.2.

On-site symmetry + parity

Let us consider SPT phases protected by an on-site symmetry G under a
representation u(g) combined with parity. If the actions of the two symmetry
transformations commute on the physical level,

Û P̂ | i = P̂ Û | i, (B.15)

this imposes constraints on the matrix N defined in Sec. B.2 as [52].

N�1V (g)N = �(g)V ⇤(g). (B.16)

Where, �(g) is a one-dimensional irrep of G that arises from the commu-
tation of on-site and parity transformations [52] and V (g) is the reduced
(block-diagonal) representation of G acting on the virtual space as discussed
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in Sec 4.3.1 that contains all the irreps, V1 · · ·Vr of a certain projective class
!.

V (g) =

0

BBB@

11 ⌦ V1(g) 0 . . . 0

0 12 ⌦ V2(g) . . .
...

...
. . .

...
0 . . . 0 1r ⌦ Vr(g)

1

CCCA
. (B.17)

1i is the trivial action on the degeneracy space of ‘B’ matrices as defined earlier.
Di↵erent phases of matter are now labeled by {!,�(g),↵(P ), �(P ), �(g)} [52]:

1. The di↵erent projective classes ! 2 H2(G,U(1)) which satisfy !2 = 1.

2. The di↵erent one-dimensional irreps � of G since the system is transla-
tionally invariant.

3. ↵(P ), the parity of the spin chain

4. �(P ) which denotes whether the virtual space parity representation is
symmetric or anti-symmetric.

5. �(g) 2 G/G2 where G labels the group of 1D irreps of G and G2 labels the
group of the square of 1D irreps of G. This arises due to the commutation
of parity and on-site symmetry transformations in the virtual space.

Given a set of labels, {!,�(g),↵(P ), �(P ), �(g)}, we constrain the MPS ground-
state wavefunction We observe that the right hand side of Eq. (B.16) can be
written as

�(g)V ⇤(g) = L�V (g)L�1
�
, (B.18)

where, L� involves permutation of irrep blocks and possibly a change of basis
on the irreps of V (g) and can be obtained by considering the e↵ect of re-phasing
each of the complex conjugated irrep blocks V ⇤

↵
(g) with �(g).

Proof. To see this, we first note that when !2 = 1 i.e. ! = !⇤, V ⇤
↵
(g) is a

representation that belongs to the same class of projective irreps ! as V↵(g)
as seen by complex conjugating Eq. (4.8). �(g)V ⇤

↵
(g) also belongs to the same

class because �(g) belongs to the class labelled by the trivial element e 2
H2(G,U(1)) and hence �(g)V ⇤

↵
(g) belongs to the class e ⇤ ! = !. To show

that �(g)V ⇤
↵
(g) is also an irrep, we start with the characters �↵ of the irrep V↵

which satisfy the irrep condition of the group of order |G| [152]

1

|G|
X

g2G

�(g)�⇤(g) = 1 (B.19)
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The characters of �(g)V ⇤
↵
(g), �̄↵ = ��⇤

↵
can also easily be shown to satisfy the

same condition

1

|G|
X

g2G

�̄(g)�̄⇤(g) =
1

|G|
X

g2G

�(g)�⇤(g)�⇤(g)�(g) = 1 (B.20)

Thus �(g)V ⇤
↵
(g) ⇠ Vp(↵)(g) is some other irrep in the class ! 2 H2(G,U(1)).

We can check that Vp(↵) again form the complete set of irreps as we run over ↵.
This means that the reduced representation �(g)V ⇤(g) can be obtained from
Eq. (B.17) by permuting the irrep blocks and with a change of basis and can
be done using a matrix L�.

�(g)V ⇤(g) = L�V (g)L�1
�

(B.21)

Using this, Eq. (B.16) can be rewritten as

(NL�)
�1V (g)(NL�) = V (g). (B.22)

Eq. (B.22) imposes constraints on the matrix NL� block-wise using Schur’s
lemma for each irrep block of V (g),

NL� =

0

BBB@

N1 ⌦ 10
1 0 . . . 0

0 N2 ⌦ 10
2 . . .

...
...

. . .
...

0 . . . 0 Nr ⌦ 10
r

1

CCCA
, (B.23)

where 10
↵ is the identity matrix in the irrep V↵. Moving L� to the other side

of the equation gives the form of N . This form can be used in the condition
Eq. (B.7) which e↵ectively results in conditions of the ‘B’ matrices of Ai of
Eq. (4.27) determined from labels {!,�}. So far, we have used the labels
{!,�(g), �(g)} to constrain the MPS matrices. The labels ↵(P ) and �(P )
determine the form of the blocks N↵ and are imposed on the ‘B’ matrices
when we use Eq. (B.7) and the results of Sec. B.2.

On-site symmetry + time reversal

We can repeat the same exercise for time-reversal invariance combined
with on-site symmetry G. If the actions of the two symmetry transformations
commute

Û T̂ | i = T̂ Û | i, (B.24)
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We find that the condition on the matrixM that results is identical to Eq. (B.16) [52].

M�1V (g)M = �0(g)V ⇤(g) (B.25)

With additional translation invariance, di↵erent SPT phases are labelled by
{!,�(g), �(T ), �0(g)} [52] i.e.

1. The di↵erent projective classes ! 2 H2(G,U(1)) which satisfy !2 = 1.

2. The di↵erent one-dimensional irreps � of G which satisfy �2 = 1 if the
system is translationally invariant. If not, di↵erent � all label the same
phase.

3. �(T ) defined by MM⇤ = �(T )1

4. �0(g) 2 G/G2 where G labels the group of 1D irreps of G and G2 labels
the group of the square of 1D irreps of G. This arises due to the com-
mutation of time-reversal and on-site symmetry transformations in the
virtual space.

