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Abstract of the Dissertation

Anomalies, Entanglement and Boundary Geometry in Conformal Field Theory

by

Kuo-Wei Huang

Doctor of Philosophy

in

Physics

Stony Brook University

2018

A conformal field theory embedded in a curved spacetime background can be character-

ized by the trace anomaly coefficients of the stress tensor. We first derive general vacuum

stress tensors of even-dimensional conformal field theories using Weyl anomalies. We then

consider some aspects of conformal field theory in space-time dimensions higher than two

with a codimension-one boundary. We discuss how boundary effect plays an important

role in the study of quantum entanglement. We also obtain universal relationships between

boundary trace anomalies and stress-tensor correlation functions near the boundary. A non-

supersymmetric graphene-like conformal field theory with a four-dimensional bulk photon

and a three-dimensional boundary electron is found to have two boundary central charges

that depend on an exactly marginal direction, namely the gauge coupling.
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4.1.4 Rényi Entropies from the Annulus . . . . . . . . . . . . . . . . . . . . 32

4.2 Anomaly Actions in More than Two Dimensions . . . . . . . . . . . . . . . . 33

4.2.1 Boundary Term of the Euler Characteristic . . . . . . . . . . . . . . . 33

4.2.2 An Explicit Expression For The Boundary Term . . . . . . . . . . . . 37

4.2.3 Wess-Zumino Consistency . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.4 A Complete Classification in d = 4 and Boundary Central Charges . . 41

4.2.5 Dimensional Regularization . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Dilaton Effective Actions and Boundary Terms . . . . . . . . . . . . . . . . . 45

4.3.1 The Dilaton Effective Action in d = 4 . . . . . . . . . . . . . . . . . . 46

iv



4.3.2 The Dilaton Effective Action in d = 6 . . . . . . . . . . . . . . . . . . 46

4.4 The Sphere Entanglement Entropy: General Result . . . . . . . . . . . . . . 47

4.4.1 Casimir Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.2 Dilaton Effective Action . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.3 The Boundary Contribution to W in General Dimension . . . . . . . 51

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6.1 Differential Geometry with a Boundary . . . . . . . . . . . . . . . . . 54

4.6.2 Wess-Zumino Consistency in d = 4 . . . . . . . . . . . . . . . . . . . 57

4.6.3 Effective Action from Dimensional Regularization . . . . . . . . . . . 59

5 Boundary Conformal Field Theory and a Boundary Central Charge 63

5.1 Boundary Conformal Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Boundary Conformal Field Theory and Two-Point Functions . . . . . . . . . 70

5.2.1 General Structure of Two-Point Functions . . . . . . . . . . . . . . . 71

5.2.2 Reflection Positivity and Bounds . . . . . . . . . . . . . . . . . . . . 75

5.2.3 Conformal Block Decomposition . . . . . . . . . . . . . . . . . . . . . 77

5.2.4 Crossing Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 A Boundary Central Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Free Fields and Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.1 Free Scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.2 Free Fermion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.3 Free p-Form Gauge Fields . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Models with Boundary Interactions . . . . . . . . . . . . . . . . . . . . . . . 99

5.5.1 Mixed Yukawa Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5.2 Mixed Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . 106

5.5.3 Mixed Scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7.1 Null Cone Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7.2 Variation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7.3 Gauge Fixing Mixed Dimensional QED . . . . . . . . . . . . . . . . . 119

6 Displacement Operators and Constraints on Boundary Central Charges 121

6.1 Displacement Operator and General Relations . . . . . . . . . . . . . . . . . 122

6.2 Conjecture for a(3d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Two- and Three-Point Functions in Free Theories . . . . . . . . . . . . . . . 126

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

References 129

v



List of Figures

5.1 Crossing symmetry for two-point functions in bCFTs. . . . . . . . . . . . . 84

5.2 For the mixed dimensional Yukawa theory: (a) scalar one loop propagator

correction; (b) fermion one loop propagator correction; (c) one loop vertex

correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 For the mixed dimensional QED: (a) photon one loop propagator correction;

(b) fermion one loop propagator correction; (c) one loop vertex correction. . 107

5.4 For the mixed dimensional scalar theory: (a) a 4d bulk scalar one loop self

energy correction; (b) a 3d boundary scalar one loop self energy correction;

(c) one loop vertex correction. . . . . . . . . . . . . . . . . . . . . . . . . . 110

vi



Acknowledgments

I would like to thank my advisor, Chris Herzog, for all the hours of discussions, teaching

me many things, and encouraging me. I was very lucky to be able to start doing serious

research with him already in my first semester at Stony Brook. I am constantly impressed

by his dedication and his influence has guided me through these years.

I am grateful to Dmitri Fursaev, Davide Gaiotto, Kristan Jensen, Chia-Yi Ju, Zohar

Komargodski, Radu Roiban, Itamar Shamir, Sergey Solodukhin, Arkady Tseytlin, Ricardo

Vaz, and Julio Virrueta for illuminating discussions. I thank Robert Myers for inviting me

to Perimeter Institute, a wonderful place for theoretical physicists, where I spent the last

year of my PhD. I also thank Marcus Khuri, Linwood Lee, and Ismail Zahed for being the

committee members.

I wish to thank my friends outside physics, in particular friends I met at basketball courts

and friends that are also interested in magic (not the card game). I would rather not make

an exhaustive list here but simply hope that, if they see this, they will know.

Finally, I thank my family for their constant support and reminders of what the important

things in life should be.

vii



Publications

Publications related to this dissertation

[1] C. P. Herzog and K.-W. Huang,

“Stress Tensors from Trace Anomalies in Conformal Field Theories,”

Phys. Rev. D 87, 081901 (2013). doi:10.1103/PhysRevD.87.081901

[arXiv:1301.5002 [hep-th]].

[2] K.-W. Huang,

“Weyl Anomaly Induced Stress Tensors in General Manifolds,”

Nucl. Phys. B 879, 370 (2014). doi:10.1016/j.nuclphysb.2013.12.013

[arXiv:1308.2355 [hep-th]].

[3] C. P. Herzog, K.-W. Huang and K. Jensen,

“Universal Entanglement and Boundary Geometry in Conformal Field Theory,”

JHEP 1601, 162 (2016). doi:10.1007/JHEP01(2016)162

[arXiv:1510.00021 [hep-th]].

[4] C. P. Herzog and K.-W. Huang,

“Boundary Conformal Field Theory and a Boundary Central Charge,”

JHEP 1710, 189 (2017). doi:10.1007/JHEP10(2017)189

[arXiv:1707.06224 [hep-th]].

[5] C. P. Herzog, K.-W. Huang and K. Jensen,

“Displacement Operators and Constraints on Boundary Central Charges,”

Phys. Rev. Lett. 120, no. 2, 021601 (2018). doi:10.1103/PhysRevLett.120.021601

[arXiv:1709.07431 [hep-th]].

Other publications

[6] C. P. Herzog, K.-W. Huang and R. Vaz,

“Linear Resistivity from Non-Abelian Black Holes,”

viii



JHEP 1411, 066 (2014). doi:10.1007/JHEP11(2014)066

[arXiv:1405.3714 [hep-th]].

[7] K.-W. Huang,

“Central Charge and Entangled Gauge Fields,”

Phys. Rev. D 92, no. 2, 025010 (2015). doi:10.1103/PhysRevD.92.025010

[arXiv:1412.2730 [hep-th]].

[8] K.-W. Huang,

“Boundary Anomalies and Correlation Functions,”

JHEP 1608, 013 (2016). doi:10.1007/JHEP08(2016)013

[arXiv:1604.02138 [hep-th]].

[9] C. P. Herzog and K.-W. Huang,

“Boundary Fluctuations and A Reduction Entropy,”

Phys. Rev. D 95, no. 2, 021901 (2017). doi:10.1103/PhysRevD.95.021901

[arXiv:1610.08970 [hep-th]].

[10] K.-W. Huang, R. Roiban and A. A. Tseytlin,

“Self-dual 6d 2-form fields coupled to non-abelian gauge field: quantum corrections,”

JHEP 1806, 134 (2018). doi:10.1007/JHEP06(2018)134

[arXiv:1804.05059 [hep-th]].

[11] C. P. Herzog, K.-W. Huang, I. Shamir and J. Virrueta,

“Superconformal Models for Graphene and Boundary Central Charges,”

[arXiv:1807.01700 [hep-th]].

ix



Chapter 1

Introduction

As fixed points of renormalization group flow, conformal field theories play a cornerstone

role in our understanding of quantum field theories. A classically conformal field theory has

an action invariant under conformal transformations and the conformal invariance implies a

vanishing trace of the stress tensor.1 The well-known trace anomaly represents a quantum

phenomenon that breaks the conformal symmetry and the trace of the “expectation value” of

the stress tensor becomes non-zero. In general, a conformal field theory can be characterized

by the trace anomaly coefficients or central charges of the stress tensor. In addition to their

well-known important roles in determining correlation functions, these central charges also

provide a way of ordering quantum field theories under renormalization group flow. In two

dimensions, the classic c-theorem [12] states that the central charge c decreases through

the renormalization group flow from the ultraviolet to the infrared. In four-dimensions,

the corresponding trace anomaly is defined by two types of central charge, c4 and a4. The

conjectural a-theorem which stated that the four-dimensional Euler central charge a4 could

be the analog of c in 2D [13] was proven only recently using dilaton fields to probe the trace

anomaly [14]. The possibility of a 6D a-theorem was explored in [15].

While there are thousands of papers discussing topics related to the conformal anomaly,

the correpsonding discussions in field theories with a boundary have been far less explored,

in particular in spacetime dimensions higher than two. One might naively wonder that

the reason for the relative lack of this research direction might be that boundary effects

play only minor roles and will not lead to interesting consequences. Here we would like to

instead emphasize that boundary effects in fact have becoming a unifying theme in several

areas where there has been significant progress in modern theoretical physics. Indeed, a

boundary is essential for understanding condensed matter systems such as impurity models

1The Weyl transformation is defined by:

ḡµν(x) = e2σ(x)gµν(x) = Ω2gµν(x) . (1.1)

For a conformally flat background, ḡµν = Ω2ηµν .
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and topological insulators. D-branes, which gave us insight into non-perturbative properties

of string theory, are the boundaries of fundamental strings. In gauge-gravity duality, which

has provided us a glimpse of connections between quantum gravity and strongly-interacting

field theories, quantum fields fluctuate on the boundary of anti-de Sitter space. As a measure

of quantum information, entanglement entropy is often defined with respect to spatial regions

where an “entangling boundary” plays a crucial role. The concept of entanglement has

deepened our understanding of black hole thermodynamics and has given us new insight

into renormalization group flow in relativistic quantum field theories. Lately, a fascinating

picture is that spacetime geometry might spring up from quantum entanglement. A natural

question arises:“might these developments have been obvious if we simply had understood

quantum field theory and gravity in the presence of a boundary better to begin with?” The

renewed research on boundary physics is therefore timely and needed in view of modern

research developments.

This thesis is devoted to exploring anomalies and boundary effects in field theories, in

particular those in conformal field theories. We shall start with the more familar case where

spacetime has no boundary. In Chapter 2, using trace anomalies, we determine the vacuum

stress tensors of even-dimensional conformal field theories in conformally flat backgrounds,

adopting the dimensional regularization scheme. A simple relation between the Casimir en-

ergy on the real line times a sphere and the type A anomaly coefficient will be demonstrated.

This relation generalizes earlier results in two and four dimensions. These field theory results

for the Casimir are shown to be consistent with holographic predictions in two, four, and

six dimensions. In Chapter 3, we obtain stress tensors from Weyl anomalies in more general

(non-conformally flat) backgrounds. The spacetime remains no boundary in this chapter.

The results of type A anomaly-induced stress tensors in four and six-dimensions generalize

the previous results in Chapter 2 calculated in a conformally flat background. We emphasize

that regulators are needed to have well-defined type B anomaly-induced stress tensors. We

also discuss ambiguities related to type D anomalies and order of limit issues.

In Chapter 4, we compute the universal contribution to the vacuum entanglement entropy

(EE) across a sphere in even-dimensional conformal field theory by employing a conformal

map. Previous attempts to derive the EE in this way were hindered by a lack of knowledge of

the appropriate boundary terms in the trace anomaly. We will show that the universal part

of the EE can be treated as a purely boundary effect. As a byproduct of our computation,

we derive an explicit form for the A-type anomaly contribution to the Wess-Zumino term for

the trace anomaly, now including boundary terms. In d=4 and 6, these boundary terms gen-

eralize earlier bulk actions derived in the literature. Furthermore, a complete classification

of d=4 conformal anomalies with a boundary is given.

Motivated by boundary terms of the conformal anomaly, in Chapter 5 we will study the

structure of current and stress tensor two-point functions in conformal field theory with a

boundary. The main result of this chapter is a relation between a boundary central charge

2



and the coefficient of a displacement operator correlation function. The boundary central

charge under consideration is the coefficient of the product of the extrinsic curvature and

the Weyl curvature in the conformal anomaly. Along the way, we describe several auxiliary

results. Three of the more notable are as follows: (1) we give the bulk and boundary

conformal blocks for the current two-point function; (2) we show that the structure of these

current and stress tensor two-point functions is essentially universal for all free theories;

(3) we introduce a class of interacting conformal field theories where the interactions are

confined to the boundary. The most interesting example we consider can be thought of

as the infrared fixed point of graphene. This particular interacting conformal model in

four dimensions provides a counterexample of a previously conjectured relation between a

boundary central charge and a bulk central charge. The model also demonstrates that the

boundary central charge can change in response to marginal deformations.

Finally, in Chapter 6 we constrain all the boundary central charges in three and four

dimensional conformal field theories in terms of two- and three-point correlation functions of

the displacement operator. We provide a general derivation by comparing the trace anomaly

with scale dependent contact terms in the correlation functions. We conjecture a relation

between the a-type boundary charge in three dimensions and the stress tensor two-point

function near the boundary. We check our results for several free theories. The thesis ends

with some interesting open questions.

3



Chapter 2

Stress Tensors from Trace Anomalies:

Conformally Flat Spacetime

This chapter is an edited version of my publication [1], written in collaboration with

Christopher Herzog.

A conformal field theory (CFT) embedded in a curved spacetime background can be

characterized by the trace anomaly coefficients of the stress tensor. Here we only consider

even dimensional CFTs because there is no trace anomaly in odd dimensions. The anomaly

coefficients (or central charges) ad and cdj show up in the trace as follows,

〈T µµ 〉 =
1

(4π)d/2

(∑
j

cdjI
(d)
j − (−)

d
2adEd

)
. (2.1)

Here Ed is the Euler density in d dimensions and I
(d)
j are independent Weyl invariants of

weight −d. The subscript “j” is used to index the Weyl invariants. Our convention for the

Euler density is that

Ed =
1

2d/2
δν1···νd
µ1···µdR

µ1µ2
ν1ν2 · · ·Rµd−1µd

νd−1νd . (2.2)

We will not need the explicit form of the I
(d)
j in what follows, although we will discuss their

form in d ≤ 6.

Note that we are working in a renormalization scheme where the trace anomaly is free

of the so-called type D anomalies which are total derivatives that can be changed by adding

local covariant but not Weyl-invariant counter-terms to the effective action. For example, in

four space-time dimensions, a �R in the trace can be eliminated by adding an R2 term to

the effective action.

In this chapter, we show how to compute 〈T µν〉 in terms of ad and curvatures for a

conformally flat background.
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The properties of central charges in the 6D case are of particular interest; the (2,0) theory,

which describes the low energy behavior of M5-branes in M-theory, is a 6D CFT. From the

AdS/CFT correspondence, it has been known for over a decade that quantities such as the

thermal free energy [16] and the central charges [17] have an N3 scaling for a large number N

of M5-branes. However, a direct field theory computation has proven difficult. Any results

calculated from the field theory side of the 6D CFT without referring to AdS/CFT should

be interesting. Such results also provide a non-trivial check of the holographic principle.

We would like to study the general relation between the stress tensor and the trace

anomaly of a CFT in a conformally flat background. The main result of this chapter (2.21)

is an expression for the vacuum stress tensor of an even dimensional CFT in a conformally

flat background in terms of ad and curvatures. (By vacuum, we have in mind a state with no

spontaneous symmetry breaking, where the expectation values of the matter fields vanish.)

We pay special attention to the general relation between the Casimir energy (ground

state energy) and ad. Let εd be the Casimir energy on R× Sd−1. The well known 2D CFT

result is [18]

ε2 = − c

12`
= −a2

2`
, (2.3)

where ` is the radius of S1. This result is universal for an arbitrary 2D CFT, independent

of supersymmetry or other requirements. For general R× Sd−1, we will find

εd =
1 · 3 · · · (d− 1)

(−2)d/2
ad
`
. (2.4)

2.1 Stress Tensor and Conformal Anomaly

We would like to determine the contribution of the anomaly to the stress tensor of a

field theory in a conformally flat background. The general strategy we use was originally

developed in [19]. (See also [20, 21, 22, 23] for related discussion.) The conformal (Weyl)

transformation is parametrized by σ(x) in the standard form

ḡµν(x) = e2σ(x)gµν(x) . (2.5)

Denote the partition function as Z[gµν ]. The effective potential is given by

Γ[ḡµν , gµν ] = lnZ[ḡµν ]− lnZ[gµν ] . (2.6)

The expectation value of the stress tensor 〈T µν〉 is defined by the variation of the effec-

tive potential with respect to the metric. Here we consider a conformally flat background,

ḡµν(x) = e2σ(x)ηµν , and we normalize the stress tensor in the flat spacetime to be zero. The

(renormalized) stress tensor is given by

〈T µν(x)〉 =
2√
−ḡ

δΓ[ḡαβ]

δḡµν(x)
, (2.7)

5



which implies

√
−ḡ〈T λλ (x)〉 = 2ḡµν(x)

δΓ[ḡαβ]

δḡµν(x)
=
δΓ[ḡαβ]

δσ(x′)
. (2.8)

We rewrite

δ(
√
−ḡ〈T µν (x)〉)
δσ(x′)

= 2ḡλρ(x
′)

δ

δḡλρ(x′)
2ḡνγ(x)

δΓ[ḡαβ]

δḡµγ(x)
. (2.9)

Then we use the following commutative property[
ḡλρ(x

′)
δ

δḡλρ(x′)
, ḡνγ(x)

δ

δḡµγ(x)

]
= 0 (2.10)

to obtain the following differential scale equation

δ
√
−ḡ〈T µν(x)〉
δσ(x′)

= 2
δ
√
−ḡ〈T λλ (x′)〉
δḡµν(x)

. (2.11)

This equation determines the general relation between the stress tensor (and hence the

Casimir energy) and the trace anomaly.