In the same way as for parity, we can find L�0 and the condition on M

ML�0 =

0

BBB@

M1 ⌦ 10
1 0 . . . 0

0 M2 ⌦ 10
2 . . .

...
...

. . .
...

0 . . . 0 Mr ⌦ 10
r

1

CCCA
(B.26)

Moving L�0 to the right hand side, we get the form of M and can use this in
Eq. (B.13) to constrain the ‘B’ matrices of Ai in Eq. (4.27) employing labels
{!,�(g), �0(g)} thus far. The label �(T ) determines the form of the blocks M↵

and is imposed on the ‘B’ matrices when we use Eq. (B.13) and the results of
Sec. B.2.

On-site symmetry + parity + time reversal

Finally, we consider the combined action of on-site symmetry, spatial-
inversion and time-reversal invariance. The distinct SPT phases are labelled
by {!,�(g),↵(P ), �(P ), �(T ), �(g), �0(g)} where all labels are defined as be-
fore with additional conditions !2 = 1 and �2 = 1 [52]. To write down the
MPS form for the ground state of a phase labelled by these labels, we repeat
the same procedure as we did before and obtain the forms of L� and L�0 . Using
this, we constrain the block form of M , N using Eqs. (B.23,B.26). The blocks
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of M and N encode the information about {↵(P ), �(P ), �(T )} and are used
to constrain the ‘B’ matrix blocks of Ai in Eq. (4.27) using Eqs. (B.7,B.13).

We summarize this section with steps used to constrain ground states of
SPT phases of Hamiltonians invariant under combinations of on-site symmetry
with parity and/or time reversal:

1. The di↵erent SPT phases are labelled by a subset of the following labels
{!,�(g),↵(P ), �(P ), �(T ), �(g), �0(g)} with !2 = 1 and �2 = 1.

2. Impose the labels from on-site symmetry i.e. {!,�(g)} using the steps
of Sec 4.3.3).

3. Impose the label � (�0) from parity (time-reversal) symmetry by con-
structing L� (L�0) and thus constraining the matrices N (M) to a block
form using Eqs. (B.23,B.26)).

4. Impose labels {↵(P ), �(P ), �(T )} by restricting the form of the blocks
of N , M appropriately and then using Eqs. (B.7,B.13).

We remark that while we can use L�, L�0 to determine the block form of M
and N , constraining the individual blocks themselves is not straightforward
and we do not investigate a way to do it in this chapter.

B.4 Obtaining the Clebsch-Gordan coe�cients

We now review a method to obtain the CG matrices corresponding to
finite group irrep decompositions of a certain kind. We follow the technique
developed in Ref. [150]. Essentially what is needed are the two theorems
presented below.

Theorem 1. Consider a finite group G and a certain irrep D(r), r 2 G. If
D0(r) is an equivalent irrep i.e. D0(g) = UD(g)U † then

P
r2G D0(r)AD†(r) =

�U where A is an arbitrary matrix which is of the same size as D and � is a
constant which is a function of the elements of A

To prove Theorem 1, we need the following two lemmas.

Lemma 1. M =
P

r2G D(r)BD(r)† / 1 where B is an arbitrary matrix of
the same size as D.
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Proof.

D(g)M = D(g)
X

r2G

D(r)BD(r)† =
X

r2G

D(g)D(r)BD(r)†

=
X

r2G

D(gr)BD(r)† =
X

gr2G

D(gr)BD(gr)†D(g) = MD(g),

=) [M,D(g)] = 0 8g 2 G. (B.27)

From Schur’s second lemma, we get M / 1

Lemma 2. If D↵(g) and D�(g) are two inequivalent irreps,

M 0 =
P

r2G D↵(r)BD�(r)
†
= 0

Proof. Using the same arguments as before, we get D↵(g)M 0 = M 0D�(g).
From Schur’s first lemma we get M 0 = 0

To prove theorem 1, let us start with

X

r2G

D(r)BD(r)† = �1. (B.28)

Then take B = U †A, we have

X

r2G

D(r)U †AD(r)† = �1

)
X

r2G

UD(r)U †AD(r)† = �U =)
X

r2G

D0(r)AD(r)† = �U. (B.29)

Theorem 2. Let D↵(g) and D�(g) be two irreps of G. Let D0(g) = D↵(g)⌦
D�(g) be the direct product representation of irreps whose CG decomposition
is multiplicity free i.e. ↵ ⌦ � = ��n

�

↵�
� has all n�

↵�
 1. Let D(g) be the

completely reduced representation which is block diagonal containing all irreps
in the decomposition of ↵⌦ � labelled � = 1 . . .m.

D(g) =

0

BBB@

D1(g) 0 . . . 0

0 D2(g) . . .
...

...
. . .

...
0 . . . 0 Dm(g)

1

CCCA
. (B.30)

If U consists of the CG matrices such that D0(r) = UD(r)U †, organized ac-
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cording to the irrep sizes,

U =

0

BBBBB@

U11 U12 . . . U1m

U21 U22 . . . U2m
...

. . .
...

...
. . .

...
Um1 Um2 . . . Umm

1

CCCCCA
, (B.31)

then

X

r2G

D0(r)AD(r)† =

0

BBBBB@

�1U11 �2U12 . . . �mU1m

�1U21 �2U22 . . . �mU2m
...

. . .
...

...
. . .

...
�1Um1 �2Um2 . . . �mUmm

1

CCCCCA
. (B.32)

We need the following Lemma to prove Theorem 2.

Lemma 3.

X

r2G

D(r)BD(r)† =

0

BBBBB@

�111 0 . . . 0
0 �212 . . . 0
...

. . .
...

...
. . .

...
0 . . . �m1m

1

CCCCCA
. (B.33)

Proof.

X

r2G

D(r)BD(r)† =
X

r

0

B@
D1(r)B11D1(r)

† . . . D1(r)B1mDm(r)
†

...
. . .

...
Dm(r)Bm1D1(r)

† . . . Dm(r)BmmDm(r)
†

1

CA .

(B.34)
Using the results of the last two Lemmas, we get

X

r2G

D(r)BD(r)† =

0

BBBBB@

�111 0 . . . 0
0 �212 . . . 0
...

. . .
...

...
. . .

...
0 . . . �m1m

1

CCCCCA
. (B.35)
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To prove Theorem 2, we once again take B = U †A, and thus

X

r2G

UD(r)BD(r)† =
X

r2G

D0(r)AD(r)† =

0

BBBBB@

�1U11 �2U12 . . . �mU1m

�1U21 �2U22 . . . �mU2m
...

. . .
...

...
. . .

...
�1Um1 �2Um2 . . . �mUmm

1

CCCCCA
.

(B.36)
Thus, normalizing

P
r2G D0(r)AD(r)† appropriately gives us all the required

CG matrices up to multiplication by a complex number. This ambiguity gets
absorbed into the ‘B’ matrices when we use the CG coe�cients to write down
MPS matrices.

We note that for the groups Z2 ⇥ Z2, D4 and A4, when we take a direct
product of the irreps of the physical spin with any projective irrep, we get a
multiplicity-free CG decomposition for which we can use the technique men-
tioned above to obtain CG coe�cients. However, for the case of S4, the irrep
of the physical spin 3(1) has the following decomposition when we take the
direct product with the projective irrep 4̃ : 3(1) ⌦ 4̃ = 2̃(0) � 2̃(1) � 4̃ � 4̃.
Clearly, 4̃ has multiplicity 2 in the decomposition. In this case, if we apply
the procedure above nonetheless, we get the following:

X

r2G

D0(r)AD(r)† =

0

BB@

0

B@�1C
2̃(0)
3(1)4̃

1

CA

0

B@�2C
2̃(1)
3(1)4̃

1

CA

0

BB@

�3C
4̃;1
3(1)4̃

+

�4C
4̃;2
3(1)4̃

1

CCA

0

BB@

µ3C
4̃;1
3(1)4̃

+

µ4C
4̃;2
3(1)4̃

1

CCA

1

CCA

(B.37)

Where D0(g) = D3(1) ⌦D4̃, D(g) = D2̃(0)
�D2̃(1)

�D4̃ �D4̃ and the C
2̃(1)
3(1)4̃

etc

represent blocks of CG coe�cients with the m labels suppressed.

We can see that C 4̃;1
3(1)4̃

and C 4̃;2
3(1)4̃

cannot in principle be separated which

is why the method fails for decompositions with irrep multiplicities. However,
in our case, it so happens that because of a convenient block structure we can
separate the matrices by hand and obtain all CG coe�cients.
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Appendix C

Appendix to Chapter 5

C.1 Incompatibility of non-Abelian symme-
tries with full MBL

Here, we review the main hypothesis of Potter and Vasseur [174]. The
authors consider the case of a fully MBL system (as opposed to the case of a
partially local, partially thermal system with mobility edges), and study the
compatibility of MBL in the presence of various global symmetries. The work-
ing definition of an MBL system they consider is the existence of a complete
set of quasi-local conserved quantities with associated quasi-local projectors
in terms of which the Hamiltonian, H can be defined as [162, 164, 191],

H =
LX

i=1

DX

↵=1

E[i]↵P̂ [i]↵ +
LX

i 6=j=1

DX

↵,�=1

E[i, j]↵,�P̂ [i]↵P̂ [j]�

+
LX

i 6=j 6=k=1

DX

↵,�,�=1

E[i, j, k]↵,�,�P̂ [i]↵P̂ [j]�P̂ [k]� + . . . (C.1)

Here, L is the number of spins, P̂ [i]↵ is the projector onto the ↵th quasi-local
conserved quantity at the ith location, D is the number of conserved quantities
and the E’s are constants that fix the energy eigenvalues. Furthermore, we
can apply a finite depth quantum unitary circuit, W , that re-expresses the
conserved quantities as local degrees of freedom. These local objects are called
l-bits in terms of which the original spins (p-bits 1) and Hamiltonian can be

1
Note that we do not restrict ourselves to a local two-dimensional Hilbert space. This

means, we should be talking about p-dits and l-dits instead of p-bits and l-bits. However,

to keep with standard terminology, we will use the latter names.
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defined. This is typically called the l-bit Hamiltonian, Hlbit.
Let us now consider the case when the Hamiltonian H has a global on-site

symmetry i.e H commutes with the unitary representation of some group, G
of the form U(g) =

N
L

i=1 Vi(g), where, Vi(g) acts on each physical spin.

g : H ! U(g)HU †(g) = H (C.2)

In this case, representation theory of the group G plays a role in constraining
the allowed form of the l-bit Hamiltonian [C.1]. For spins (p-bits) to allow
a well defined on-site group action, the local Hilbert space of each spin must
correspond to some faithful representation of that group. This must also be
true for a tensor product of the p-bits that constitute an l-bit. In other words,
we can write the l-bit- projectors P̂ [i]↵ using a fully reduced basis that can be
labeled as |�,m�; d�i

P̂�,m�;d� = |�,m�; d�ih�,m�; d�| (C.3)

We define the di↵erent labels below and compare them with the well known
case of the representations of the rotation group SO(3):

• � = 1 . . . NR labels the irreducible representation (irrep) of the group
and is equivalent to the total angular momentum quantum number, j.
The number of values it can take is equal to the number of irreps of G,
NR.

• m� = 1 . . . |�| is equivalent to the azimuthal quantum number mj. The
number of values it can take is equal to the dimension of the irrep, |�|.

• d� = 1 . . . D� labels which of the D� copies of the � irrep is being con-
sidered.