Next we would like to re-write the trace anomaly 〈T µµ 〉 in terms of a Weyl exact form,

〈T µµ 〉 = δ
δσ

(something), so that we can factor out the sigma variation in (2.11) to simplify the

calculation. The integration constant is fixed to zero by taking 〈T µν〉 = 0 in flat space. We

use dimensional regularization and work in n = d+ ε dimensions. While we do not alter Ed
in moving away from d dimensions, we will alter the form of the I

(d)
j . Let limn→d I(d)

j = I
(d)
j

where I(d)
j continues to satisfy the defining relation δσI(d)

j = −d I(d)
j . We assume that in

general I(d)
j ’s exist such that

δ

(n− d)δσ(x)

∫
dnx′
√
−ḡEd(x′) =

√
−ḡEd , (2.12)

δ

(n− d)δσ(x)

∫
dnx′
√
−ḡI(d)

j (x′) =
√
−ḡI(d)

j . (2.13)

We now make a brief detour to discuss the existence of I(d)
j in d = 2, 4 and 6 [24, 25] and

also a general proof of the variation (2.12). In 2D, there are no Weyl invariants I
(2)
j and we

can ignore (2.13). In 4D, we have the single Weyl invariant I
(4)
1 = C

(n=4)
µνλρ C

(n=4)µνλρ where

C(4)µνλρ is the 4D Weyl tensor. If we define the n-dimensional Weyl tensor

C(n)µν
λσ ≡ Rµν

λσ −
1

n− 2

[
2(δµ[λR

ν
σ] + δν[σR

µ
λ]) +

Rδµνλσ
(n− 1)

]
, (2.14)

then we find I(4)
1 = C

(n)
µνλρC

(n)µνλρ defined in terms of the n-dimensional Weyl tensor satisfies

the eigenvector relation (2.13).
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At this point, our treatment differs somewhat from ref. [19] where the authors vary

instead I
(4)
1 with respect to σ. While ref. [19] allows for an additional total derivative �R

term in the trace anomaly, here we choose a renormalization scheme where the trace anomaly

takes the minimal form. It turns out that this scheme is the one used to match holographic

predictions as we will discuss shortly. A �R can be produced by varying (n − 4)R2 with

respect to σ. Such an R2 term appears in the difference between I(4)
1 and I

(4)
1 in [19].

In 6D, there are three Weyl invariants

I
(6)
1 = C

(6)
µνλσ C

(6)νρηλ C(6)µσ
ρ η , (2.15)

I
(6)
2 = C(6)λσ

µν C
(6)ρη
λσ C(6)µν

ρη , (2.16)

I
(6)
3 = C

(6)
µνλσ

(
�δµρ + 4Rµ

ρ −
6

5
Rδµρ

)
C(6)ρνλσ +DµJ

µ . (2.17)

To produce the I(6)
j when j = 1,2, we replace the six dimensional Weyl tensor with its n-

dimensional cousin as in the 4D case. The variation (2.13) is then straightforward to show.

For j = 3, [26] demonstrated the corresponding Weyl transformation for a linear combination

of the three I(6)
j , there denoted H. The full expression for I(6)

3 and the n-dimensional version

of Jµ is not important; we refer the reader to [26, 27] for details. For d > 6, we assume the

Weyl invariants can be engineered in a similar fashion; see [28] for the d = 8 case.

To vary Ed, we write the corresponding integrated Euler density as

∫
dnx
√
−ḡEd =

∫ (∧n
j=1 dx

µj

)
2d/2(n− d)!

Ra1a2
µ1µ2 · · ·Rad−1ad

µd−1µde
ad+1
µd+1
· · · eanµnεa1···an . (2.18)

Recall that the variation of a Riemann curvature tensor with respect to the metric is a

covariant derivative acting on the connection. After integration by parts, these covariant

derivatives act on either the vielbeins eaµ or the other Riemann tensors and hence vanish by

metricity or a Bianchi identity. Thus, in varying the integrated Euler density, we need only

vary the vielbeins. We use the functional relation 2δ/δgνµ = ea(νδ/δe
a
µ). One finds

δ

δḡνµ(x)

∫
dnx′
√
−ḡEd =

√
−ḡ

2
d
2

+1
Rν1ν2

µ1µ2 · · ·Rνd−1νd
µd−1µd δ

µ1···µdµ
ν1···νdν . (2.19)

From this expression, the desired relation (2.12) follows after contracting with δνµ.

Given the variations (2.12, 2.13), we can factor out the sigma variation in (2.11) to obtain

〈T µν〉 = 〈Xµν〉 ≡ lim
n→d

1

(n− d)

2√
−ḡ(4π)d/2

(2.20)

× δ

δḡµν(x)

∫
dnx′
√
−ḡ

(∑
j

cdjI(n)
j − (−)

d
2adEd

)
.

(While we specialize to conformally flat backgrounds, under a more general conformal trans-

formation one has 〈T µν(ḡ)〉 − 〈Xµν(ḡ)〉 = e−(d+2)σ (〈T µν(g)〉 − 〈Xµν(g)〉).) Comparing with
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(2.7), we see that the effective action must contain terms proportional to 〈T µµ 〉. Indeed,

these are precisely the counter terms that must be added to regularize divergences coming

from placing the CFT in a curved space time [29]. We next perform the metric variation for

a conformally flat background. The metric variation of the Weyl tensors I(d)
j vanishes for

conformally flat backgrounds because the I(d)
j are all at least quadratic in the n-dimensional

Weyl tensor. (Conformal flatness is used only after working out the metric variation.) Thus

the stress tensor in a conformally flat background may be obtained by varying only the Euler

density:

〈T µν 〉 = − ad
(−8π)d/2

lim
n→d

1

n− d
Rν1ν2

µ1µ2 · · ·Rνd−1νd
µd−1µd δ

µ1···µdµ
ν1···νdν . (2.21)

Note that in a conformally flat background, employing (2.14), the Riemann curvature can

be expressed purely in terms of the Ricci tensor and Ricci scalar:

Rν1ν2
µ1µ2 =

1

n− 2

[
2(δν1

[µ1
Rν2

µ2] + δν2

[µ2
Rν1

µ1])−
Rδν1ν2

µ1µ2

n− 1

]
.

Contracting a δ
νj
µj with the antisymmetrized Kronecker delta δµ1···µdµ

ν1···νdν eliminates the factor of

(n− d) in (2.21).

In 2D and 4D, we can use (2.21) to recover results of [19]. In 2D, the right hand side

of 〈T µν 〉 is proportional to Rµ
ν − 1

2
Rδµν which vanishes in 2D. Thus we first must expand the

Einstein tensor in terms of the Weyl factor σ where gµν = e2σηµν before taking the n → 2

limit. The result is [19]

〈T µν〉 =
a2

2π

(
σ,µ;ν + σ,µσ,ν − gµν

(
σ,λ

;λ +
1

2
σ,λσ

,λ

))
. (2.22)

In 4D, we obtain

〈T µν〉 =
−a4

(4π)2

[
gµν
(R2

2
−R2

λρ

)
+ 2RµλRν

λ −
4

3
RRµν

]
. (2.23)

In 6D, we obtain (to our knowledge) a new result

〈T µν〉 = − a6

(4π)3

[
3

2
Rµ
λR

ν
σR

λσ − 3

4
RµνRλ

σR
σ
λ −

1

2
gµνRσ

λR
λ
ρR

ρ
σ

−21

20
RµλRν

λR +
21

40
gµνRσ

λR
λ
σR +

39

100
RµνR2 − 1

10
gµνR3

]
. (2.24)

As we work in Weyl flat backgrounds, there is no contribution from B type anomalies. These

〈T µν〉 are covariantly conserved, as they must be since they were derived from a variational

principle.
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2.2 Casimir Energy and Central Charge

Next we would like to relate ad to the Casimir energy defined as

εd =

∫
Sd−1

〈T 00〉 vol(Sd−1), (2.25)

on R×Sd−1. In preparation, let us first calculate Ed for the sphere Sd. For Sd with radius `,

the Riemann tensor is Rν1ν2
µ1µ2 = δν1ν2

µ1µ2
/`2. It follows from (2.2) that Ed = d!

`d
. We conclude

that the trace of the vacuum stress tensor on Sd takes the form

〈T µµ 〉 = − ad d!

(−4π`2)d/2
. (2.26)

Let us now calculate 〈T µν 〉 for S1×Sd−1. The Riemann tensor on S1×Sd−1 is zero whenever

it has a leg in the S1 direction and looks like the corresponding Riemann tensor for Sd−1 in

the other directions. We can write Ri1i2
j1j2 = δi1i2j1j2

/`2, where i and j index the Sd−1. The

computation of 〈T 0
0 〉 and 〈T ij 〉 proceeds along similar lines to the computation of Ed:

〈T 0
0 〉 = − ad(d− 1)!

(−4π`2)d/2
, 〈T ij 〉 =

ad(d− 2)!

(−4π`2)d/2
δij . (2.27)

Note that 〈T µν 〉 is traceless, consistent with a result of [22]. Using the definition (2.25), we

compute the Casimir energy εd. We find that (for d even)

εd =
ad(d− 1)!

(−4π`2)d/2
Vol(Sd−1) =

1 · 3 · · · (d− 1)

(−2)d/2
ad
`
. (2.28)

In 2D, 4D and 6D, the ratios between the Casimir energy and ad are − 1
2`

, 3
4`

and −15
8`

,

respectively.

2.3 Holography and Discussion

Here we would like to use the AdS/CFT correspondence to check our relation between εd
and ad for d = 2, 4 and 6. For CFTs with a dual anti-de Sitter space description, the stress-

tensor can be calculated from a classical gravity computation [30, 31, 32]. The Euclidean

gravity action is

S = Sbulk + Ssurf + Sct , (2.29)

Sbulk = − 1

2κ2

∫
M
dd+1x

√
G

(
R+

d(d− 1)

L2

)
,

Ssurf = − 1

κ2

∫
∂M

ddx
√
gK,

Sct =
1

2κ2

∫
∂M

ddx
√
g
[2(d− 1)

L
+

L

d− 2
R +

L3

(d− 4)(d− 2)2

(
RµνRµν −

d

4(d− 1)
R2

)
+ . . .

]
.
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The Ricci tensor Rµν is computed with respect to the boundary metric gµν while R is the

Ricci Scalar computed from the bulk metric Gab. The object Kµν is the extrinsic curvature

of the boundary ∂M. The counter-terms Sct render S finite, and we keep only as many as

we need. The metrics with Sd−1 × S1 conformal boundary,

ds2 = L2(cosh2 r dt2 + dr2 + sinh2 r dΩd−1) , (2.30)

and Sd boundary,

ds2 = L2(dr2 + sinh2 r dΩd) , (2.31)

satisfy the bulk Einstein equations. Note that the Sd−1 and Sd spheres have radius ` = L
2
er0

at some large reference r0 while we take the S1 to have circumference β (hence the range of

t is 0 < t < β/`). We compute the stress tensor from the on-shell value of the gravity action

using (2.7), making the identification Γ = −S and using the boundary value of the metric

in place of ḡµν . One has [31]:

d ΓSd ΓS1×Sd−1

2 4πL
κ2 log ` πβL

κ2`

4 −4π2L3

κ2 log ` −3π2βL3

4κ2`

6 2π3L5

κ2 log ` 5π3βL5

16κ2`

We include only the leading log term of ΓSd . From (2.7), it follows that 〈T 0
0 〉Vol(Sd−1) =

∂βΓS1×Sd−1 and 〈T µµ 〉Vol(Sd) = ∂`ΓSd For a conformally flat manifold, we have from (2.1)

that 〈T µµ 〉 = −ad(−4π)−d/2Ed which allows us to calculate ad from 〈T µµ 〉 [17]. Defining the

Casimir energy with respect to a time t̃ = `t whose range is the standard 0 < t̃ < β, we can

deduce from (2.25) that εd = −∂βΓS1×Sd−1 (see also [33]). We have

〈T 0
0 〉 εd 〈T µµ 〉 Ed ad

S1 × S1 L
2κ2`2

− πL
κ2`

S2 L
κ2`2

2
`2

2πL
κ2

S1 × S3 − 3L3

8κ2`4
3π2L3

4κ2`
S4 − 3L3

2κ2`4
24
`4

π2L3

κ2

S1 × S5 5L5

16κ2`6
−5π3L5

16κ2`
S6 15L5

8κ2`6
720
`6

π3L5

6κ2

Comparing the εd and ad columns, we can confirm the results from earlier, namely that

ε2 = −a2

2`
; ε4 =

3a4

4`
; ε6 = −15a6

8`
. (2.32)

In the 4D case, such a gravity model arises in type IIB string theory by placing a stack

of N D3-branes at the tip of a 6D Calabi-Yau cone. In this case, we can make the further

identification [34, 17]: a4 = N2

4
Vol(S5)

Vol(SE5)
where SE5 is the 5D base of the cone. These con-

structions are dual to 4D quiver gauge theories with N = 1 supersymmetry. In 6D, such a

gravity model arises in M-theory by placing a stack of N M5-branes in flat space. In this
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case, we can make the further identification [17, 27] (see also [35]): a6 = N3

9
. The dual field

theory is believed to be the non-abelian (2,0)-theory.

We would like to also comment briefly on the Casimir energy calculated in the weak

coupling limit.1 In typical regularization schemes, for example zeta-function regularization,

the Casimir energy will not be related to the conformal anomaly via (2.4) because of the

presence of total derivative terms (D type anomalies) in the trace of the stress tensor. For a

conformally coupled scalar in 4D, ref. [29] tells us a4 = 1/360. Our result (2.4) would imply

then that ε4 = 1/480L, but naive zeta-function regularization yields instead ε4 = 1/240L.

The discrepancy can be resolved either by including a �R term in the trace, thus changing

(2.4) [22], or by adding an R2 counter-term to the effective action, thereby changing ε4.

Amusingly in zeta-function regularization, the effect of the total derivative terms on ε4
cancels for the full N = 4 SYM multiplet, and the weak coupling results for ε4 and a4 are

related via (2.4) [36, 37]. In contrast, for the (2,0) multiplet in 6D, the total derivative terms

do not cancel [27]. The resulting discrepancy [38] in the relation between a6 and ε6 can

presumably be cured either by adding counter-terms to the effective action to eliminate the

total derivatives or by improving (2.4) to include the effect of these derivatives. Generalizing

our results to include the contribution of D type anomalies to the stress tensor would allow

a more straightforward comparison of weak coupling Casimir energies obtained via zeta-

function regularization and the conformal anomaly ad.

There are two other obvious calculations for future study: i) Determine how 〈T µν〉 trans-

forms in non-conformally flat backgrounds. Such transformations would involve the type B

anomalies. ii) Check the full 6D stress tensor (2.24) for any conformally flat background by

the holographic method. A 4D check of (2.23) was performed in [32].

1We thank J. Minahan for discussions on this issue.
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Chapter 3

Stress Tensors from Trace Anomalies:

Non-conformally Flat Spacetime

This chapter is an edited version of my publication [2].

In the previous chapter, we have shown that the stress tensors of conformal field theories

in a conformally flat background can be obtained from the trace anomalies without the

knowledge of a Lagrangian. In this chapter, we generalize these results to arbitrary general

(non-conformally flat) backgrounds.

In Sec. 3.1, we first review the main strategy of obtaining the stress tensor in a confor-

mally flat background discussed in the previous chapter. We then discuss the main issue of

having a well-defined dimensional regularization method when the spacetime is not confor-

mally flat; our main formula will be given in Sec. 3.2.1. In Sec. 3.2.2, we will obtain the

corresponding stress tensors from type A anomalies in 4D and 6D in general backgrounds.

These results generalize the previous results calculated in a conformally flat background ([1],

[19], [22]). In Sec. 3.2.3, we obtain the 4D type B anomaly-induced stress tensor in general

backgrounds. We also discuss the appearance of the term ∼ �R from the type B anomaly.

We will comment on various ambiguities related to Weyl invariants in Sec. 3.2.4, where the

4D type D anomaly-induced stress tensor is also given. In the final discussion section, we

compare our 4D results with the literature.