In this basis, the action of the group is

g : |�,m�; d�i !
|�|X

n�=1

�(g)n�,m� |�, n�; d�i (C.4)

Demanding the invariance of the Hamiltonian [C.1] under group action and
invoking Schur’s lemma [152] irrep-wise, we get the constrained form of the
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Hamiltonian compatible with on-site symmetry as

H =
LX

i=1

NRX

�=1

D
i
�X

d
i
�=1

E[i]�,di�P̂ [i]�,di�

+
LX

i 6=j=1

NRX

�,�0=1

D
i
�X

d
i
�=1

D
j
�0X

d
j
�0=1

E[i, j]�,di�,�0,dj
�0
P̂ [i]�,di�P̂ [j]�0,dj

�0
+ . . . (C.5)

where,

P̂�;d� ⌘
|�|X

m�=1

|�,m�; d�ih�,m�; d�|. (C.6)

We now consider the cases of Abelian and non-Abelian symmetries separately.
If G is an Abelian group, all irreps are one dimensional (|�| = 1). This
means that all projectors P�;d� are rank-1 which preserves the form [C.1].
With su�cient disorder, resulting in su�ciently random E 0s, we can imagine
that all degeneracies are lifted and we can obtain an MBL phase stable to
perturbations. However, ifG is non-Abelian, not all irreps are one dimensional.
This means that we invariably have higher-rank local projectors giving us
only a partial set of conserved quantities rather than complete which leads
to degeneracies that are extensive in system size. This is clearly seen by
examining the eigenvalues and eigenvectors of Eq [C.5].

H|{�,m�; d�}i = E({�; d�})|{�; d�}i, (C.7)

E({�; d�}) =
LX

i=1

E[i]�i,d
i
�i
+

LX

i 6=j=1

E[i, j]�i,d
i
�i

,�0
j ,d

j

�0
j

+ . . . (C.8)

|{�,m�; d�}i =
LO

i=1

|�i,m�i ; d
i

�i
i. (C.9)

Note that none of the eigenvalues, E have any labels corresponding to the in-
ner multiplicity of the irreps m�. This means that the eigenstate |{�,m�; d�}i
has a degeneracy of |�1| ⇥ |�2| ⇥ . . . |�L| which is clearly extensive in system
size when G is non-Abelian. The authors of Ref [174] state that under the
influence of perturbations, such a degeneracy is susceptible to long range res-
onances which destabilizes MBL. Furthermore, they suggest a possible set of
phases for the system to be in depending on the nature of the global sym-
metry group G. Here we list the possibilities for the case of finite groups
such as Sn�3 and Dn�3, (i) Ergodic/ thermal phase, (ii) The so-called MBL
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spin-glass (MBL-SG) [25] phase characterized by localization with symmetry
spontaneously broken (SSB) to an Abelian subgroup, and (iii) The so-called
quantum critical glass phase (QCG) [175–177] characterized by critical scaling
of entanglement entropy. Within the accuracy of our numerical analysis, our
findings are consistent with the conjecture of Potter and Vasseur.

C.2 Constructing symmetric Hamiltonians

In this appendix, we give details of how the Hamiltonian used in the main
text, Eq [5.5] was constructed. We also detail a general technique to construct
local symmetric operators with which we can build spin Hamiltonians invariant
under any on-site symmetry in any dimension. The construction of the 1D S3

invariant Hamiltonian of the main text is a specific application of this general
technique.

C.2.1 Building the S3 invariant Hamiltonian

Basis properties of S3 and its representation used.

We first review some basic properties of the group S3 and its representation
used in this chapter. S3, the symmetry group of three objects is the smallest
non-Abelian group. It is of order 6 and can be generated using two elements
and the following presentation

S3 : ha, x|a3 = x2 = 1, xax = a�1i. (C.10)

It has three irreducible representations, 1,10,2 which can be written as

1. �1(a) = 1, �1(x) = 1,

2. �10
(a) = 1, �10

(x) = �1,

3. �2(a) =

✓
! 0
0 !⇤

◆
, �2(x) =

✓
0 1
1 0

◆
,

where ! = e2⇡i/3. The local Hilbert space we have chosen for each spin lives is
the three-dimensional reducible representation 2� 10. We use the eigenspace
of the spin-1 angular momentum operator Sz to label the irreps. The 2 irrep
is encoded in the two-dimensional ±1 eigenspace of Sz (which we will call |±i)
and the 10 is encoded in the one-dimensional 0 eigenspace of Sz (which we will
call |0i). The matrix representation of a general group element in this basis
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looks like

V (g) =

0

@
�2(g)11 0 �2(g)12

0 �10
(g) 0

�2(g)21 0 �2(g)22.

1

A (C.11)

In particular, the generators have the following representation

V (a) =

0

@
! 0 0
0 1 0
0 0 !⇤

1

A , V (x) =

0

@
0 0 1
0 �1 0
1 0 0

1

A . (C.12)

1-spin operator

We first construct a 1-spin invariant operator. We start with a general
operator that acts on the space of a single spin

�̂ =

0

@
�11 �12 �13
�21 �22 �23
�31 �32 �33

1

A (C.13)

We now demand that �̂ is invariant under conjugation by V (g), i.e., the rep-
resentation of symmetry on a single spin.

V (g)�̂V †(g) = �̂ (C.14)

Schur’s lemma [152] constrains the matrix elements of �̂ in the following way:

1. �̂ cannot mix basis states corresponding to di↵erent irreps.

2. �̂ must be proportional to the identity operator when acting on basis
states corresponding to the internal states of the same irrep.

3. If there are multiple copies of the same irrep, �̂ can mix the basis states
corresponding the same internal state of di↵erent copies but should still
be proportional to the identity operator as an action on the internal
states.