3.1 Review

Let us first review the strategy of obtaining the stress tensors in conformally flat back-

grounds. Again let Z[gµν ] be the partition function. The effective potential is Γ[ḡµν , gµν ] =

lnZ[ḡµν ] − lnZ[gµν ]. We normalize the stress tensor in the flat spacetime to be zero. The

(renormalized) stress tensor is 〈T µν(x)〉 = 2√
−ḡ

δΓ[ḡαβ ]

δḡµν(x)
. From the previous chapter, we found

that the following equation determines the general relation between the stress tensor and
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the trace anomalies:

δ
√
−ḡ〈T̄ µν(x)〉
δσ(x′)

= 2
δ
√
−ḡ〈T̄ λλ (x′)〉
δḡµν(x)

. (3.1)

In the scheme with no type D anomalies, we further assumed that we could always re-write

the anomalies as σ−exact forms using the identities

δ

(n− d)δσ(x)

∫
dnx′
√
−gEd(x′) =

√
−gEd , (3.2)

δ

(n− d)δσ(x)

∫
dnx′
√
−gI(d)

j (x′) =
√
−gI(d)

j . (3.3)

While we did not alter Ed in moving away from d dimensions but we altered the form of

the I
(d)
j : let limn→d I(d)

j = I
(d)
j where I(d)

j continues to satisfy the defining relation δσI(d)
j =

−d I(d)
j . (We ignored limn→d in (3.3) just for the simplicity of the expression.) The n-

dimensional Weyl tensor (denoted as C in the previous chapter) is

W (n)µν
λσ ≡ Rµν

λσ −
1

n− 2

[
2(δµ[λR

ν
σ] + δν[σR

µ
λ]) +

Rδµνλσ
(n− 1)

]
. (3.4)

Factoring out the sigma variation in (3.1) and setting the integration constant to zero in

flat spacetime, we obtained

〈T̄ µν〉 = lim
n→d

1

(n− d)

2√
−ḡ(4π)d/2

(3.5)

× δ

δḡµν(x)

∫
dnx′
√
−ḡ

(∑
j

cdjI(n)
j − (−)

d
2adEd

)
|ḡ .

The type B anomalies do not contribute to the stress tensors in a conformally flat background.

The stress tensor in a conformally flat background could be obtained by varying only the

Euler density and we found

〈T̄ µν 〉 = − ad
(−8π)d/2

lim
n→d

1

n− d

[
Rν1ν2

µ1µ2 · · ·Rνd−1νd
µd−1µd δ

µ1···µdµ
ν1···νdν

]
|ḡ , (3.6)

where the factor of (n− d) would be eliminated when using the conformal flatness condition

by contracting with δ
νj
µj .

3.2 Generalization to Non-Conformally Flat Backgrounds

3.2.1 General Strategy

Using (3.5), we saw in (3.6) that the 1
n−d could be cancelled by a factor of (n − d) in

the conformally flat case after the metric variation. Thus, the limit n→ d is well-defined.
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However, for general (non-conformally flat) backgrounds, we need to check that the limit

n→ d can be still well-defined.

In the type A case, we do not have this issue because the type A anomaly is a topological

quantity.1 This means that in the type A anomaly part, after the metric variation in (3.5),

it always gives us the form 0
0

in the limit n → d, thus we can adopt L’Hospital’s rule to

obtain meaningful results. We will use the following identity for the type A anomalies:

δ

(n− d)δσ(x)
A(d) ≡ δ

(n− d)δσ(x)

[ ∫
dnx′
√
−gEd(x′)

]
=
√
−gEd . (3.8)

In the type B case, we will need a regulator to have a well-defined limit n→ d. (Notice

that type B anomalies are generally not invariant under the metric variation.) Let us consider

the following identities:

δ

(n− d)δσ(x)
B(d)
i ≡

δ

(n− d)δσ(x)

[ ∫
dnx′
√
−gI(d)

j (x′)−
∫
ddx′
√
−gI(d)

j (x′)
]

=
√
−gI(d)

j ,

(3.9)

where we add a term that is essentially the type B anomaly in a given dimension, which is

by definition a Weyl invariant quantity. The method to get rid of the infinite contribution is

as follows. After the metric variation, the parts without the additional term in (3.9) could

be written symbolically as

lim
n→d

{ 1

(n− d)
[(n− d)f (n)(R,W ) + g(n)(R,W )]

}
. (3.10)

The function g(R,W ) that causes the infinite contribution will be combined with the addi-

tional term’s contribution, − 1
(n−d)

[g(d)(R,W )]. Treating the additional term as a regulator,

we could use L’Hospital’s rule

lim
n→d

g(n)(R,W )− g(d)(R,W )

(n− d)
= lim

n→d

d

dn

[
g(n)(R,W )

]
. (3.11)

Thus, the stress tensors from the type B anomalies contain the following two finite parts:

f (d)(R,W ) + lim
n→d

d

dn

[
g(n)(R,W )

]
. (3.12)

1One might think the fact that the variation of the Euler density with respect to the metric vanishes

in integer dimensions would imply type A anomalies must give terms all proportional to (n − d) to some

positive powers after the metric variation. But it is not true. Let’s take 4D as an explicit example: in 4D,

the metric variation on the type A anomaly in fact would give additional terms that are not proportional to

(n− 4):

∼ (gabWcdefW
cdef − 4W acdeW b

cde) +O(n− 4) . (3.7)

In 4D only, the above expression vanishes as an identity. Hence the metric variation of the 4D Euler density

indeed vanishes. A similar structure would apply for higher dimensional type A anomalies.
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The fact that the regulator is needed for a well-defined effective action of the type B anomaly

agrees with [23, 24], but here we use a different kind of effective action that is given by re-

writing trace anomaly as a σ-exact form.

Let us now express the full formula more precisely. Denote

Kg =
δ

δgµν(x)

(∑
j

cdjB(d)
j − (−)

d
2adA(d)

)
g

. (3.13)

Then we factor out the sigma variation (from (3.1)) to get

√
−ḡ〈T̄ µν〉 −

√
−g〈T µν〉 = lim

n→d

1

(n− d)

2

(4π)d/2
Kḡ − lim

n→d

1

(n− d)

2

(4π)d/2
Kg . (3.14)

We further re-write the above expression as

δ〈T µν〉 ≡ 〈T̄ µν〉 − Ω−d〈T µν〉 = lim
n→d

1√
−ḡ(n− d)

2

(4π)d/2
Kḡ − Ω−d

[
.....
]
|ḡ→g , (3.15)

where [
.....
]
|ḡ→g ≡ lim

n→d

1√
−g(n− d)

2

(4π)d/2
Kg , (3.16)

simply denotes the same curvature tensor forms but only with ḡ replaced by g. (Eq. (3.15)

is the main formula that we will be using in the following sections.)

3.2.2 Type A

In 4D we obtain

δ〈T ab〉(A) = 〈T ab(A)〉(c.f)|ḡ −
a4

(4π)2

[
4RcdW a b

c d + lim
n→4

1

(n− 4)
(gabWcdefW

cdef − 4W acdeWbcde)
]
|ḡ

−Ω−4
[
.....
]
|ḡ→g , (3.17)

where (c.f) denotes the conformally flat case. The 4D stress tensor in a conformally flat

background was obtained in the previous chapter:

〈T ab〉(A)(c.f) =
−a4

(4π)2

[
gab
(R2

2
−R2

cd

)
+ 2RacRb

c −
4

3
RRab

]
. (3.18)

Notice that (3.17) is obtained by rewritting Riemann tensors into Weyl tensors in order to

factor out the (n − 4) factors. After rewritting Riemann/Weyl tensors into Weyl/Riemann

tensors, we should treat the remaining tensors as dimension-independent variables. The

topological nature of the type A anomalies implies that we can use the L’Hospital’s rule on

limn→4
1

(n−4)
(gabWcdefW

cdef − 4WacdeW
cde
b ), which gives zero. Thus, the result is

δ〈T ab〉(A)
n=4 =

[
〈T ab(A)〉(c.f)− a4

(4π)2
4RcdW a b

c d

]
|ḡ − Ω−4

[
.....
]
|ḡ→g , (3.19)

15



where the extra term ∼ RcdW a b
c d vanishes once traced.2 In this type A case,

[lim
n→4

, T r]δ〈T ab〉(A) = − a4

(4π)2
(I(4)|ḡ − Ω−4I(4)|g) , (3.20)

where

I
(4)
1 = W

(n=4)
µνλρ W

(n=4)µνλρ , (3.21)

is the only Weyl invariant in 4D. Note (3.20) in fact gives zero because of the nature of I(4)

which transforms covariantly. We also have

[lim
n→4

, lim
W→0

]δ〈T ab〉(A) = 0 , (3.22)

since RcdW a b
c d vanishes in a conformally flat background.

Let us next consider the stress tensor derived from the 6D type A anomaly in general

backgrounds. We obtain a new result in 6D that (to our knowledge) was not computed

before:

δ〈T ab〉(A)
n=6 = 〈T ab〉(A)(c.f)|ḡ +

a6

(4π)3

[12

5
RRcdW a b

c d − 3RdeRbcW a
dce − 3Re

cR
cdW a b

d e

+6RbcW adefWcdef +
3

2
gabRcdRefWcdef − 12RcdW aebfWcedf −

3

2
RabW cdefWcdef

+
27

20
gabRW cdefWcdef − 6gabRcdW efg

c Wdefg −
27

5
RW acdeW b

cde − 3RacRdeW b
dce +

6RcdW a ef
c W b

def + 6RacWcdefW
bdef + 12RcdW ae f

c W b
edf

]
|ḡ − Ω−6

[
.....
]
|ḡ→g , (3.23)

where the 6D stress tensor in a conformally flat background was obtained in the previous

chapter:

〈T µν〉(A)(c.f) =
a6

(4π)3
[−3

2
Rµ
λR

ν
σR

λσ +
3

4
RµνRλ

σR
σ
λ +

1

2
gµνRσ

λR
λ
ρR

ρ
σ

+
21

20
RµλRν

λR−
21

40
gµνRσ

λR
λ
σR−

39

100
RµνR2 +

1

10
gµνR3] . (3.24)

In this case we find

[lim
n→6

, T r]δ〈T ab〉(A) = − a6

(4π)3

[(
8I

(6)
1 + 2I

(6)
2

)
|ḡ − Ω−6

(
8I

(6)
1 + 2I

(6)
2

)
|g
]
, (3.25)

where I
(6)
1 and I

(6)
2 are the first two kinds of 6D Weyl invariant tensors given by

I
(6)
1 = W

(6)
µνλσ W

(6)νρηλ W (6)µσ
ρ η , (3.26)

I
(6)
2 = W (6)λσ

µν W
(6)ρη
λσ W (6)µν

ρη , (3.27)

I
(6)
3 = W

(6)
µνλσ

(
�δµρ + 4Rµ

ρ −
6

5
Rδµρ

)
W (6)ρνλσ +DµJ

µ . (3.28)

We see again that (3.25) is zero because of the nature of I
(6)
1 and I

(6)
2 that transform covari-

antly. Finally, similar to 4D, we have

[lim
n→6

, lim
W→0

]δ〈T ab〉(A) = 0 . (3.29)

2This result computed in a new way agrees with [21].
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3.2.3 Type B

As mentioned earlier, the type B anomaly is not metric variation invariant so we need a

regulator to have the form 0
0

when taking the limn→d. After the metric variation, the result

from the 4D type B anomaly reads

δ〈T ab〉(B)
n=4 =

c4

(4π)2

[
− 4RcdW a b

c d − gabRcdR
cd + 4RacRb

c

−14

9
RRab +

7

18
gabR +

8

9
DaDbR− 2D2Rab +

1

9
gabD2R

]
|ḡ − Ω−4

[
.....
]
|ḡ→g . (3.30)

In this case,

[lim
n→4

, T r]δ〈T ab〉(B) =
c4

(4π)2

(2

3
D2R|ḡ − Ω−4 2

3
D2R|g

)
. (3.31)

When the 2
3
D2R term appears in the 4D trace anomaly, one can relate it to an R2 term in

the effective action. However, here it shows up as an artifact of dimensional regularization.

By taking the n→ 4 limit, we have used

lim
n→4

[ δ

(n− 4)δσ(x)

∫
dnx′
√
−gW 2(n)(x′)

]
=
√
−gW 2(4) , (3.32)

where W (n) is defined in (3.4). We factored out the σ variation and obtained the stress

tensor after the metric variation. We then found a 2
3
D2R in (3.31) after taking the trace.

This process could be formally re-expressed as

Tr
δ

δgµν
lim
n→4

[ 1

(n− 4)

∫
dnx′
√
−gW 2(n)(x′)

]
, (3.33)

which gives

Tr
δ

δgµν

[( 1

(n− 4)

∫
d4x′
√
−gW 2(4)

)
|n→4 +

∫
d4x′
√
−g∂W

2(n)

∂n
|n→4

]
. (3.34)

The divergent first term will be cancelled by the regulator. It is the second term that gives
2
3
D2R. (One can further check that the orders of taking the metric variation and n → 4

expansion commute.) Therefore, we see that the 2
3
D2R has another origin besides adding

an R2 term in the effective action. It should be stressed that these two ways of producing a

D2R term will give different contributions to the stress tensor, although they both lead to
2
3
D2R when traced.3

In 6D, there are three kinds of type B anomalies so that three regulators are needed.

One can derive the corresponding transformed stress tensors following the same method we

developed here. But the results are very lengthy so we do not present then here. Moreover, we

will soon comment on ambiguities related to the type B anomalies in the following sections.

3We notice that there were also several related discussions in AdS/CFT regarding this 2
3D

2R term. For

instance, [39] discussed this term on page 5 in the context of the holographic c-theorem. [30] mentioned

this kind of ambiguity on page 16. In [40], they included the 2
3D

2R term on page 30 to study entanglement

entropy.
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3.2.4 Type D and Ambiguities

In 4D, there is only one kind of the type D anomaly given by:

〈T µµ 〉(D) =
γ

(4π)2
D2R , (3.35)

where γ ≡ d4 represents the corresponding type D central charge. This anomaly can be

generated by using the following identity

δ

(n− 4)(4π)2δσ(x)

[ ∫
dnx′
√
−g(n− 4)

−γ
12
R2(x′)

]
=

γ

(4π)2
D2R . (3.36)

Obviously, there is no n→ d problem here. The stress tensor corresponding to this anomaly

is therefore given by the metric variation on the R2 term and we have

δ〈T ab〉(D)
n=4 = − γ

6(4π)2

(
2DaDbR− 2gabD2R− 2RRab +

1

2
gabR2

)
|ḡ − Ω−4

[
.....
]
|ḡ→g .

(3.37)

Since one could introduce a counterterm in the effective action to cancel this anomaly, this

contribution is arbitrary. We will not consider 6D type D anomalies, which would presumably

lead to lengthy expressions; we refer readers to [41] for all possible type D anomalies in 6D.

Going back to the case of 4D type B anomaly, (3.30), one might ask if there is an limn→4

and limW→0 order of limits issue since we consider limW→0〈T (B)
ab 〉 = 0 under the scheme

that the type B central charge does not contribute to the stress tensor in a conformally flat

background.4 Our answer to this question is that there is no definite contribution to the

stress tensor from the type B central charge because of various ambiguities related to Weyl

tensors. Recall that the main strategy in the dimensional regularization approach is to re-

write the trace anomaly into a σ-exact term. However, one has some arbitrariness that can

be added in the effective action: (1) (n−4)×
∫
d4x
√
−gR2 with an arbitrary coefficient. This

term only modifies the coefficient of the type D anomaly, which is arbitrary as mentioned

before; (2) σ-variation invariant terms such as (n− 4)×
∫
d4x
√
−g type A/B anomaly with

an arbitrary coefficient. But notice that the type A anomaly is topological, so it will not

contribute to the stress tensor. By using the first kind of arbitrariness, it is found that if we

instead use the following identity

lim
n→4

δ

(n− 4)δσ(x)

[ ∫
dnx′
√
−gI(4)

j (x′)−
∫
d4x′
√
−gI(4)(x′)

−(n− 4)
( 1

18

∫
d4x′
√
−gR2(x′)

)]
=
√
−g[I

(4)
j +

2

3
D2R] , (3.38)

4Note that (3.30) is the result after taking limn→4. If we instead take limW→0 first, we have symbolically

limW→0
δ

δgµν

∫
W 2, which simply is already zero because of the squared Weyl tensor.
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we could modify (3.30) by adding contributions from the metric variation on the R2 term.

We then have the following 4D result:

δ〈T ab〉(B)
n=4 = −4

c4

(4π)2

(
DcDdW

cadb +
1

2
RcdW

cadb
)
|ḡ − Ω−4

[
.....
]
|ḡ→g = 0 . (3.39)

Note that
√
−g
(
DcDdW

cadb + 1
2
RcdW

cadb
)

is conformal invariant and traceless. In this case,

we trivially get

[lim
n→4

, lim
W→0

]δ〈Tab〉(B) = 0 , (3.40)

with the same result as (3.31). Regarding the second kind of arbitrariness, we note that

because of the following identity:

−4
√
−g
(
DcDdW

cadb +
1

2
RcdW

cadb
)

=
δ

δgab

∫
d4x
√
−gWabcdW

abcd . (3.41)

One could generate the form
(
DcDdW

cadb + 1
2
RcdW

cadb
)

with an arbitrary coefficient. But

since this term transforms covariantly, it always give zero contribution to the transformed

stress tensor.