The meaning of these constraints should become clearer with the applications
that will follow. For a single spin operator, since we have only one copy of
each irrep, constraint 3 does not apply. Applying constraints 1 and 2, we get
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the form of �̂:

�̂ =

0

@
�2 0 0
0 �10 0
0 0 �2

1

A = �10 |0ih0|+ �2 (|+ih+|+ |�ih�|)

= (�2 � �10)(Sz)2 + �1013 (C.15)

From this, we can read o↵ the only non-trivial 1-spin symmetric operator,
(Sz)2 which is also Hermitian.

2-spin operator

In order to find a symmetric 2-spin operator, we follow the same logic as
that of a 1-spin operator. First, we start with a general operator that acts on
the 9 dimensional vector space of 2 spins,

Ĵ =

0

BBB@

J11 J12 . . . J19
J21 J22 . . . J29
...

. . .
...

J91 J92 . . . J99.

1

CCCA
(C.16)

Next, we demand invariance under conjugation by V (g)⌦ V (g), i.e., the rep-
resentation of symmetry on two spins.

V (g)⌦ V (g)ĴV †(g)⌦ V †(g) = Ĵ (C.17)

We now have to impose the constraints coming from Schur’s lemma. However,
in order to do that, we need to find out the irrep content of V (g)⌦ V (g). For
this, we first list the Clebsch Gordan (CG) decomposition that gives us the
outcomes of fusing di↵erent S3 irreps. This is the generalization of angular
momentum addition of SU(2) irreps. Note that we exclude the trivial case of
fusion with the trivial irrep 1,

10 ⌦ 10 ⇠= 1

2 ⌦ 10 ⇠= 2

2 ⌦ 2 ⇠= 2� 10 � 1

The irrep content of V (g)⌦ V (g) is obtained from the CG decomposition,

(2� 10)⌦ (2� 10) ⇠= 1� 1� 10 � 2� 2� 2. (C.18)
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Since the are multiple copies of the same irrep (1) in this decomposition,
Schur’s lemma implies that there are o↵-diagonal operators that acts on this
multiplicity space which are invariant under symmetry transformations. Let
us now list and label the di↵erent instances of each irrep appearing in the
decomposition for convenience:

10 ⌦ 10 ! 1A

2 ⌦ 2 ! 1B

2 ⌦ 2 ! 10

10 ⌦ 2 ! 2A

2 ⌦ 10 ! 2B

2 ⌦ 2 ! 2C

The subscripts label the copy of the irrep. We next need the basis of the
representation of each irrep in V (g) ⌦ V (g). These can be written in terms
of the original basis states (labeled by Sz eigenvalues) using CG coe�cients
which we calculate using the technique by Sakata [150] (also see [36]).

|1Ai = |0i|0i

|1Bi =
|+i|�i+ |�i|+ip

2

|10i =
|+i|�i � |�i|+ip

2
|2A,±i = ±|0i|±i
|2B,±i = ±|±i|0i
|2C ,±i = |⌥i|⌥i (C.19)

Using this, we have the 2-spin S3 symmetric operator constrained by Schur’s
lemma

Ĵ = J10 |10ih10|+
X

µ,⌫=A,B

J1
µ⌫
|1µih1⌫ |+

X

µ,⌫=A,B,C

J2
µ⌫
(|2µ,+ih2⌫ ,+|+|2µ,�ih2⌫ ,�|)

(C.20)
As in the case of 1-spin invariant operator, we can again read o↵ the several
independent symmetric 2-spin operators by simplifying Eq .C.20. However,
since we need the operators to be Hermitian, we take Hermitian combina-
tions of these operators. We finally list the non-trivial independent Hermitian
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operators expressed in terms of spin-1 operators.

Ĵ1 = Sz ⌦ Sz,

Ĵ2 = (Sz)2 ⌦ (Sz)2

Ĵ3 = (S+)2 ⌦ (S�)2 + (S�)2 ⌦ (S+)2

Ĵ4 = (S+Sz)⌦ (S�Sz) + (S�Sz)⌦ (S+Sz) + h.c

Ĵ5 = (S�Sz)⌦ (SzS+) + (S+Sz)⌦ (SzS�) + h.c

Ĵ6 = (S+Sz)⌦ (S+)2 + (S�Sz)⌦ (S�)2 + h.c

Ĵ7 = (S+)2 ⌦ (S+Sz) + (S�)2 ⌦ (S�Sz) + h.c

To construct the Hamiltonian .5.5, we have used (Sz)2 and Ĵ1 to build the
disordered part Hd and Ĵ3, Ĵ4, Ĵ7 to build the thermal part of the Hamiltonian,
Ht. Since Ĵ5 and Ĵ6 are mirrored versions of Ĵ4 and Ĵ7 respectively, we can
keep our thermal term su�ciently generic even if leave them out. Note that
while we have constructed a Hamiltonian for a 1D spin chain, the symmetric
operators constructed using this formalism can be used to build Hamiltonians
for any spatial dimensions.

C.2.2 General technique

We now give details of a general procedure that can be applied to obtain
n-spin symmetric operators invariant under a representation of any on-site
symmetry group. The schematic procedure is as follows

1. To construct symmetric n-spin operators, we first write down general
operators that act on the Hilbert space of n spins.

2. We then demand the invariance of this operator under symmetry action.

3. Using Schur’s lemma, we constrain the matrix elements of the n-spin
operator and read o↵ the independent operators.

4. If required, we finally take the hermitian combinations of the indepen-
dent operators.

If G is the group we are considering, the most general local Hilbert space
for the spin compatible with G-action can be an arbitrary number of copies
of each irrep of G. Like mentioned in Sec C.1, we can choose the basis as
|�,m�; d�i where the symbols have the same meaning as before. The matrix
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representation of the group operators in this basis is block diagonal.

U(g) =
LO

i=1

Vi(g) (C.21)

Vi(g) =
NRM

�=1

1D
i
�
⌦ �(g) (C.22)

The “passive” group action on the basis is

g : |�,m�; d�i 7!
|�|X

n�=1

�(g)n�,m� |�, n�; d�i (C.23)

1-spin symmetric operator

Let us now start with symmetric 1-spin operators. The most general 1-spin
operator we can write down is

�̂ = ��,m�;d�
�0,m�0 ;d�0 |�,m�; d�ih�0,m�0 ; d�0 | (C.24)

Note that for notational convenience, here and henceforth, we assume sum-
mation over repeated indices. Demanding invariance under conjugation with
V (g), we have

V (g)�V (g)† = � (C.25)

=) �(g)m�,n�(�
0(g)m�0 ,n�0 )

⇤��,n�;d�
�0,n�0 ;d�0 = ��,m�;d�

�0,m�0 ;d�0 .

In matrix form, the condition on � becomes

[�(g)][��;d��0;d�0 ] = [��;d��0;d�0 ][�
0(g)]. (C.26)

This means that [��;d��0;d�0 ] is an intertwiner between the irreps � and �0. Such
a matrix is constrained by Schur’s lemma:

[��;d��0;d�0 ] = 0 if � 6= �0

/ 1� if � = �0

=) ��,m�;d�
�0,m0

�0 ;d
0
�0
= 0 if � 6= �0

/ �m�,m
0
�0 if � = �0 (C.27)
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Using this in Eq C.24, we get the form of a symmetric 1-spin operator,

�̂ = ��
d�,d

0
�
|�,m�; d�ih�,m�; d

0
�|. (C.28)

Here, the non-zero matrix elements ��
d�,d

0
�
are free parameters that act on the

degenerate subspace associated with the outer multiplicity of each irrep.

2-spin symmetric operator

We now consider 2-spin symmetric operators. The most general operator
that acts on the 2-spin Hilbert space is

Ĵ = J (�,m�;d�),(⇤,m⇤;d⇤)
(�0,m�0 ;d�0 ),(⇤0,m⇤0 ;d⇤0 )

|�,m�; d�ih�0,m�0 ; d�0 ||⇤,m⇤; d⇤ih⇤0,m⇤0 ; d⇤0 |
(C.29)

For this operator to be symmetric, it needs to be invariant under conjugation
by V1(g)⌦ V2(g),

[V1(g)⌦ V2(g)] J [V1(g)⌦ V2(g)]
† = J. (C.30)

To use the techniques like we did for the 1-spin operator in the previous sub-
section, we need to first block-diagonalize V1(g)⌦ V2(g) using a suitable basis
change and then use Schur’s lemma. This redefinition of the basis states can
be done using Clebsch-Gordan (CG) coe�cients. Recall that the irrep content
of a direct product of two irreps is schematically given by the CG series:

�⌦ ⇤ =
M

�

N�
�⇤ � (C.31)

N�
�⇤ denotes the number of copies of the � irrep that exists in the fusion

outcome of �⌦⇤. At the level of representations, Eq .C.31 tells us that there
exists a change of basis by a unitary matrix C�⇤ that fully reduces the direct
product of the irreps �⌦ ⇤:

�(g)⌦ ⇤(g) ⇠=
M

�

1N
�
�⇤

⌦ �(g), (C.32)

C�⇤ (�(g)⌦ ⇤(g))C†
�⇤ =

M

�

1N
�
�⇤

⌦ �(g), (C.33)

C�;↵�
�⇤ (�(g)⌦ ⇤(g))C�;↵�†

�⇤ = �(g). (C.34)

C�;↵�
�⇤ are isometries whose matrix elements, [C�;↵�

�⇤ ]m�
m�,m⇤

are the CG coef-
ficients that project � ⇥ ⇤ onto the ↵th

� copy of the irrep �, where, ↵� =
1 . . . N�

�⇤. It is useful to look at the ‘passive’ action of the CG coe�cients on
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the basis kets to remind us of the actual “change-of-basis” action,

[C⇤�;↵�
�⇤ ]m�

m�,m⇤
|�,m�i|⇤,m⇤i = |�,m�,↵�i (C.35)

Now, consider the following equivalences

V1(g)⌦ V2(g) =

"
M

�

1D
1
�
⌦�(g)

#
⌦
"
M

⇤

1D
2
⇤
⌦ ⇤(g)

#

⇠=
M

(�,⇤)

h
1D

1
�⇥D

2
⇤

i
⌦ [�(g)⌦ ⇤(g)] ⇠=

M

(�,⇤)

h
1D

1
�⇥D

2
⇤

i
⌦
"
M

�

1N
�
�⇤

⌦ �(g)

#

⇠=
M

�

1D1,2
�

⌦ �(g). (C.36)

Here,
D1,2

� =
X

(�,⇤)|�2�⌦⇤

D1
� D2

⇤ N�
�⇤ (C.37)

is the number of ‘fusion channels’ of the kind �⌦⇤ ! � available to produce
the irrep � using the irreps in the 2-spin Hilbert space. In short, Eq [C.36]
tells us that there exists some unitary matrix W which block diagonalizes
V1(g)⌦ V2(g)

W [V1(g)⌦ V2(g)]W
† = Ṽ (g) (C.38)

Ṽ (g) =
M

�2�⌦⇤

1D1,2
�

⌦ �(g). (C.39)

When viewed as a matrix, W contains operations to both reorder indices
appropriately as well as use the CG coe�cients to reduce the direct product
of irreps form V1 and V2 block-by-block. If we operate W on both sides of the
Eq [C.30] and call WJW † = K, we get

Ṽ (g)KṼ (g)† = K (C.40)

The matrix elements of K can be written in terms of those of J and CG
coe�cients.