Let us make a remark on the orders of different limits: in the previous chapter, which

is based on [1], we followed the same argument in [19] that the type B anomalies do not

contribute to the stress tensors in a conformally flat background because of the (at least)

squared Weyl tensors. This implies that we were actually adopting the order

lim
n→4

lim
W→0

. (3.42)

For the order limW→4 limn→4, one should argue firstly why the n → 4 limit is well-defined

then use the argument of the squared Weyl tensors for the conformally flat case. The

latter consideration is included in this chapter. In fact, using the order limn→4 limW→0

was the hidden reason why 2
3
D2R in c(W 2 + 2

3
D2R) in the trace anomaly gives a separated

contribution to the stress tensor in [19]. In the previous chapter (or in [1]), we simply ignored

c2
3
D2R as the scheme to match with AdS/CFT results. Under the order limW→4 limn→4

the regulator is needed since the type B anomaly is not a topological quantity. However,

this time we will need c2
3
D2R to have a result that vanishes in W = 0. It might be most

natural to adopt the scheme that one always introduces the regulator instead of considering

the order limn→d limW→0 on the type B anomaly.

Now, let us discuss yet another ambiguity by observing the following identity5:

δ

δσ(x)

[1

8

∫
d4x′
√
−ḡW̄ 2(x′) ln ḡ(x′)

]
=
√
−ḡW̄ 2(x) . (3.43)

5Note the basic result δḡµν = 2ḡµνδσ implies
δgµν

δσ = 0 by considering a fixed gµν with respect to the

conformal factor.
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After the metric variation, one obtains

δ〈T ab〉(B)
n=4 = − c4

(4π)2

[(
DcDdW

cadb +
1

2
RcdW

cadb
)

ln g − 1

4
W 2gab

]
|ḡ − Ω−4

[
.....
]
|ḡ→g ,

(3.44)

in contrast to (3.39). This case gives nicely that

[lim
n→4

, T r]δ〈T (B)
ab 〉 = 0 = [lim

n→4
, lim
W→0

]δ〈T (B)
ab 〉 . (3.45)

Moreover, the identity implies the following σ invariant form:

α
δ

(n− 4)δσ(x)

[ ∫
dnx′
√
−gI(4) −

∫
d4x′
√
−gI(4) − 1

8

∫
d4x′(n− 4)

√
−gI(4) ln ḡ(x′)

]
= 0 ,

(3.46)

that can be freely added into (3.38) with an arbitrary coefficient α. In total it gives non-zero

contribution to the stress tensor after the metric variation. As mentioned before, we might

further introduce an α 1
18
R2 term that makes the result become the form (DDW + 1/2RW )

when combined with the first two terms in (3.46). Note that α will lead to a different

coefficient of D2R in the trace anomaly. Hence it would change the scheme. Fixing the

coefficient of D2R under a given scheme is needed to completely fix α.

3.3 Remarks

Let us relate our results with [21], where a general (trial) solution to the differential

equation (3.1) was given by

〈T̄ µν 〉 = Ω−4〈T µν 〉 −
a4

(4π)2

[
(4R̄λ

ρW̄
ρµ
λν − 2H̄µ

ν )− Ω−4(4Rλ
ρW

ρµ
λν − 2Hµ

ν )
]

− γ

6(4π)2

[
Iµν − Ω−4Iµν

]
− 8

c4

(4π)2

[
D̄ρD̄λ(W̄

ρµ
λν ln Ω) +

1

2
R̄λ
ρW̄

ρµ
λν ln Ω

]
, (3.47)

where we have expressed it under the same convention, and

Hµν ≡ −1

2

[
gµν

(R2

2
−R2

λρ

)
+ 2Rλ

µRνλ −
4

3
RRµν

]
, (3.48)

Iµν ≡ 2DµDνR− 2gµνD
2R− 2RRµν +

1

2
gµνR

2 . (3.49)

The corresponding results from the type A and type D anomaly parts agree with the results

obtained from the dimensional regularization. The only mismatch part comes from the type

B anomaly. The following is our explanation, which is again coming from the ambiguity. We

note that the result (3.47) could be derived by varying the effective action given in (2.2−2.4)

in [42] with respect to the metric. (One might call those actions as dilaton effective actions.)
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That is, we can re-produce (3.47) by simply adopting these dilaton actions in our formulation.

However, there might be some potential issues. The first issue is that these dilaton actions

were written down with the explicitly given σ. One uses these dilaton actions because

their σ variation could give trace anomalies. However, in the context of the dimensional

regularization, we see it is certainly not the only way to re-write the anomalies into σ-exact

forms. Allowing the explicit σ to appear will generate more ambiguities. Moreover, there is

another issue that was already mentioned in [42] (in the paragraph between eq(2.20−2.24)):

they needed to impose certain assumption on a spacetime background in order to deal with

the metric variation on the σ. Finally, if we adopt the dilaton action it might lose the spirit of

the dimensional regularization where the results are expressed in terms of curvature tensors.
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Chapter 4

Universal Entanglement and

Boundary Geometry in Conformal

Field Theory

This chapter is an edited version of my publication [3], written in collaboration with

Christopher Herzog and Kristan Jensen.

Entanglement entropy has played an increasingly important role in theoretical physics.

Invented as a measure of quantum entanglement, it has been successfully applied in a much

broader context. Entanglement entropy can serve as an order parameter for certain exotic

phase transitions [43, 44]. It is likely very closely related to black hole entropy [45, 46].

Certain types of entanglement entropy order quantum field theories under renormalization

group flow [47, 48, 49, 14]. It is the last result which is most relevant to this chapter. In even

space-time dimension, the connection between entanglement entropy and renormalization

group flow is tied up in the existence of the trace anomaly [47, 49, 14]. In fact, certain

universal terms in the entanglement entropy can be extracted from the anomaly. The moral

of this chapter will be that to use the anomaly correctly, one should understand how to write

it down on a manifold with a codimension one boundary.

To define entanglement entropy, we assume that the Hilbert space can be factorized,

H = HA ⊗ HB, where HA corresponds to the Hilbert space for a spatial region A of the

original quantum field theory.1 Given such a factorization one can construct the reduced

density matrix ρA = trB ρ by tracing over the degrees of freedom in the complementary region

B, where ρ is the initial density matrix. The entanglement entropy is the von Neumann

1This factorization is a nontrivial assumption. The boundary between A and B, ∂A, plays an important

role in recent discussons regarding the entanglement entropy of gauge theory [50, 51, 52, 7]. The boundary

terms associated with ∂A we find in this chapter suggests that the factorization is not always a clean and

unambiguous procedure even for non-gauge theories.
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entropy of the reduced density matrix:

SE ≡ − tr(ρA ln ρA) . (4.1)

Only when ρ = |ψ〉〈ψ| is constructed from a pure state |ψ〉 does SE measure the quantum

entanglement. Otherwise, it is contaminated by the mixedness of the density matrix ρ.

In a quantum field theory context, the definition of SE presents a challenge because

the infinite number of short distance degrees of freedom render SE strongly UV divergent.

Consider for example a d-dimensional conformal field theory (CFT) in the vacuum. Let d

be even so that the theory may have a Weyl anomaly, and let A be a (d − 1)-dimensional

ball of radius `. In this case, the entanglement entropy has an expansion in a short distance

cut-off δ of the form

SE = α
Area(∂A)

δd−2
+ . . .+ 4a(−1)d/2 ln

δ

`
+ . . . (4.2)

The constant α multiplying the leading term is sensitive to the definition of the cut-off δ

and thus has no physical meaning. The fact that the leading term scales with the area of

the boundary of A, however, is physical and suggests that most of the correlations in the

vacuum are local.

Most important for this chapter, the subleading term in eq. (4.2) proportional to the

logarithm is “a,” the coefficient multiplying the Euler density in the trace anomaly [24]

〈T µµ〉 =
∑
j

cjIj − (−1)d/2
4a

d! Vol(Sd)
Ed + DµJ

µ , (4.3)

with Dµ the covariant derivative. In this expression, Ed is the Euler density normalized such

that integrating Ed over an Sd yields d! Vol(Sd). See section 4.2 for more details about the

definition of Ed. The Ij are curvature invariants which transform covariantly with weight

−d under Weyl rescalings. There is also a total derivative DµJ
µ whose precise form depends

on the particular regularization scheme used in defining the partition function.2

Our motivation is a puzzle described in ref. [40]. The authors describe several different

methods for verifying the logarithmic contribution to the entanglement entropy in (4.2). One

is to conformally map the causal development of the ball, D, to the static patch of de Sitter

spacetime, and then exploit the trace anomaly (4.3). Another method runs into difficulties.

They attempt to compute SE by mapping D to hyperbolic space. Here, the authors were

not able to use the anomaly to obtain the expected results. As we shall explain, and as was

anticipated in ref. [40], getting the correct answer requires a careful treatment of boundary

terms in the anomaly.

To our knowledge, the relation between these boundary terms and entanglement entropy

has not been considered carefully before.3 In d = 2, the boundary contribution to the trace

2In the terminology of ref. [24], the Euler term is a type-A anomaly and the Weyl-covariants Ij are type-B.
3In a somewhat different vein, there is a discussion of entanglement entropy on spaces with boundary in

ref. [53].
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anomaly is textbook material [54]. In d = 4 and d = 6, the bulk anomaly induced dilaton

effective actions are written down in refs. [14] and [15] respectively. (See also [55] for d = 4.)

Given the importance of the dilaton effective action in understanding the a-theorem [14],

and the recent “b-theorem” in d = 3 [56], it seems conceivable the boundary correction terms

may be useful in a more general context.

In this chapter we generalize these dilaton effective actions with boundary terms for a

manifold with codimension one boundary and we show that these boundary terms are crucial

in computing entanglement entropy. We also provide a general procedure, valid in any even

dimension, for computing these boundary terms.

We begin with the two-dimensional case in section 4.1, where we illustrate our pro-

gram and use an anomaly action with boundary terms to recover the well-known results of

the interval Rényi entropy [57, 58] and the Schwarzian derivative. In section 4.2, we con-

struct the boundary terms in the trace anomaly in d > 2 and present an abstract formula

for the anomaly action in arbitrary even dimension. We demonstrate the result satisfies

Wess-Zumino consistency. In section 4.3, we compute the anomaly action in four and six

dimensions, keeping careful track of the boundary terms. (In six dimensions, our boundary

action is only valid in a conformally flat space time, while in four dimensions, the answer

provided is completely general.) In section 4.4, we resolve the puzzle of how to compute the

entanglement entropy of the ball through a map to hyperbolic space in general dimension.

The resolution of this puzzle constitutes the main result of this chapter. Finally, we conclude

in section 4.5. We relegate various technical details to appendices. Appendix 4.6.1 reviews

some useful differential geometry for manifolds with boundary. Appendix 4.6.2 contains

a detailed check of Wess-Zumino consistency in four dimensions. Appendix 4.6.3 contains

details of the derivation of the anomaly action in four and six dimensions.

4.1 The Two Dimensional Case and Rényi entropy

In two dimensions, the stress tensor has the well known trace anomaly

〈T µµ〉 =
c

24π
R , (4.4)

where we have replaced the anomaly coefficient a with the more common central charge

c = 12a which appears in the two-point correlation function of the stress tensor. Eq. (4.4) is

the Ward identity for the anomalous Weyl symmetry. It is equivalent to the variation of the

generating functional W [gµν ] = − lnZ[gµν ] under a Weyl variation δgµν = 2gµνδσ. However,

on a manifold with boundary, the anomalous variation of W may contain a boundary term.

In this section, we show how to construct the anomaly effective action with boundary terms

for the simplest case, d = 2. We will reproduce the classic entanglement entropy result using

the boundary term in the anomaly action. We also show that the boundary term correctly

recovers the universal term in the single-interval d = 2 Rényi entropy.
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4.1.1 Anomaly Action with Boundary and Entanglement Entropy

In d = 2, the most general result for the Weyl variation of the partition function consistent

with Wess-Zumino consistency is [54]

δσW = − c

24π

[∫
M

d2x
√
gR δσ + 2

∫
∂M

dy
√
γK δσ

]
. (4.5)

To write this expression, we have introduced some notation. In d = 2, the notation is overkill,

but we need the full story in what follows in d > 2. We denote bulk coordinates as xµ and

boundary coordinates as yα. Let nµ be the unit-length, outward pointing normal vector to

∂M and γαβ the induced metric on ∂M . We can define K in two equivalent ways. First,

locally near the boundary we can extend nµ into the bulk. We can choose to extend it in such

a way that nµDµnν = 0, in which case the extrinsic curvature is defined to be Kµν ≡ D(µnν).

The trace of the extrinsic curvature is K = Kµ
µ. Alternatively, we can also define K purely

from data on the boundary. The bulk covariant derivative Dµ induces a covariant derivative

∇̊α on the boundary. It can act on tensors with bulk indices, boundary indices, or mixed

tensors with both. We specify the boundary through a map ∂M → M , which amounts to

a set of d embedding functions Xµ(yα). The ∂αX
µ are tensors on the boundary, and their

derivative gives the extrinsic curvature as Kαβ = −nµ∇̊α∂βX
µ, and its trace K = γαβKαβ.

For more details on differential geometry of manifolds with boundary, see appendix 4.6.1.

Observe that, for a constant Weyl rescaling δσ = λ, the Weyl anomaly (4.5) is equivalent

to

δλW = − c
6
χλ , (4.6)

where χ is the Euler characteristic of M . That is, the boundary term in the Weyl anomaly

is simply the boundary term in the Euler characteristic.

Recall that the stress tensor is defined as

〈T µν〉 = − 2
√
g

δW

δgµν
, (4.7)

in which case (4.5) leads to a boundary term in the trace of the stress tensor,

〈T µµ〉 =
c

24π

(
R + 2Kδ(x⊥)

)
, (4.8)

where δ(x⊥) is a Dirac delta function with support on the boundary.

We now wish to write down a local functional which reproduces the variation (4.5). To do

so we introduce an auxiliary “dilaton” field τ which transforms under a Weyl transformation

gµν → e2σgµν as τ → τ + σ. The quantity

ĝµν ≡ e−2τgµν , (4.9)
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is invariant under this generalized Weyl scaling and so too the effective action Ŵ ≡ W [e−2τgµν ] =

W [ĝµν ]. Then

W [gµν , e
−2τgµν ] ≡ W − Ŵ , (4.10)

will vary to reproduce the anomaly, δσW = δσW . In what follows, we refer to W as a

“dilaton effective action,” given its similarities with the dilaton effective action presented in

refs. [14, 15]. However, unlike those works we are only considering conformal fixed points and

not renormalization group flows, and so this name is a bit of a misnomer. More precisely,W
is a Wess-Zumino term for the Weyl anomaly, or alternatively an anomaly effective action.

Analytically continuing to Lorentzian signature, it computes the phase picked up by the

partition function under the Weyl rescaling from a metric gµν to e−2τgµν .

What exactly is W in d = 2? The first quick guess is

W0 = − c

24π

[∫
M

d2x
√
gRτ + 2

∫
∂M

dy
√
γKτ

]
. (4.11)

But the metric scales, and we should take into account that under Weyl scaling in d = 2,

R[e2σgµν ] = e−2σ(R[gµν ]− 2�σ) ,

K[e2σgµν ] = e−σ(K[gµν ] + nµ∂µσ) .
(4.12)

To cancel these variations, we add a (∂τ)2 ≡ (∂µτ)(∂µτ) term to the effective action. The

total effective anomaly action is then

W = − c

24π

[∫
M

d2x
√
g
(
R[gµν ]τ − (∂τ)2

)
+ 2

∫
∂M

dy
√
γ K[gµν ]τ

]
+ (invariant) . (4.13)

The right-hand side is computed with the original unscaled metric gµν .
4 In writing (4.13),

we have allowed for the possibility of additional terms invariant under the Weyl symmetry.

There are only two such terms with dimensionless coefficients,∫
M

d2x
√
ĝR̂ ,

∫
∂M

dy
√
γ̂K̂ . (4.14)

However, now we use that by definitionW = 0 when τ = 0. Thus neither of these terms can

appear in W , so

W = − c

24π

[∫
M

d2x
√
g
(
R[gµν ]τ − (∂τ)2

)
+ 2

∫
∂M

dy
√
γ K[gµν ]τ

]
. (4.15)

The second step, which involved adding by hand a (∂τ)2 term to cancel some unwanted

pieces of the Weyl variation, seemed to involve some guess work which could become a

4 This action corrects a typo in eq. (1.2) of ref. [59], as well as accounts for the boundary term.
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problem in d > 2 where the expressions are much more complicated. In fact, there are sev-

eral constructive algorithms which remove this element of guesswork. One method involves

integrating the anomaly [60, 22, 61]:

W = − c

24π

∫ 1

0

dt

[∫
M

d2x
√
g′R[g′µν ]τ + 2

∫
∂M

dy
√
γ′K[g′µν ]τ

]∣∣∣∣
g′µν=e−2tτgµν

= −
∫ 1

0

dt

∫
M

d2x
√
g′ 〈T µµ[g′νρ]〉τ

∣∣∣∣
g′µν=e−2tτgµν

.

(4.16)

Thus, given the trace anomaly 〈T µµ〉, it is straightforward albeit messy to reconstruct W .

The second method (which we elaborate in this chapter) is dimensional regularization

[19, 62]. We define W̃ [gµν ] in n = 2 + ε dimensions:

W̃ [gµν ] ≡ −
c

24π(n− 2)

[∫
M

dnx
√
g R + 2

∫
∂M

dn−1y
√
γ K

]
, (4.17)

where R, K, gµν , and γαβ are dimensionally continued in the naive way. We claim then that

W = lim
n→2

(
W̃ [gµν ]− W̃ [e−2τgµν ]

)
, (4.18)

as one may verify after a short calculation, using the more general rules for the Weyl trans-

formations in n dimensions,

R[e2σgµν ] = e−2σ
(
R[gµν ]− 2(n− 1)�σ − (n− 2)(n− 1)(∂σ)2

)
,

K[e2σgµν ] = e−σ (K[gµν ] + (n− 1)nµ∂µσ) .
(4.19)

In all three cases, we are computing the same difference between two effective actions.

It would be preferable to have access to the effective actions themselves. There are two

problems here. The full actions depend on more than the anomaly coefficients. They are also

likely to be ultraviolet and perhaps also infrared divergent. If we focus just on the anomaly

dependent portion, it could easily be that some of this anomaly dependence is invariant

under Weyl scaling and drops out of the difference we have computed. Interestingly, the

dimensional regularization procedure offers a regulated candidate W̃ [gµν ] for the anomaly

dependent portion of W [gµν ].

Let us try to extract some information from the regulated candidate action in flat space:

W̃ [δµν ] = − c

12π(n− 2)

∫
∂M

dn−1y
√
γK . (4.20)

A simple case, which also turns out to be relevant for the entanglement entropy calculations

we would like to perform, is where M is a large ball of radius Λ with a set of q smaller,

non-intersecting balls of radius δj removed. For each ball, we can work in a local coordinate
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system where r is a radial coordinate. For the smaller balls,
√
γK = −rn−2 while for the

large ball
√
γK = rn−2. It then follows that

W̃ [δµν ] = − c
6

[
1

n− 2
(1− q) +

q + 1

2
(γ + ln π) + ln Λ−

q∑
j=1

ln δj +O(n− 2)

]
. (4.21)

The leading divergent contribution is proportional to the Euler characteristic χ = 1 − q of

the surface. We claim that the ln δj pieces of the expression (4.21) can be used to identify

a universal contribution to the entanglement entropy of a single interval in flat space. We

will justify the computation through a conformal map to the cylinder, but in brief, the

computation goes as follows. For an interval on the line with left endpoint u and right

endpoint v, to regulate the UV divergences in the entanglement entropy computation we

place small disks around the points u and v with radius δ. The entanglement entropy then

turns out to be the logarithmic contribution of these disks to −W̃ [δµν ]:

SE ∼ −
c

3
ln δ . (4.22)

As the underlying theory is conformal, the answer can only depend on the conformal cross

ratio of the two circles 4δ2/|u− v|2. Thus we find the classic result [63, 58]

SE ∼
c

3
ln
|v − u|
δ

. (4.23)

Here and henceforth, the ∼ indicates that the LHS has a logarithmic dependence given by

the RHS. We neglect the computation of the constant quantity in SE, as it depends on the

precise choice of regulator and so is unphysical.

A more thorough justification of this computation occupies the next two subsections. In

broad terms, the same result turns out to be valid in even dimensions d > 2, a fact whose

demonstration will occupy most of the remainder of this chapter. More specifically, we mean

that the logarithmic contribution to W̃ [δµν ] for flat space with D × Sd−2 removed, where D

is a small disk of radius δ, yields a universal contribution to entanglement entropy for a ball

shaped region in flat space.

To return to d = 2, we describe the plane to the cylinder map and its relevance for

entanglement entropy in section 4.1.3. The demonstration however requires we also know how

the stress tensor transforms under conformal transformations. The transformation involves

the Schwarzian derivative which can be found in most textbooks on conformal field theory. In

an effort to be self contained we will use our effective anomaly action to derive the Schwarzian

derivative in section 4.1.2. In d = 2, the effective action turns out to be useful to compute

not only the entanglement entropy but also the single interval Rényi entropies. A calculation

of the Rényi entropies is provided in section 4.1.4.
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4.1.2 The Schwarzian Derivative

To calculate the change in the stress tensor under a Weyl scaling from gµν to ĝµν =

e−2τgµν , we begin with a variation of W = W − Ŵ with respect to the metric gµν ,

δW =δW − δŴ

=− 1

2

∫
M

d2x
(√

g δgµν〈T µν〉g −
√
ĝ δĝµν〈T µν〉ĝ

)
=− 1

2

∫
M

d2x
√
g δgµν

(
〈T µν〉g − e−4τ 〈T µν〉ĝ

)
,

(4.24)

where in the last line we have used that
√
ĝδĝµν =

√
g e−(d+2)τδgµν in d dimensions. The

subscript g on the expectation value refers to 〈T µν〉 on the space with metric g, and similarly

for ĝ. Using the explicit expression for W in (4.15), we compute its variation

δW = − c

24π

∫
M

d2x
√
g δgµν

[
∂µτ∂ντ + Dµ∂ντ − gµν

(
1

2
(∂τ)2 + �τ

)]
− c

24π

∫
∂M

dy
√
γ δgµνh

µνnρ∂ρτ ,

(4.25)

where hµν is the projector to the boundary,

hµν = gµν − nµnν . (4.26)

In obtaining (4.25) we have used that in two dimensions the Einstein tensor Rµν − R
2
gµν

vanishes, and that the variation of the Ricci tensor is a covariant derivative δRµν = DρδΓ
ρ
µν−

DνδΓ
ρ
µρ. Putting (4.25) together with (4.24), we find

〈Tµν〉ĝ = 〈Tµν〉g −
c

12π

[
∂µτ∂ντ + Dµ∂ντ − gµν

(
1

2
(∂τ)2 + �τ

)]
− c

12π
δ(x⊥)hµνn

ρ∂ρτ .(4.27)

Suppose we consider a Weyl rescaling which takes us from flat space, gµν = δµν , to the

new metric ĝµν = e−2τδµν . The stress tensor for a conformal theory in vacuum on the plane

is usually defined to vanish. Thus the stress tensor on the manifold with metric e−2τδµν will

be

〈Tµν〉 = − c

12π

[
∂µτ∂ντ + ∂µ∂ντ − δµν

(
1

2
(∂τ)2 + (�τ)

)]
(4.28)

(dropping the boundary contribution). The Schwarzian derivative describes how the stress

tensor transforms under a conformal transformation, i.e. a combination of a Weyl rescaling

and a diffeomorphism that leaves the metric invariant. If the complex plane is parametrized

initially by z and z̄, we introduce new variables w(z) and w̄(z̄) and require that the Weyl

rescaling satisfies

e−2τ =

(
∂w

∂z

)(
∂w̄

∂z̄

)
. (4.29)
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Start with the stress tensor in the w-plane, and perform a diffeomorphism to go to the z

variables. That transformed stress tensor should be related by a Weyl rescaling by e−2τ to

the stress tensor on the flat complex z-plane. Recalling that gzz = 0, we find that

(∂zw)2〈Tww(w)〉 = 〈Tzz(z)〉e−2τ δµν = − c

12π

[
(∂zτ)2 + (∂2

zτ)
]

=
c

48π

2(∂3
zw)(∂zw)− 3(∂2

zw)2

(∂zw)2
, (4.30)

which is the usual result for the Schwarzian derivative.

4.1.3 Entanglement Entropy from the Plane and Cylinder

We now consider the entanglement entropy of an interval with left endpoint u and right

endpoint v. The information necessary to compute the entropy is contained in the causal

development of this interval, i.e. the diamond shaped region bounded by the four null lines

x± t = u and x± t = v.

We will indirectly deduce the entanglement entropy by conformally mapping to a thermal

cylinder, keeping careful track of the phase picked up by the partition function under the

transformation.

Consider the following change of variables

e2πw/β =
z − u
z − v

, (4.31)

where z = x − t = x + itE, and correspondingly for z̄ and w̄. If we let w = σ1 + iσ2,

then σ2 is periodic with periodicity β, σ2 ∼ σ2 + β. In other words, the theory on the

w-plane is naturally endowed with a temperature 1/β. The other nice property of this map

is that the the interval at time t = 0 is mapped to the real line Re(w). Thus the reduced

density matrix ρA associated with the interval is related by a unitary transformation to

the thermal density matrix ρβ on the line. As the entanglement entropy is invariant under

unitary transformations, the entanglement entropy of the interval is the thermal entropy

associated with the cylinder, that is the thermal entropy on the infinite line. If we let

ρ =
e−βH

tr e−βH
, (4.32)

where H is the Hamiltonian governing evolution on the line, then

SE = − tr(ρ ln ρ) = β tr(ρH) + ln tr(e−βH) = β〈H〉 −Wcyl , (4.33)

where Wcyl ≡ − ln tr e−βH is the partition function on the cylinder. This entropy is infinite

because the cylinder is infinitely long in the σ1 direction, and we need to regulate the

divergence. The natural way to regulate is to cut off the cylinder such that −Λ < σ1 < Λ.
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In the z = x+ itE plane, these cut-offs correspond to putting small disks of radius δ around

the endpoints u and v, where now

δ

v − u
= e−2πΛ/β . (4.34)

We have two quantities to compute, β〈H〉 and Wcyl. We can use the Schwarzian derivative

from the previous subsection to compute

β〈H〉 =

∫
cyl

〈T 00〉dσ1 , (4.35)

where we have analytically continued σ0 = −iσ2. From the transformation rules (4.30)

and (4.31), the ww component of the stress tensor on the cylinder is

〈Tww(w)〉 =
πc

12β2
. (4.36)

In Cartesian coordinates, T 22 = −1
4
(Tww + T w̄w̄). Thus we have, analytically continuing

to real time σ0 = −iσ2, a positive thermal energy 〈T 00〉 = πc
6β2 from which follows the first

quantity of interest

β〈H〉 =
πc

3β
Λ =

c

6
ln
|v − u|
δ

. (4.37)

Toward the goal of computing Wcyl, we first compute the difference in anomaly actions

W [δµν , e
−2τδµν ] where the dilaton τ is derived from the plane to cylinder map

τ = −1

2
ln

[
β

2π

(
1

v − z
− 1

u− z

)]
+ c.c. (4.38)

Given the dilaton, we can compute the bulk contribution to the difference in effective actions∫
d2x
√
g (∂τ)2 =

(
π

β

)2 ∫
cyl

dw dw̄

∣∣∣∣coth
πw

β

∣∣∣∣2 =
8π2

β
Λ , (4.39)

and the boundary contribution

−2

∫
dy
√
γ Kτ ∼ 8π ln δ ∼ −16π2

β
Λ . (4.40)

Assembling the pieces, the difference in anomaly actions is then

W [δµν , e
−2τδµν ] ∼ −

πc

3β
Λ = − c

6
ln
|v − u|
δ

. (4.41)

The last component we need is the universal contribution to W [δµν ], which we claimed was

actually equal to the universal contribution to single interval entanglement entropy. Indeed,

everything works as claimed since the contributions from β〈H〉 and W [δµν , e
−2τδµν ] cancel

out:

SE = β〈H〉+W [δµν , e
−2τδµν ]−W [δµν ] ∼ −W̃ [δµν ] ∼

c

3
ln
|v − u|
δ

. (4.42)
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4.1.4 Rényi Entropies from the Annulus

In d = 2, the anomaly action also allows us to compute the Rényi entropies of an interval

A,

Sn ≡
1

1− n
ln tr ρnA . (4.43)

We use the replica trick to compute Sn. We can replace tr ρnA with a certain ratio of Euclidean

partition functions

tr ρnA =
Z(n)

Z(1)n
, (4.44)

where Z(n) is the path integral on an n-sheeted cover of flat space, branched over the interval

A. In the present case, we can use the coordinate transformation,

w =
z − u
z − v

, (4.45)

to put the point u at the origin and the point v at infinity. As is familiar from the computation

in the previous subsection, we need to excise small disks around the points u and v, or

correspondingly restrict to an annulus in the w plane of radius rmin < r < rmax.

To get the Rényi entropies, we would like to compare the partition function on the annulus

to an n-sheeted cover of the annulus. In two dimensions, these two metrics are related by a

Weyl transformation. We take the metric on the annulus to be

g = dr2 + r2dθ2 , (4.46)

while on the n-sheeted cover we have

ĝ = e−2τg = dρ2 + n2ρ2dθ2 , (4.47)

with e−τ = nrn−1 and ρ = rn. With this choice of τ , the difference in anomaly actions

becomes

W [δµν , e
−2τδµν , ] =

c

12

[∫ rmax

rmin

(∂τ)2r dr − 2τ |rmax
rmin

]
=

c

12
(n2 − 1) ln

rmax

rmin

.

(4.48)

Now to isolate the universal contribution to W [e−2τδµν ], we should remove the universal

contribution from W [δµν ]:

W [e−2τδµν ] ∼ −
c

12
(n2 + 1) ln

rmax

rmin

∼ − c

12

(
n+

1

n

)
ln
ρmax

ρmin

. (4.49)

We can tentatively identity this quantity with − lnZ(n). To compute the Rényi entropies, we

need to subtract off n lnZ(1). There is an issue here, however: both lnZ(n) and lnZ(1) are
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divergent quantities, and in comparing them we must arrange for the cutoffs to be congruous.

We claim that in order to compare lnZ(n) with lnZ(1) we ought to use the ρ-cutoffs so that

we excise discs of the same radius in each case. Thus, we need to subtract nW [δµν ] using

the cut-offs in the ρ coordinate system,

lnZ(n)− n lnZ(1) ∼ c

12

(
−n+

1

n

)
ln
ρmax

ρmin

. (4.50)

Using the definition (4.43) of the Rényi entropy, we find that

Sn ∼
c

12

(
1 +

1

n

)
ln
ρmax

ρmin

. (4.51)

Translating back to the z plane, this result recovers the classic result [57, 58]5

Sn ∼
c

6

(
1 +

1

n

)
ln
|v − u|
δ

. (4.52)

Taking n → 1, it reduces to the previous entanglement entropy result (4.23). Note that in

d > 2, one still has an n-sheeted cover of an annulus, but it is less clear what to do with the

remaining d− 2 dimensions.

4.2 Anomaly Actions in More than Two Dimensions

The trace anomaly (4.3) and effective anomaly action W have an increasingly compli-

cated structure as the dimension increases. Several issues need to be addressed for a complete

treatment of the effective action. Before embarking, we warn the reader that this section is

technical. The chief results are 1) the boundary term in the a-type anomaly (4.61) and (4.68),

2) two equivalent forms for the a-type anomaly action in (4.69) and (4.113), and 3) a demon-

stration that the a-type anomaly, including the boundary term we obtain, is Wess-Zumino

consistent in any dimension in subsection 4.2.3. Finally, 4) in (4.108) we present the most

general form of the trace anomaly in d = 4, including boundary central charges.

4.2.1 Boundary Term of the Euler Characteristic

As we are motivated by the problem of universal contributions to the entanglement

entropy across a sphere in flat space, our main focus is on how the a contribution to the

anomaly action is modified in the presence of a boundary. Regarding the other issues, we

make a few preliminary comments which will be developed minimally in the rest of the

chapter.

The presence of a boundary affects the cj contributions to the trace anomaly (4.3) triv-

ially. Let us dispose of this issue immediately. The Ij are, by definition, covariant under

5The calculation we have just presented is very similar in spirit if not in detail to ones in refs. [64, 65].

33



Weyl scaling. In fact the
√
gIj are invariant under Weyl scaling and so the cj contributions

to W [gµν , e
−2τgµν ] are simply

Wc ≡ −
∑
j

cj

∫
M

ddx
√
g τIj , (4.53)

with no additional boundary term.

The total derivative term in the trace anomaly (4.3) depends on the choice of scheme.

As we focus on universal aspects of the trace anomaly, with some exceptions we shall largely

ignore this object in what follows. A fourth issue we have little to say about, with one

exception, is the possible existence of additional terms in the trace anomaly associated

purely with the boundary. These additional terms are best understood when the bulk CFT

is odd-dimensional, so that the trace anomaly only has boundary terms. Those boundary

terms can include the boundary Euler density as well as Weyl-covariant scalars [66, 67], in

analogy with the trace anomaly of even-dimensional CFT. See ref. [56], which argued for a

boundary “c-theorem” using this boundary anomaly. In this work we focus on CFTs in even

dimension, with an odd-dimensional boundary. In d = 4, using Wess-Zumino consistency,

we identify two allowed boundary terms in the trace anomaly, but have nothing to add in

d ≥ 6.

To return to the a-type anomaly, the central observation is that the a dependent con-

tribution to the trace anomaly (4.3) integrates to give a quantity proportional to the Euler

characteristic for a manifold without boundary. The natural guess is then that in the pres-

ence of a boundary, one should add whatever boundary term is needed such that the integral

continues to give a quantity proportional to the Euler characteristic. (Indeed we saw pre-

cisely this story play out in two dimensions in section 4.1.) The requisite boundary term is

well known in the mathematics literature. See for example the review [68]. It is a Chern-

Simons like term constructed from the Riemann and extrinsic curvatures. To write it down,

we need some notation.

We start by introducing the orthonormal (co)frame one forms eA = eAµdx
µ, in terms of

which the metric on M is gµν = δABe
A
µ e

B
ν . Here and there, we also need their inverse Eµ

A,

satisfying Eµ
Ae

A
ν = δµν and Eµ

Ae
B
µ = δAB. From the eA and the Levi-Civita connection Γµνρ, we

construct the connection one-form ωAB via

∂µe
A
ν − Γρνµe

A
ρ + ωABµe

B
ν = 0 . (4.54)

From this definition, it follows that ωAB = −ωBA and the torsion one-form vanishes,

deA + ωAB ∧ eB = 0 . (4.55)

Further, the curvature two-form built from ωAB,

RA
B ≡ dωAB + ωAC ∧ ωCB =

1

2
RA

Bµνdx
µ ∧ dxν , (4.56)
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is related to the Riemann curvature by

Eµ
AR

A
Bρσe

B
ν = Rµ

νρσ . (4.57)

The curvature two-form satisfies the Bianchi identity

dRA
B + ωAC ∧RCB −RA

C ∧ ωCB = 0 . (4.58)

The Euler form is then

Ed ≡ RA1A2 ∧ · · · ∧ RAd−1AdεA1···Ad . (4.59)

where εA1···Ad is the totally antisymmetric Levi-Civita tensor in dimension d. The Euler form

and Euler density are related in the obvious way Ed = Ed vol(M), for vol(M) the volume

form on M . In writing (4.59) we have normalized the Euler form so that its integral over an

Sd is d! Vol(Sd).