K�,m�;c�
�0,m�0 ;c�0 =

h
C�;↵�

�⇤

im�

m�,m⇤

h
C

⇤�0;↵0
�

�0⇤0

im�0

m�0 ,m⇤0
J (�,m�;d�),(⇤,m⇤;d⇤)
(�0,m�0 ;d�0 ),(⇤0,m⇤0 ;d⇤0 )

(C.41)
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Eq [C.40] is of the same form as Eq [C.25] and we can use Schur’s lemma again
to constrain the elements of K,

K�,m�;c�
�0,m�0 ;c�0 = 0 if � 6= �0

/ �m�,m�0 if � = �0. (C.42)

Note that c� is a collective index of compatible (d�, d⇤,↵�) that runs over
the D� di↵erent fusion channels mentioned above. Also, note that we use

the convention
h
C�;↵�

�⇤

im�

m�,m⇤

= 0 if � /2 � ⌦ ⇤. Finally, we can undo the

transformation of W and get the elements of Ĵ . Since it is important, we
expand c�:

J (�,m�;d�),(⇤,m⇤;d⇤)
(�0,m�0 ;d�0 ),(⇤0,m⇤0 ;d⇤0 )

= K�;(d�,d⇤,↵�)
(d�0 ,d⇤0 ,��)

h
C⇤�;↵�

�⇤

im�

m�,m⇤

h
C�;��

�0⇤0

im�

m�0 ,m⇤0
(C.43)

Plugging in Eq [C.43] into Eq [C.29], we get the general form of the symmetric
2-spin operator.

Ĵ = K�;(d�,d⇤,↵�)
(d�0 ,d⇤0 ,��)

h
C⇤�;↵�

�⇤

im�

m�,m⇤

h
C�;��

�0⇤0

im�

m�0 ,m⇤0

|�,m�; d�ih�0,m�0 ; d�0 ||⇤,m⇤; d⇤ih⇤0,m⇤0 ; d⇤0 |. (C.44)

This can be greatly simplified using Eq [C.35]

Ĵ = K�;c�
d�

|�,m�; c�ih�,m�; c
0
�|. (C.45)

Where, we have once again reintroduced the short hand notation c� to de-
note the fusion channels labeled by compatible (d�, d⇤,↵�) to produce �.

K�;(d�,d⇤,↵�)
(d�0 ,d⇤0 ,��)

are now the free parameters. In this form, we can clearly see

the similarity with the symmetric 1-spin operator Eq [C.28]. This helps us see
the general picture with arbitrary n-local operators. In a fully reduced basis
of the n-spin Hilbert space, matrix elements of symmetric operators can only
act on the outer multiplicity space of each irrep.

C.3 Detecting the irrep of the eigenstates

In this appendix, we give details of how we determine the irrep a given
eigenstate transforms as. If U(g) =

N
L

i=1 Vi(g) is the many-body representa-
tion of the on-site symmetry, we want to find out the irrep � that an eigenstate
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|✏i or more generally, a set of degenerate eigenstates {|✏ia} transform as

U(g)|✏ia =
|�|X

b=1

�(g)ab|✏ib (C.46)

This is an easy task for the symmetry group SU(2), where, all we need to do
is operate the eigenstates with the total angular momentum operator,

S2
tot

=
X

a=x,y,z

 
LX

i=1

Sa

i

! 
LX

i=1

Sa

i

!
(C.47)

S2
tot
|✏i = j(j + 1)|✏i (C.48)

This way, given an eigenstate that transforms as an irrep of SU(2), we can
extract the quantum number j which labels the irrep. For general finite groups,
we are not aware of an equivalent technique. However, we now present a
strategy that works well for the group S3 in the form of the following theorem.

Theorem 3. Given a normalized vector |✏i, h✏|✏i = 1, that transforms as some
irreducible representation of S3, � = 1,10 or 2, we can determine � using the
following two real numbers,

X = h✏|U(x)|✏i,
A = Real(h✏|U(a)|✏i),

where, a and x are the two generators of S3 with presentation ha, x|a3 = x2 =
1, xax = a�1i. Specifically,

A = �0.5 =) � = 2

(A,X ) = (1, 1) =) � = 1

(A,X ) = (1,�1) =) � = 10

Proof. Let us first consider the case when |✏i is some vector in the 2D irrep
2. We can expand this vector in the orthonormal eigenbasis of the generator
a of the 2 representation, |!i, |!⇤i, with eigenvalues !,!⇤ respectively, where
! = e

2⇡i
3 (see Appendix. C.2).

|✏i = cos ✓|!i+ sin ✓|!⇤i. (C.49)
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Acting on it by U(a),

U(a)|✏i = ! cos ✓|!i+ !⇤ sin ✓|!⇤i
h✏|U(a)|✏i = ! cos2 ✓ + !⇤ sin2 ✓

Real(h✏|U(a)|✏i) = Real(!)(cos2✓ + sin2 ✓)

=) A = Real(!) = �0.5

Let us now consider the case when |✏i transforms as either of the 1D irreps.
Since the representation of the generator a is simply 1 for both 1D irreps, we
simply have

U(a)|✏i = |✏i (C.50)

=) A = h✏|U(a)|✏i = 1 (C.51)

Thus, we can see that A can separate the 2D irrep 2 form the 1D irreps. Also,
A = �0.5 is necessary and su�cient for |✏i to transform as 2. Furthermore, if
A = 1, we can determine which 1D irrep |✏i transforms as by considering the
transformation under the generator x whose representation is ±1 for � being
1 or 10 respectively. Thus, if A = 1,

U(x)|✏i = ±|✏i
=) X = h✏|U(x)|✏i = ±1

implies |✏i transforms as 1 or 10 respectively. This concludes the proof.