To define the Chern-Simons like boundary term, it is convenient to define a connection

one-form and curvature two-form that interpolate linearly between a reference one-form ω0

and the actual one-form of interest ω:

ω(t) ≡ tω + (1− t)ω0 ,

R(t)AB ≡ dω(t)AB + ω(t)AC ∧ ω(t)CB .
(4.60)

The boundary term is constructed from the d− 1 form:

Qd ≡
d

2

∫ 1

0

dt ω̇(t)A1A2 ∧R(t)A3A4 ∧ · · · ∧ R(t)Ad−1AdεA1···Ad . (4.61)

(The density Qd is given by Qd = Qd vol(∂M).) If we also define

E(t)d ≡ R(t)A1A2 ∧ · · · ∧ R(t)Ad−1AdεA1···Ad , (4.62)

then it follows, as we show below,

E(1)d − E(0)d = dQd . (4.63)

The relevance of this construction to the Euler characteristic is that we can calculate

the Euler characteristic for a manifold M with boundary by comparing it to a manifold M0

with the same boundary and zero Euler characteristic. Because χ(A×B) = χ(A)χ(B) and

because χ vanishes in odd dimensions, one such zero characteristic manifold is a product

manifold where both A and B are odd dimensional. In a patch near the boundary, we can

always choose to express the metric in Gaussian normal coordinates,

g = dr2 + f(r, x)µνdx
µdxν , (4.64)
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where the boundary is located at r = r0. In this patch, we can choose a reference metric g0

so that the patch is a product space,

g0 = dr2 + f(r0, x)µνdx
µdxν . (4.65)

Let ω0 be the connection one-form associated with the metric g0. By construction Ed(1) = Ed,
and it follows from the local relation (4.63) that the Euler characteristic for a manifold with

boundary is

χ(M) =
2

d! Vol(Sd)

(∫
M

Ed −
∫
∂M

Qd
)
. (4.66)

We have normalized the characteristic so that χ(Sd) = 2.

On the boundary ∂M , we can give an explicit formula for ω̇AB in terms of the extrinsic

curvature,

ω̇(t)AB = ωAB − ωAB0 = KAnB −KBnA , (4.67)

where we have defined the extrinsic curvature one-form Kα ≡ Kαβdyβ, and converted its

index to a flat index through the eA, metric, and embedding functions. Similarly, nA = eAµn
µ.

In analogy with the two dimensional variation (4.5), we therefore posit that the a-

dependent piece of the Weyl anomaly is

δσW = (−1)d/2
4a

d! Vol(Sd)

(∫
M

Edδσ −
∫
∂M

Qdδσ
)

+ . . . (4.68)

where the ellipsis denotes terms depending on ci, the total divergence in the trace anomaly,

and possibly other purely boundary contributions. We verify this claim in subsection 4.2.3

by showing that the anomaly (4.68) is Wess-Zumino consistent. With this variation in hand,

we can integrate it in one of the same three ways we used in d = 2: guess work, using

the integral (4.16), or dimensional regularization. The integral (4.16) gives the a dependent

contribution to the effective anomaly action,

W [gµν , e
−2τgµν ] = (−1)d/2

4a

d! Vol(Sd)

∫ 1

0

dt

{∫
M

τEd[g′]−
∫
∂M

τQd[g′]
}∣∣∣∣

g′µν=e−2tτgµν

,(4.69)

We also deduce W from dimensional regularization in subsection 4.2.5.

Let us next study the relation between Ed and Qd. The relation (4.63) is an example of a

“transgression form” (see e.g. [69] for a modern summary of transgression forms). To prove

it, consider

d

dt
E(t)d = Ṙ(t)AB ∧

∂E(t)d
∂R(t)AB

. (4.70)
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It is convenient to introduce an exterior covariant derivative D. It takes tensor-valued p-

forms to tensor-valued p + 1-forms. For example it acts on a matrix-valued p-form, fAB
as

DfAB = dfAB + ωAC ∧ fCB − (−1)pfAC ∧ ωCB , (4.71)

and correspondingly for (co)vector-valued forms. It has the Lifshitz property, e.g.

d(fAB ∧ gAB) = D(fAB ∧ gAB) = DfAB ∧ gAB + (−1)pfAB ∧DgAB . (4.72)

Defining D(t), we then have

D(t)R(t)AB = 0 , Ṙ(t)AB = D(t)ω̇(t)AB . (4.73)

The metric δAB and antisymmetric Levi-Civita tensor εA1...Ad are also constant under D(t),

provided that we let the eA depend on t so that ω(t) is associated with a metric g(t).

Consequently,

D(t)
∂E(t)d
∂R(t)AB

=
d

2
D(t)

(
R(t)A1A2 ∧ . . . ∧R(t)Ad−3Ad−2εABA1...Ad

)
= 0 , (4.74)

and we can rewrite (4.70) as

d

dt
E(t)d = d

(
ω̇(t)AB ∧ ∂E(t)d

∂R(t)AB

)
= d

(
d

2
ω̇(t)A1A2 ∧R(t)A3A4 ∧ . . . ∧R(t)Ad−1AdεA1...Ad

)
.

(4.75)

Integrating this equality over t ∈ [0, 1] immediately yields (4.63).

4.2.2 An Explicit Expression For The Boundary Term

It will be expedient in the rest of this section to have an explicit expression for the

boundary term
∫
∂M
Qd, that is to perform the integral over t in (4.61). The final result

is (4.81).

Before doing so, we will use that the pullback of RAB to the boundary can be expressed

in terms of the intrinsic and extrinsic curvatures of the boundary. The relations between

RAB and the boundary curvatures are known as the Gauss and Codazzi equations, and we

discuss them in appendix 4.6.1.

Denoting the intrinsic Riemann curvature tensor of the boundary as R̊α
βγδ, we define the

intrinsic curvature two-form

R̊α
β ≡

1

2
R̊α

βγδdy
γ ∧ dyδ , (4.76)
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and thereby R̊A
B. Using the boundary covariant derivative ∇̊α, we define a boundary exterior

covariant derivative ∇̊ just like D. The Gauss and Codazzi equations can then be summarized

as

RA
B = R̊A

B −KA ∧ KB + nB∇̊KA − nA∇̊KB , (4.77)

We can similarly decompose the pullback of R(t). On the boundary

ω(t)AB = ωAB + (t− 1)(KAnB − nAKB) , (4.78)

which implies that on the boundary

R(t)AB = RA
B + (t− 1)∇̊(KAnB − nAKB) + (t− 1)2(KAnC − nAKC) ∧ (KCnB − nCKB)

= RA
B − (t2 − 1)KA ∧ KB + (t− 1)

(
nB∇̊KA − nA∇̊KB

)
, (4.79)

where we have used that ∇̊nA = KA. Putting this together with (4.77), we have

R(t)AB = R̊A
B − t2KA ∧ KB + t

(
nB∇̊KA − nA∇̊KB

)
. (4.80)

Then on the boundary the definition of Qd (4.61) becomes

Qd = d

∫ 1

0

dt nA1KA2 ∧
(
R̊A3A4 − t2KA3 ∧ KA4

)
∧ . . . ∧

(
R̊Ad−1Ad − t2KAd−1 ∧ KAd

)
εA1...Ad

= d
m−1∑
k=0

(
m− 1

k

)
(−1)k

2k + 1
R̊m−1−k ∧ K2k+1nAεA... , (4.81)

where we have defined m ≡ d
2

and in the last line we have suppressed the indices of the

curvature forms, all of which are dotted into the epsilon tensor. We have also used that only

one index of the epsilon tensor can be dotted into the normal vector nA, and so the factors

of ∇̊KA in R(t) never appear in Qd.
The integral representation ofQd in the first line of (4.81) is not new. A similar expression

appears in e.g. ref. [70].

For example, in four and six dimensions we have

Q4 = 4nAKB ∧
(
R̊CD − 1

3
KC ∧ KD

)
εABCD , (4.82)

Q6 = 6nAKB ∧
(
R̊CD ∧ R̊EF − 2

3
R̊CD ∧ KE ∧ KF +

1

5
KB ∧ KC ∧ KD ∧ KE ∧ KF

)
εABCDEF .

4.2.3 Wess-Zumino Consistency

We now verify that the posited term proportional to a in the Weyl anomaly (4.68) is

Wess-Zumino consistent. In this setting, Wess-Zumino consistency requires that the anomaly

satisfies

[δσ1 , δσ2 ]W = 0 . (4.83)
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Notating the anomalous variation proportional to a as

δσWa = A

(∫
M

δσ Ed −
∫
∂M

δσQd
)
, A ≡ (−1)d/2

4a

d! Vol(Sd)
,

we consider

δσ1δσ2Wa = A

(∫
M

δσ2δσ1Ed −
∫
∂M

δσ2δσ1Qd
)
. (4.84)

The variation of Ed is a total derivative,

δσEd = d

(
δσω

AB ∧ ∂Ed
∂RAB

)
, (4.85)

with

δσω
AB = (eAeBµ − eBeAµ )∂µδσ . (4.86)

It then follows that the bulk part of the second variation is

δσ1δσ2Wa = 2dA

∫
M

eA1eA2
µ ∂µδσ1 ∧ dδσ2 ∧RA3A4 ∧ . . . ∧RAd−1AdεA1...Ad + (boundary term) ,

= A

∫
M

ddx
√
gX µν

d ∂µδσ1∂νδσ2 + (boundary term) , (4.87)

where we have defined

X µν
d ≡

d

2d/2
Rν1ν2ρ1ρ2 . . . Rνd−3νd−2ρd−3ρd−2

εµρν1...νd−2ενρ
ρ1...ρd−2 . (4.88)

X µν
d is symmetric, X µν

d = X νµ
d , on account of Rµνρσ = Rρσµν . The symmetry of X µν

d together

with the variation (4.87) imply

[δσ1 , δσ2 ]Wa = (boundary term) . (4.89)

In other words, the bulk term in the a-anomaly is Wess-Zumino consistent. It suffices now

to show that the boundary term also vanishes.

To proceed, we require the Weyl variations of the extrinsic and intrinsic curvatures. The

variation of Kαβ and so KA is

δσKαβ = δσKαβ + γαβn
µ∂µδσ , δσKA = eAnµ∂µδσ = (δσω

A
B)nB , (4.90)

where eA in the variation of KA is pulled back to the boundary, while the variation of R̊A
B

is

δσR̊A
B = ∇̊δσω̊AB , (4.91)
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for ω̊AB the connection one-form on the boundary. The variation of ωAB on the boundary

is related to those of ω̊AB via

δσω
A
B = δσω̊

A
B +

(
nBδσω

A
C − nAδσωCB

)
nC . (4.92)

Under a general variation of KA and R̊A
B, Qd in (4.81) varies as

δQd = d
m−1∑
k=0

(
m− 1

k

)
(−1)k

{
δKB ∧ R̊CD +

m− 1− k
2k + 1

δR̊BC ∧ KD
}
∧ R̊m−2−k ∧ K2knAεABCD... .(4.93)

Specializing to Weyl variations, this becomes

1

d
δσQd =δσω

B
Cn

CRm−1nAεAB...

+ δσω̊
BC ∧

m−2∑
k=0

(
m− 2

k

)
(−1)k(m− 1)∇̊KD ∧ R̊m−2−k ∧ K2knAεABCD...

+ d

{
δσω̊

BC ∧
m−2∑
k=0

(
m− 2

k

)
(−1)k

m− 1

2k + 1
R̊m−2−k ∧ K2k+1nAεABC...

}
,

(4.94)

where we have used the Gauss equation in simplifying the δσK variation along with ∇̊R̊ = 0

in simplifying the δσR̊ variation. Using the Codazzi equation, RA
Bn

B = ∇̊KA, the second

line combines with the first to give

δσQd = δσω
AB ∧ ∂Ed

∂RAB
+ d

{
(m− 1)δσω̊

AB ∧ (Qd−2)AB
}
. (4.95)

In writing the boundary term, we have defined the matrix-valued (d− 3)-form (Qd−2)AB to

be

(Qd−2)AB ≡ d

m−2∑
k=0

(
m− 2

k

)
(−1)k

2k + 1
R̊m−2−k ∧ K2k+1nCεABC... (4.96)

The reason for the name is the similarity with the explicit expression (4.81) for Qd: the

sum (4.96) is identical to that in the expression for Qd, except it runs to k = m− 2 rather

than k = m− 1.

Putting δσQd together with the variation of the Euler form (4.85), the boundary term in

the variation of
∫
M
δσ2δσ1Ed cancels against the first half of the variation of Qd in (4.95), so

that

δσ1δσ2Wa = A

(∫
M

ddx
√
gX µν∂µδσ1∂νδσ2 − 2(m− 1)

∫
∂M

eAeBα∂
αδσ1 ∧ dδσ2 ∧ (Qd−2)AB

)
= A

(∫
M

ddx
√
gX µν∂µδσ1∂νδσ2 −

∫
∂M

dd−1y
√
γ Yαβ∂αδσ1∂βδσ2

)
, (4.97)
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where Yαβ is

Yαβ =dεαγγ1...γd−3εβγ
δ1...δd−3

m−2∑
k=0

(
m− 2

k

)
(−1)k

m− 1

(2k + 1)2m−3−k

× R̊γ1γ2δ1δ2 · · · R̊γd−2k−5γd−2k−4δd−2k−5δd−2k−4
Kγd−2k−3δd−2k−3

· · ·Kγd−3δd−3
.

(4.98)

Yαβ is symmetric owing to the symmetry of the boundary curvatures, R̊αβγδ = R̊γδαβ and

Kαβ = Kβα. Then (4.97) yields

[δσ1 , δσ2 ]Wa = 0 , (4.99)

which is what we sought to show.

4.2.4 A Complete Classification in d = 4 and Boundary Central

Charges

The previous subsection was somewhat abstract. Let us see how the consistency works

in d = 4. Along the way, we will also classify the potential boundary terms in the Weyl

anomaly, finding two “boundary central charges.” To our knowledge, one of these “central

charges” was first noted in [71] and the other later in ref. [72].

In d = 4, E4 and Q4 are equivalent to the scalars

E4 = RµνρσR
µνρσ − 4RµνR

µν +R2 ,

Q4 = 4

(
2E̊αβK

αβ +
2

3
tr(K3)−KKαβK

αβ +
1

3
K3

)
,

(4.100)

where E̊αβ = R̊αβ − R̊
2
γαβ is the boundary Einstein tensor, and the a-type term in the

anomaly is

δσWa = A

(∫
M

d4x
√
g δσE4 −

∫
∂M

d3y
√
γ δσQ4

)
, A =

a

16π2
. (4.101)

The Weyl variations of E4 and Q4 are

δσE4 = −4δσE4 + 8Dµ (Eµν∂νδσ) , (4.102)

δσQ4 = −3δσQ4 − 4
{
Rαβ

αβn
µ∂µ − 2∇̊α

(
Kαβ −Kγαβ

)
∇̊β

}
δσ − 8∇̊α

{(
Kαβ −Kγαβ

)
∂βδσ

}
,

Using the Gauss and Codazzi equations (4.77), which here are

Rαβγδ = R̊αβγδ −KαγKβδ +KαδKβγ , nµRµαβγ = ∇̊γKαβ − ∇̊βKαγ , (4.103)

we can rewrite the variation of Q4 as

δσQ4 = −3δσQ4 + 8nµE
µν∂νδσ − 8∇̊α

{(
Kαβ −Kγαβ

)
∂βδσ

}
. (4.104)
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The second variation of Wa is then

δσ1δσ2Wa = −8A

(∫
M

d4x
√
g Eµν(∂µδσ1)(∂νδσ2) +

∫
∂M

d3y
√
γ
(
Kαβ −Kγαβ

)
(∂αδσ1)(∂βδσ2)

)
,(4.105)

which is manifestly symmetric under δσ1 ↔ δσ2, so that

[δσ1 , δσ2 ]Wa = 0 . (4.106)

In this instance, the tensors X µν and Yαβ are

X µν = −8Eµν , Yαβ = 8
(
Kαβ −Kγαβ

)
. (4.107)

So much for showing that the a-type anomaly is consistent. Are there any other boundary

terms which may be allowed in the anomaly? This is essentially a cohomological question,

which we answer in three steps:

1. Posit the most general boundary variation of W characterized by dimensionless coef-

ficients.

2. Use the freedom to add local boundary counterterms to remove as many of these

coefficients as possible.

3. Demand that the residual variation is Wess-Zumino consistent.

We perform this algorithm in Appendix 4.6.2. The final result is that the total Weyl

anomaly for a d = 4 CFT is

δσW =
1

16π2

∫
M

d4x
√
g δσ

(
aE4 − cW 2

µνρσ

)
−
∫
∂M

d3y
√
γ δσ

(
AQ4 − b1trK̂3 − b2γ

αγK̂βδWαβγδ

)
,(4.108)

where K̂αβ is the traceless part of the extrinsic curvature, K̂αβ = Kαβ− K
d−1

γαβ, and Wαβγδ is

the pullback of the Weyl tensor. The terms proportional to b1 and b2 are the additional type-

B boundary terms in the anomaly. We refer to b1 and b2 as “boundary central charges,” and

they are formally analogous to c insofar as they multiply Weyl-covariant scalars. The purely

extrinsic term proportional to b1 first appeared in [71], and the second term proportional to

b2 later appeared in [72].

It is an interesting exercise to compute b1 and b2 for a conformally coupled scalar field.

The simplest way to proceed is to look at existing heat kernel calculations for a scalar field

in the presence of a boundary and then restrict to the conformally coupled case. The action

for such a conformally coupled scalar is

S =

∫
M

d4x
√
g

(
(∂φ)2 +

1

6
Rφ2

)
+

1

3

∫
∂M

d3y
√
γKφ2 . (4.109)
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Note that the last term ensures Weyl invariance. It is also necessary for coupling the theory

to gravity.6 By comparing this result with heat kernel calculations for a conformally coupled

scalar field in the presence of a boundary, we can extract values for b1 and b2. There are

two Weyl-invariant boundary conditions to consider, Dirichlet φ|∂M = 0 (in which case the

boundary term can be neglected) and the conformally-invariant Robin (nµ∂µ+ 1
3
K)φ|∂M = 0.

Comparing with for example (1.17) of [73] or the expressions for a4 on p 5 of [74], we deduce

that

b1(Robin) = − 1

(4π)2

2

45
, b1(Dirichlet) = − 1

(4π)2

2

35
, b2 =

1

(4π)2

1

15
. (4.110)

The value for b1(Dirichlet) was computed before in eq. (19) of ref. [71], while b1(Robin) can

be found in eq. (55) of ref. [75]. The coefficient b2 was computed in the Dirichlet case in

eq. (15) of ref. [72]. (In our conventions, a = 1/360 and c = 1/120 for a 4d conformally

coupled scalar.) As |b1(Dirichlet)| > |b1(Robin)|, and one can flow from the Robin theory

to the Dirichlet theory by deforming the Robin theory by a “boundary mass”
∫

d3y mφ2;

it is tempting to speculate that b1 satisfies a monotonicity property under boundary renor-

malization group flows, similar to the one conjectured for a by Cardy and now proven in

d = 4 by ref. [14]. This conjecture is different from the “boundary F -theorem” conjectured

in [76, 77, 78] for d = 4 boundary flows. We leave further analysis of these boundary central

charges b1 and b2 for the future.

4.2.5 Dimensional Regularization

In the two dimensional case, we saw that an effective anomaly action could be constructed

in dimensional regularization using a combination of the Einstein-Hilbert action and the

Gibbons-Hawking surface term in n = 2 + ε dimensions. In the limit ε → 0, these objects

sum together to give the Euler characteristic. The obvious guess, which we shall verify, is that

to construct the anomaly action in d dimensions, we need to continue the Euler density along

with theQd Chern-Simons like term to n = d+ε dimensions. In the mathematics community,

such a dimensionally continued Euler density is called a Lipschiftz-Killing curvature, while

in the physics community, these objects are used to construct actions for Lovelock gravities.

The mth Lipschitz-Killing curvature form in dimension n, 2m ≤ n, is:

En,m ≡

(
m∧
i=1

RA2i−1A2i

)
∧

(
n∧

i=2m+1

eAi

)
εA1···An , (4.111)

where εA1···An is the totally antisymmetric Levi-Civita tensor in dimension n. In n = 2m

dimensions, the Lipschitz-Killing form reduces to the Euler form, E2m,m = E2m. The analog

6If we are not interested in dynamical gravity, we could add an additional boundary term of the form

φ(K+3nµ∂µ)φ with arbitrary coefficient. This term preserves Weyl invariance. However, it does not modify

the boundary conditions or the scalar functional determinant. Consequently the boundary central charges

that we determine below do not depend on this term. See the appendix of [56] for a related discussion.
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of the Gibbons-Hawking term we call Qn,m:

Qn,m ≡ m

∫ 1

0

ω̇(t)A1A2 ∧

(
m∧
i=2

R(t)A2i−1A2i

)
∧

(
n∧

i=2m+1

eAi

)
εA1···An dt . (4.112)

It is a n − 1 degree Chern-Simons like form which is only defined on the boundary, which

reduces to Qd in n = 2m dimensions.

The obvious guess for the effective action W̃ [gµν ] in n = d + ε dimensions, i.e. the d

dimensional analog of (4.17), is

W̃ [gµν ] = (−1)m
4a

(n− 2m)(2m)! Vol(S2m)

(∫
M

En,m −
∫
∂M

Qn,m
)
, (4.113)

where d = 2m. The effective anomaly action is then just

W [gµν , e
−2τgµν ] = lim

n→d

(
W̃ [gµν ]− W̃ [e−2τgµν ]

)
. (4.114)

Note that this effective action only recovers the a dependent portion of the trace anomaly.

As in subsection 4.2.2, we can perform the integral over t in the definition of Qn,m to

deduce an explicit expression for Qn,m in terms of the extrinsic and intrinsic curvatures of the

boundary. The integration over t is identical to that performed in subsection 4.2.2, except

now we have n− 2m factors of eA to account for. The final result is

Qn,m = 2m
m−1∑
k=0

(
m− 1

k

)
(−1)k

2k + 1
R̊m−1−k ∧ K2k+1 ∧ en−2mnAεA... , (4.115)

where for brevity we have suppressed the indices of the curvatures and factors of eA, all of

which are contracted with the remaining indices of the epsilon tensor.

Next we show that dimensional regularization (4.113) reproduces the a portion of the

Weyl anomaly. Our approach is almost identical to the demonstration that the a-anomaly

is Wess-Zumino consistent in subsection 4.2.3. We begin with the expressions (4.111)

and (4.115) for En,m and Qn,m. We consider the Weyl variation of∫
M

En,m −
∫
∂M

Qn,m , (4.116)

in n dimensions. We compute this variation in two steps. First we show that this difference

does not depend on any variation of the connection one-form ωAB while keeping the eA

fixed.7 Then the Weyl variation only arises from the Weyl variation of the eA while keeping

the ωAB fixed. This last variation is rather simple, as the eA only appear through wedge

products in En,m and Qn,m.

7This same computation shows that the Lovelock gravities have a well-defined variational principle for

the metric gµν on a space with boundary (see ref. [79]).
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Now consider a variation of the connection one-form ωAB whilst keeping the eA and

embedding of the boundary fixed. The bulk and boundary curvatures vary as

δωRA
B = DδωAB , δωR̊A

B = ∇̊δω̊AB , δωKA = (δωAB)nB , (4.117)

where ω̊AB is the connection one-form on the boundary. The computation of this variation

is virtually identical to that in subsection 4.2.3, as the only difference between En,m and Ed,
and Qn,m and Qd, is an extra wedge product of n − 2m factors of the eA. The analogues

of (4.85) and (4.95) are

δωEn,m = d

(
δωAB ∧ ∂En,m

∂RAB

)
,

δωQn,m = δωAB ∧ ∂En,m
∂RAB

+ (total deriative) ,

(4.118)

so that

δω (En,m − dQn,m) = 0 , (4.119)

as claimed.

Now consider a variation under which ωAB is fixed and the eA vary as in an infinitesimal

Weyl rescaling,

δσe
A = δσeA . (4.120)

Then

δσ (En,m − dQn,m) = (n− 2m)δσ (En,m − dQn,m) , (4.121)

so that the variation of the dimensionally regulated anomaly action W̃ in (4.113) is

δσW̃ = (−1)m
4a

(2m)! Vol(S2m)

(∫
M

En,mδσ −
∫
∂M

Qn,mδσ
)
. (4.122)

In the n→ 2m limit, this variation coincides with the a-anomaly (4.68).

4.3 Dilaton Effective Actions and Boundary Terms

In this section, we present the a contribution to the dilaton effective action in a spacetime

with boundary in four and six dimensions. The d = 2 dilaton effective action with a bounday

term is given by (4.15). For d > 2, the computation of boundary terms is more laborious.

The details of a derivation using dimensional regularization are provided in appendix 4.6.3 in

dimensions four and six. We save the general discussion of how the universal entanglement

entropy arises from the boundary terms of these dilaton actions for the next section.
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4.3.1 The Dilaton Effective Action in d = 4

The Euler density in d = 4 is given by

E4 =
1

4
δµ1···µ4
ν1···ν4

Rν1ν2
µ1µ2R

ν3ν4
µ3µ4 = RµνρσR

µνρσ − 4RµνR
µν +R2 , (4.123)

where δµ1···µ4
ν1···ν4

is the fully antisymmetrized product of four Kronecker delta functions. The

boundary term is

Q4 = −4δµ1µ2µ3
ν1ν2ν3

Kν1
µ1

(
1

2
Rν2ν3

µ2µ3 +
2

3
Kν2
µ2
Kν3
µ3

)
= 4

(
2E̊αβK

αβ +
2

3
tr(K3)−KKαβK

αβ +
1

3
K3

)
.(4.124)

Denote the Einstein tensor as

Eµν = Rµν − 1

2
gµνR . (4.125)

In appendix 4.6.3, we find the dilaton effective action in d = 4 to be

W [gµν , e
−2τgµν ] =

a

(4π)2

∫
M

d4x
√
g
[
τE4 + 4Eµν(∂µτ)(∂ντ) + 8(Dµ∂ντ)(∂µτ)(∂ντ) + 2(∂τ)4

]
− a

(4π)2

∫
∂M

d3y
√
γ

[
τQ4 + 4(Kγαβ −Kαβ)(∂ατ)(∂βτ) +

8

3
τ 3
n

]
, (4.126)

where τn = nµ∂µτ is a normal derivative of the Weyl scale factor. The bulk term agrees with

ref. [14, 55] while the boundary contribution is to our knowledge a new result.

4.3.2 The Dilaton Effective Action in d = 6

The Euler density in d = 6 is given by

E6 =
1

8
δµ1···µ6
ν1···ν6

Rν1ν2
µ1µ2R

ν3ν4
µ3µ4R

ν5ν6
µ5µ6 (4.127)

and the boundary term is

Q6 =− 6δβ1···β5
α1···α5

Kα1
β1

[(
1

2
Rα2α3

β2β3 +
2

3
Kα2
β2
Kα3
β3

)(
1

2
Rα4α5

β4β5 +
2

3
Kα4
β5
Kα4
β5

)
+

4

45
Kα2
β2
Kα3
β3
Kα4
β5
Kα4
β5

]
.

(4.128)

To present the bulk dilaton action, we define

E(2)µν ≡ gµνE4 + 8Rµ
ρR

ρν − 4RµνR + 8RρσR
µρνσ − 4Rµ

ρστR
νρστ ,

Cµνρσ ≡ Rµνρσ − gµρRνσ + gµσRνρ .
(4.129)
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In appendix 4.6.3, we use dimensional regularization to find the bulk dilaton action

W [gµν , e
−2τgµν ](Bulk) =

a

3(4π)3

∫
M

d6x
√
g
{
−τE6 + 3E(2)

µν ∂
µτ∂ντ + 16Cµνρσ(Dµ∂ρτ)(∂ντ)(∂στ)

+ 16Eµν [(∂µτ)(∂ρτ)(Dρ∂
ντ)− (∂µτ)(∂ντ)�τ ]− 6R(∂τ)4

−24(∂τ)2(D∂τ)2 + 24(∂τ)2(�τ)2 − 36(�τ)(∂τ)4 + 24(∂τ)6
}
.

(4.130)

This reproduces the bulk Wess-Zumino term first obtained in [15].

We have not been able to generate the boundary term in a general curved background.

However, for a conformally flat geometry, we find

W [δµν , e
−2τδµν ] = − a

16π3

∫
M

d6x
√
g
{

2(∂τ)2(∂µ∂ντ)2 − 2(∂τ)2(�τ)2 + 3�τ(∂τ)4 − 2(∂τ)6
}

− a

3(4π)3

∫
∂M

d5y
√
γ
[
− τQ6[δµν ] + 48Pα

β (∂ατ)(∂βτ) + 3Q4[δµν ](∇̊τ)2

+ 48Kαβ(�̊τ)(∇̊α∂βτ) + 24K(∇̊α∂βτ)2 − 48Kαγ(∇̊β∂ατ)(∇̊γ∂βτ)

− 24K(�̊τ)2 − 32K(∇̊τ)2�̊τ − 16K(∂ατ)(∂βτ)(∇̊α∂βτ) (4.131)

+ 16Kαβ(∂ατ)(∂βτ)�̊τ + 32Kαβ(∇̊α∂βτ)(∇̊τ)2 + 12Kτ 4
n

+ 12K(∇̊τ)4 + 24K(∇̊τ)2τ 2
n + 48(�̊τ)(∇̊τ)2(τn) + 16(�̊τ)(τ 3

n)

− 24(∇̊τ)2τ 3
n − 36τn(∇̊τ)4 − 36

5
τ 5
n

]
,

where we have defined

Pα
β ≡

(
K2 − tr(K2)

)
Kα
β − 2KKαγKβγ + 2KγδK

αγKδ
β . (4.132)

4.4 The Sphere Entanglement Entropy: General Re-

sult

We consider the entanglement entropy across a sphere with radius ` in flat space. The

calculation is analogous to the discussion of the entanglement entropy for an interval in

d = 2 in section 4.1.3. The information necessary to compute the entropy is contained in the

causal development of the interior of the sphere, a ball of radius `. We can then map that

causal development to all of hyperbolic space cross the real line R×Hd−1 using the change

of variables

t = `
sinh τ/`

coshu+ cosh τ/`
,

r = `
sinhu

coshu+ cosh τ/`
,

(4.133)
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where τ labels the new time, u is the radial coordinate in hyperbolic space while (t, r) are

time and radius in polar coordinates in flat space. The line elements on flat space and

R×Hd−1 are related by a Weyl rescaling (see for example ref. [80])

η = −dt2 + dr2 + r2dΩ2
d−2 ,

= e2σ
[
−dτ 2 + `2(du2 + sinh2 u dΩ2

d−2)
]
,

(4.134)

where e−σ = coshu+cosh τ/`. We proceed by using the Euclidean version of this map, where

τE is a periodic variable with period 2π` so that the theory is naturally at a temperature

T = 1
2π`

, and the Euclidean geometry is conformal to S1×Hd−1. Note a difference here with

the d = 2 case where the temperature was a free parameter.

The computation of the entanglement entropy across a sphere thus reduces to a com-

putation of the thermodynamic entropy of the hyperbolic space SE = 2π`〈H〉 −W where

W ≡ − ln tr e−2π`H . As it did in d = 2, this computation in turn breaks down into three

pieces, a computation of 〈H〉, a computation of the effective anomaly action W [δµν , e
−2σδµν ]

and a computation of a universal contribution to W̃ [δµν ],

SE = 2π`〈H〉+W [δµν , e
−2σδµν ]− W̃ [δµν ] . (4.135)

To compute 〈H〉, we shall not try to write down the Schwarzian derivative in arbitrary even

d, but instead rely on an earlier closely related computation performed in ref. [1].

We have not been able to computeW [δµν , e
−2σδµν ] in general d, but we shall argue based

on computations in d = 2, 4 and 6 that it precisely cancels the contribution to SE from

〈H〉. Finally, we compute W̃ [δµν ] and show that the logarithmic contribution to it always

reproduces the universal part of the sphere entanglement entropy.

4.4.1 Casimir Energy

The easy part of this computation is 〈H〉 because it has essentially been done in the

chapter one, where the stress tensor in the vacuum on R × Sd−1 in even d was computed,

within the scheme where the the trace anomaly takes the form

〈T µµ〉 =
∑
j

cjIj − (−1)
d
2

4a

d! Vol(Sd)
Ed , (4.136)

i.e. in a scheme where local counterterms are used to remove the total divergence from the

stress tensor trace. Within that scheme, the stress tensor is unambiguously determined by

a to be

〈T 0
0 〉 = − 4a

(−`2)d/2dVol(Sd)
, 〈T ij 〉 =

4a

(−`2)d/2d(d− 1) Vol(Sd)
δij . (4.137)

On R×Hd−1 at the temperature T = 1
2π`

it follows that

〈T 0
0 〉 = − 4a

d `d Vol(Sd)
, 〈T ij 〉 =

4a

d(d− 1)`d Vol(Sd)
δij , (4.138)

48



because the Riemann tensor is the opposite sign, and the result is constructed from the same

product of d/2 Riemann tensors in each case. As the energy density is constant, the total

energy is given by multiplying the energy density by the (divergent) volume of hyperbolic

space, 〈H〉 = 〈T 00〉Vol(Hd−1). We need to isolate the logarithmic contribution to this volume

Vol(Hd−1) = `d−1 Vol(Sd−2)

∫ umax

0

sinhd−2 u du (4.139)

where our cut-off is

umax = − ln
δ/`

2− δ/`
. (4.140)

We find that

Vol(Hd−1) = . . .+
(−1)d/2

π
`d−1 Vol(Sd−1) ln

δ

`
+ . . . (4.141)

and hence that

2π`〈H〉 = . . .+ (−1)d/2
8a

d

Vol(Sd−1)

Vol(Sd)
ln
δ

`
+ . . . (4.142)

Like the stress tensor on R × Sd−1, neither the stress tensor on R × Hd−1 nor 〈H〉 is

independent of the choice of scheme. For example, if one computes the partition function of

a d = 4 conformal field theory in two different schemes in d = 4, their generating functionals

may differ by the local counterterm

ξ

∫
d4x
√
gR2 , (4.143)

where the coefficient ξ is real. Taking a metric variation of the counterterm, it is clear that

the stress tensor on R × Sd−1, or 〈H〉 on R × Hd−1, depends on the choice of ξ. See refs.

[1, 2, 81] for lengthier discussions of this issue. However, the dependence of W on ξ is linear

in β. Thus while 〈H〉 depends on the choice of scheme, the result we obtain for the sphere

entanglement entropy SE does not.