In our numerics, we diagonalize our Hamiltonian in the 1D irrep sector by
projecting it into the appropriate basis. As discussed above, this means that
we need to restrict to the basis states that are left invariant under the action
of U(a) =

N
L

i=1 V (a)i. To see how this is done, consider the action of operator
U(a) on a many-body basis state labeled by Sz eigenvalues on each spin

U(a)|m1,m2, . . . ,mLi = !m1+m2+...+mL |m1,m2, . . . ,mLi (C.52)

= !S
z
tot |m1,m2, . . . ,mLi (C.53)

We need !S
z
tot = 1 which means

Sz

tot
=

LX

i=1

mi = 0(mod 3). (C.54)

Since 3L�1 of the 3L basis states satisfy the condition of Eq .C.54, this helps
us diagonalize an L site Hamiltonian for the price of L� 1.
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C.4 Spin glass diagnostics for S3 subgroups

In this appendix, we give details of how the spin-glass (SG) order parameter
used in Sec. 5.3.2 was constructed and also numerical evidence for the assertion
that the high disorder region at  = 0 does not in any form spontaneously
break the S3 symmetry.

First, let us list the elements of S3 = {1, a, a2, x, xa, xa2} and its five sub-
groups written in terms of the generators a, x defined in Sec. 5.2 and Ap-
pendix. C.2:

1. Z3 = {1, a, a2},

2. Z2A = {1, x},

3. Z2B = {1, xa},

4. Z2C = {1, xa2},

5. {1}.

For each subgroup H ⇢ G, we design a SG diagnostic that detects SSB of
G ! H and takes the form

�SG

H
=

1

L� 1

LX

i 6=j=1

|h✏|OH;iOH;j|✏i � h✏|OH;i|✏ih✏|OH;j|✏i|2. (C.55)

OH are local Hermitian order parameters that are chosen to have the following
properties under symmetry transformation by U(g) =

N
L

i=1 V (g)i

1. OH transforms trivially under H: U(g)OHU †(g) = OH , 8g 2 H.

2. OH transforms non-trivially under G/H: U(g)OHU †(g) 6= OH , 8g /2 H.

Note that �SG

H
is invariant under the redefinition OH ! OH + ⇠1. It can be

checked that the following operators satisfy the above properties

• OZ3 = Sz

• OZ2A = SzSx + SxSz = 1p
2

0

@
0 1 0
1 0 �1
0 �1 0

1

A

• OZ2B = V (a)OZ2AV
†(a) = 1p

2

0

@
0 ! 0
!⇤ 0 �!
0 �!⇤ 0

1

A

146



• OZ2C = V †(a)OZ2AV (a) = 1p
2

0

@
0 !⇤ 0
! 0 �!⇤

0 �! 0

1

A

• O{1} = Sx

Note that it is important to make sure that the disconnected part of the two
point correlation function, h✏|OH;i|✏ih✏|OH;j|✏i is subtracted when constructing
�SG

H
. In previous work like Ref [24], the local order parameter �z transformed

as a non-trivial irrep of G/H (Z2 in their case). It is then automatically
guaranteed that h✏|�z

i
|✏i = 0. Similarly, the local order parameter used in

the main text to detect S3 ! Z3 SSB, Sz

i
transforms as a non-trivial irrep

of S3/Z3
⇠= Z2 which also ensures h✏|Sz

i
|✏i = 0 and hence we leave out of

the definition of �SG

Z3
. This would not be true if we used a di↵erent OZ3 like

Sz + ⇠(Sz)2 or even Sz + ⇠1 both of which are equally good to detect S3 ! Z3

SSB but would need subtraction of the disconnected part. Similarly, the other
SG diagnostics we used namely OZ2A/B/C

and O{1} also need subtraction.
Fig. C.1 shows the di↵erent SG diagnostics as a function of � for  = 0, 1

averaged over eigenstates across disorder realizations. It can be seen that only
�SG

Z3
, which detects SSB S3 ! Z3 approaches a value that increases with system

size in the region discussed in Sec. 5.3.2. The value of other SG diagnostics
becomes increasingly smaller or approaches a constant value with system size
for all � and  indicating that SSB to that residual subgroup has not taken
place in the eigenstates.

One striking feature of Fig C.1 is that the plots for several order parameters,
particularly for the di↵erent Z2 subgroups, look very similar. In fact, they
are identical. This is because the above calculation using the three order
parameters, OZ2A ,OZ2B ,OZ2C is redundant. Spontaneous symmetry breaking
of a group G does not occur down to a subgroup, H but rather the orbit of
subgroups gHg�1 where g 2 G. This is easy to see. Say there exists a ground
state | i that is invariant under a subgroup H ⇢ G. This means that

U(h)| i = | i 8h 2 H (C.56)

U(g)| i = | gi 6= | i 8g 2 G/H (C.57)

Given a ground state | i, we can generate all the |G/H| ground states by
using the group operators corresponding to elements G/H. However, consider
the ground state | gi. This is invariant under the elements of {ghg�1}.

U(ghg�1)| gi = U(g)U(h)U †(g)U(g)| i = U(g)U(h)| i = U(g)| i = | gi
(C.58)
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It is easy to check that the elements {ghg�1} ⇠= gHg�1 form a group isomor-
phic to H. But this group need not be identical to H. In other words, the
isotropy subgroup of G that leaves di↵erent ground states | gi invariant might
be di↵ernt but are isomorphic and belong to the orbit of subgroups gHg�1.
This is the case with the di↵ent Z2 subgroups in our model. It is easy to
check that {Z2A,Z2B,Z2C} form an orbit. Using any of the order parameters
OZ2A ,OZ2B ,OZ2C would have su�ced to detect SSB to this orbit which also
explains the identical plot. A special case is when H /G is a normal subgroup
like the case of Z3 / S3 when gHg�1 = H 8g 2 G by definition in which case
the orbit has just a single group, H.
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Figure C.1: SG diagnostics for di↵erent subgroups versus � for  = 0 and
 = 1 with spline fit (solid for  = 1, dashed for  = 0). 243 eigenstates per
disorder realization that transform as 1D irreps sampled for 800 (7,8 sites),
879 (9 sites) and 715 (10 sites) disorder realizations respectively. The plot for

�SG

Z3
is also shown in the main text.
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