In principle, we should also worry about boundary contributions to 〈H〉. We claim these

contributions do not contribute to the logarithm. One way to compute them is to look at

the metric variation of the boundary Qn,m term in n = d+ ε dimensions. As we saw before,

the variation of the metric through the spin connection will cancel against a bulk variation

of En,m. The remaining variation comes only from the vielbeins, and cannot produce a

logarithmic contribution.

4.4.2 Dilaton Effective Action

It is more involved to obtainW [δµν , e
−2σδµν ]. In d = 2, 4, and 6, we use the dilaton effec-

tive actions that we found in sections 4.1 and 4.3. We will see that logarithmic contributions
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from 〈H〉 and W cancel out, i.e. that

2π`〈H〉+W [δµν , e
−2σδµν ] (4.144)

has no logarithmic contribution. Thus, the entire entanglement entropy contribution comes

from W̃ [δµν ], which we will compute next.

In principle, we should be able to evaluateW [δµν , e
−2σδµν ] for general even d and find the

same cancelation of the logarithmic pieces. In practice, there is an issue of non-commuting

limits in dimensional regularization which makes the calculation difficult. The correct order

of limits is to take the metric to be completely general, take the n → d limit, and only

then specialize to the metric of interest. To see that the other order of limits is problematic,

consider the following example. If we first fix the metric e−2σδµν to be that of S1×Hn−1 and

then take the limit n→ d, we get a divergence that disappears in the other order of limits.

Because S1×Hn−1 contains an S1 factor, the Euler characteristic, i.e. the leading 1/(n− d)

singularity in W̃ [e−2σδµν ], will vanish. In contrast, the leading 1/(n − d) singularity from

the boundary contribution to W̃ [δµν ] will not vanish. ThusW [δµν , e
−2σδµν ] computed in this

order will not even be finite.

We identify the conformal factor σ in the metric (4.134) with the dilaton τ of section

4.3 (not to be confused with hyperbolic time). For convenience, we divide up the bulk and

boundary contributions to W . We find the following results.

d = 2

The d = 2 case can be evaluated from the effective action (4.15). Denoting c
12

= a and

recalling that an interval has two endpoints, we find the bulk contribution to W is

W [δµν , e
−2σδµν ]Bulk = −

( a
2π

)(
2πu− 4π ln(sinhu)

)
Vol(S0) + ... (4.145)

The boundary action contributes the following relevant divergence (the logarithmic diver-

gence)

W [δµν , e
−2σδµν ]Boundary = −

( a
2π

)(
4πu

)
Vol(S0) + . . . , (4.146)

so that the logarithmic contribution to W is

W [δµν , e
−2σδµν ] = −2au+ . . . . (4.147)

Using the expression (4.142) for 〈H〉, we see 2π`〈H〉 +W [δµν , e
−2σδµν ] has no logarithmic

term.
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d = 4

In d = 4, we find that the bulk and boundary terms in the expression (4.126) for W
contribute the following logarithmically divergent terms

W [δµν , e
−2σδµν ]Bulk =

a

(4π)2

(
6πu− 16π ln(sinhu)

)
Vol(S2) + . . . ,

W [δµν , e
−2σδµν ]Boundary =

a

(4π)2

(
16πu

)
Vol(S2) + . . . .

(4.148)

d = 6

In d = 6, we find that the bulk and boundary terms in the expression (4.131) for W give

W [δµν , e
−2σδµν ]Bulk = − a

(4π)3
(30πu− 96π ln(sinhu)) Vol(S4) + . . . ,

W [δµν , e
−2σδµν ]Boundary = − a

(4π)3
(96πu)Vol(S4) + . . . .

(4.149)

In sum, using the dilaton effective action in d = 2, 4, 6, we confirm that there is no

logarithmic contribution to 2π`〈H〉+W [δµν , e
−2σδµν ], as advertised.

4.4.3 The Boundary Contribution to W in General Dimension

The last calculation to do is then an evaluation of the logarithmic contribution to W̃ [δµν ]

in general dimension. To keep the boundary parametrization simple, it is useful to work in

the (τ, u) coordinate system. In that system, we have that the extrinsic curvature takes the

form

Kτ
τ = −sinhu

`
, Ku

u = 0 , Kj
i =

1

`
(cosh

τ

`
cothu+ cschu)δij . (4.150)

The bulk term in W̃ vanishes identically in flat space, so it remains to evaluate the boundary

term. Two useful integrals for evaluating that boundary term in flat space are, for even d,∫ 2π

0

(1 + coshu cos t)d−2

(coshu+ cos t)d−1
dt =

π

sinhu

(d− 2)!

2d−3
(
d−2

2
!
)2 ,∫ 1

0

(1− s2)d/2−1ds =

√
π
(
d−2

2

)
!

2
(
d−1

2

)
!
.

(4.151)

Starting with the expression (4.81) and using the Gauss equation to replace the non-zero

R̊αβγδ with the vanishing Rµνρσ, the logarithmic contribution to the boundary term is∫
∂M

Qn,d/2 = . . .+
2π(n− d)d!

d− 1
Vol(Sd−2) ln

δ

`
+ . . . . (4.152)
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Using that for even d,

Vol(Sd−2)

Vol(Sd)
=
d− 1

2π
, (4.153)

we then find the logarithmic contribution

−W̃ [δµν ] = . . .+ (−1)d/24a ln
δ

`
+ . . . . (4.154)

Using the expression (4.135) for SE and that 2π`〈H〉 +W [δµν , e
−2σδµν ] has no logarithmic

term, we indeed find that the universal term in the entanglement entropy SE across a sphere

is

SE = . . .+ (−1)d/24a ln
δ

`
+ . . . , (4.155)

as claimed in ref. [40]. Often in these types of computations, knowing the value of a difference

like W [δµν , e
−2σδµν ] is useful because there are symmetry reasons to believe that for the

reference background W̃ [δµν ] will vanish. Here, precisely because we had a boundary, W̃ [δµν ]

did not vanish. As a result, we needed an independent way of calculating W̃ [δµν ], and in

fact, when the dust settled, we saw that we only needed to calculate W̃ [δµν ]. Everything else

canceled.

That W̃ [δµν ] gives the right answer could perhaps have been anticipated. From ref. [49],

it is known at least in four dimensions that the a dependent contribution to the entanglement

entropy for a general entangling surface Σ is proportional to the Euler characteristic of that

surface, SE ∼ 2aχ(Σ) ln(δ/`). The fact that W̃ [δµν ] gives us the entanglement entropy in

our case could be viewed as confirmation of ref. [49] in the case when Σ is a sphere. It is

not too much of a stretch to imagine that in general even d, the a dependent part of the

entanglement entropy will be SE ∼ (−1)d/22aχ(Σ)(ln δ/`). Indeed, there are arguments to

this effect in refs. [82, 83].

Before proceeding, we write down an expression for the thermal partition function WH =

− lnZH on Hd−1 at temperature T = 1/(2π`) whose logarithmic pieces agree with the results

above

WH = −a 4π`

(4π`2)d/2
(
d
2

)
!

[
Γ(d)− 2d−1Γ

(
1 +

d

2

)
Γ

(
d

2

)]
Vol(Hd−1) + . . . . (4.156)

The first term is proportional to 〈H〉 and the second term gives the entanglement entropy.

The quantity in brackets is A160481 in the Online Encyclopedia of Integer Sequences [84].

4.5 Discussion

We resolved the puzzle described in ref. [40]: the universal logarithmic term in the entan-

glement entropy (4.2) across a sphere in flat space (for a conformal theory) can be recovered
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by a Weyl transformation to hyperbolic space, provided one keeps careful track of boundary

terms. One interesting consequence of our results is that the logarithmic term can be inter-

preted as a purely boundary effect. With the help of the conformal map to hyperbolic space

cross a circle, focusing on the universal part, we identify the logarithmic contribution to the

entanglement entropy SE and the dimensionally regularized effective action W̃ [δµν ]:

SE ≡ − tr(ρA ln ρA) ∼ −W̃ [δµν ] , (4.157)

where W̃ [δµν ] is given by eq. (4.113). W̃ [δµν ] corresponds to a dimensionally continued Euler

characteristic of the causal development of the interior of the sphere, a ball, which in turn

receives contributions purely from the spherical boundary of the ball since the Riemann

curvature and hence the Euler density vanish in flat space. The leading area law divergence

in the entanglement entropy is also usually interpreted to be a boundary effect: entangle-

ment entropy scales with the area of the boundary because in the ground state most of

the entanglement is assumed to be local. But here we see that the subleading logarithmic

divergence is also a boundary effect. Perhaps this result should have been anticipated since

both divergences are regulated by a short distance cut-off δ, which one could think of as the

distance between lattice points on either side of the boundary.

As we discussed in section 4.4, that W̃ [δµν ] on its own gives the correct answer for the

log term in the entanglement entropy across a sphere can be viewed as a special case of

Solodukhin’s result [49] using a squashed cone in d = 4 that the a contribution to the

entanglement entropy across a general surface Σ can be written

SE ∼ 2aχ(Σ) ln(δ/`) . (4.158)

For non-spherical entangling surfaces, there will of course be other contributions to SE, for

example from the cj central charges. While we are not aware of a derivation (refs. [82, 83]

come close but ultimately only consider the sphere case), it seems reasonable that in general

dimension, the only modification needed to make this formula correct in our conventions is

a factor of (−1)d/2.

In the process of resolving this puzzle, we produced a number of auxiliary results which

are interesting in their own right. In two dimensions, where the trace anomaly is perhaps

most powerful, we were able to use an effective anomaly action to reproduce three well-

known results in conformal field theory, namely the Schwarzian derivative, the entanglement

entropy of an interval, and also the Rényi entropies for the interval. Neither the effective

anomaly action we use nor the results are new. However, we have not seen our form of the

effective anomaly action used to derive these three results before.8 Additionally, the story

in two dimensions provides a simple warm-up example for the story in general dimension

which we pursued next.

8See however ref. [64] for a similar calculation.
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Between d = 4 and d = 6, our story is the most complete in d = 4. In four dimensions,

we derived from general principles the most general Wess-Zumino consistent result for the

trace anomaly on a manifold with a codimension one boundary, including two boundary

central charges we denoted b1 and b2. It would be interesting to study b1 and b2 further (as

well as their counter-parts in higher dimensions). What values9 do they take for massless

fermions? for a gauge field? for superconformal field theories? Might they be ordered under

renormalization group flows, like the coefficient a?

Another pair of key results in this chapter are explicit formulae with boundary terms

for the a contribution to the effective anomaly action in d = 4 and d = 6 dimensions.

Previously, to our knowledge, only the bulk contribution had been worked out [14, 55, 15].

Unfortunately, in d = 6, we were only able to detail the boundary contribution to the

action for a conformally flat metric. The conformally flat case was enough to study the

entanglement entropy across a sphere. Nevertheless, it would be nice to write down the

boundary contribution for a general metric.

We mostly adopted the dimensional regularization to construct W . It would be interest-

ing to construct W using the integral formula (4.69).

4.6 Appendix

4.6.1 Differential Geometry with a Boundary

Let M be a d-dimensional, orientable, Riemannian manifold with metric g with a bound-

ary ∂M . We use xµ to indicate coordinates on patches of M and yα for coordinates on patches

of ∂M . The boundary can be specified by means of the embedding functions Xµ(yα). These

do not transform as tensors under reparameterizations in M , but their derivatives

fα
µ ≡ ∂αX

µ , (4.159)

do. Rather, the fµα transform as a vector under reparameterizations of the xµ and as a one-

form under reparameterizations of the yα. The fµα allow us to pull back covariant tensors on

M to covariant tensors on ∂M . For instance, the metric g pulls back to the induced metric

γ with components

g̊αβ(y) = fα
µ(y)fβ

ν(y)gµν(X(y)) . (4.160)

We also define

fαµ ≡ gµνγ
αβfβ

ν , (4.161)

which satisfies

fαµfβ
µ = δαβ , fαµfα

ν ≡ hνµ , (4.162)

9The boundary central charges for fermions and gauge fields were recently computed in d = 4 in ref. [85].
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with hµν a tangential projector. We can also define a unit-length, outward-pointing vector

field nµ after picking an orientation on ∂M via

nµ =
1

(d− 1)!
εµν1...νd−1

εα1...αd−1fα1

ν1 . . . fαd−1

νd−1 . (4.163)

The Covariant Derivative and the Second Fundamental Form

We use the Levi-Civita connection built from g to take derivatives D on M . From this

connection we construct a connection on ∂M that allows us to take derivatives ∇̊ of tensors

on ∂M . ∇̊ acts on e.g. a mixed tensor Tµα via

∇̊αT
µ
β = ∂αT

µ
β + ΓµναT

ν
β − Γ̊γβαT

µ
γ , (4.164)

with

Γµνα = Γµνρfα
ρ , Γ̊αβγ = fαµ (∂γδ

µ
ν + Γµνc) fβ

ν . (4.165)

It is easy to show that Γ̊αβγ is the Levi-Civita connection constructed from the induced

metric γαβ, and furthermore that the derivative satisfies

∇̊αgµν = 0 , ∇̊αγβγ = 0 . (4.166)

There is a single tensor with one derivative that can be built from the data at hand,

namely the second fundamental form IIµαβ,

IIµαβ ≡ ∇̊αfβ
µ . (4.167)

One can show that

IIµαβ = IIµβα , hµνII
ν
αβ = 0 , (4.168)

and the latter implies that

IIµαβ = −nµKαβ , (4.169)

where Kαβ is the extrinsic curvature of the boundary. From this and nµ∇̊αn
µ = 0 we also

find

∇̊αnµ = fβµKαβ . (4.170)

Let us relate this presentation to the more common one in terms of Gaussian normal

coordinates. For some patch on M which includes a patch of ∂M , we choose coordinates so

that g takes the form

g = dr2 + ĝαβ(r, y)dyαdyβ , (4.171)

where the boundary is extended in the yα at r = 0. That is, the embedding functions are

fα
r = 0 , fα

β = δβα, and consequently the induced metric is

γαβ(y) = ĝαβ(r = 0, y) . (4.172)
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In this coordinate choice we have

nr = 1 , IIrαβ = Γrαβ = −1

2
∂rĝαβ|y=0 . (4.173)

Note that the trace of the extrinsic curvature, K = γαβKαβ is

K =
1

2
ĝαβ∂rĝαβ

∣∣
r=0

=
£n

√
ĝ√
ĝ

∣∣∣∣
r=0

, (4.174)

with £n the Lie derivative along nµ, which coincides with a common formula used by physi-

cists for the extrinsic curvature of a spacelike boundary.

Gauss and Codazzi

Consider the Levi-Civita connection one-form Γµν = Γµνρdx
ρ and its curvature

Rµ
ν = dΓµν + Γµρ ∧ Γρν =

1

2
Rµ

νρσdxρ ∧ dxσ . (4.175)

Rµ
νρσ is the Riemann curvature which can also be defined through the commutator of deriva-

tives

[Dρ,Dσ]vµ = Rµ
νρσv

ν , (4.176)

for vµ a vector field. The pullback of Rµ
ν to ∂M can be expressed in terms of the curvature

R̊µ
ν of Γ̊ and the second fundamental form. The resulting expressions are the Gauss and

Codazzi equations. They can be summarized as

P[Rµ
ν ] = R̊α

βfα
µfβν + ∇̊Mµ

ν −Mµ
ρ ∧Mρ

ν , (4.177)

where ∇̊ is the covariant exterior derivative and

Mµ
ν = IIµαf

α
ν − fαµIIν

α , IIµα ≡ IIµαβdyβ . (4.178)

Alternatively, we can define

Γ̃µν = Γµναdyα −Mµ
ν , (4.179)

whose curvature satisfies

R̃µ
ν = R̊α

βfα
µfβν . (4.180)

In components, the Gauss and Codazzi equations read

Rαβγδ = R̊αβγδ −KαγKβδ +KαδKβγ ,

Rµαβγn
µ = −∇̊βKαγ + ∇̊γKαβ ,

(4.181)

and we have used the embedding scalars to convert indices on the bulk Riemann tensor into

indices on ∂M .
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4.6.2 Wess-Zumino Consistency in d = 4

We now perform the algorithm described in Subsection 4.2.4, beginning with step 1. We

need to parameterize the most general variation of W , which we denote as δσWb. After some

computation, we find that this variation contains sixteen independent terms10

δσWb =

∫
∂M

d3y
√
γ

{
8∑
I=1

bIBI +
8∑

J=1

BJDJ

}
δσ , (4.182)

indexed by the eight bI and eight BJ . (The coefficients bI and BJ are used to denote

boundary central charges.) We organize the terms in the following way. The eight BI are

three-derivative scalars. The eight DJ all involve derivatives of the Weyl variation δσ, and

so we denote them with a calligraphic D to suggest a derivative. We distinguish the BI and

DJ for two reasons. First, the allowed three-derivative counterterms are given by the BI .
Second, we will see shortly that those local counterterms redefine the coefficients of the DJ .

In any case, the BI are

B1 = R̊K , B2 = RK , B3 = R̊αβK
αβ , B4 = trK3 ,

B5 = K3 , B6 = nµ∂µR , B7 = tr K̂3 , B8 = Wαβγδγ
αγK̂βδ ,

(4.183)

Here Wαβγδ is the pullback of the Weyl tensor to the boundary, and we have defined K̂ to

be the traceless part of the extrinsic curvature,

K̂αβ ≡ Kαβ −
K

d− 1
γαβ , (4.184)

which transforms covariantly under Weyl rescaling as K̂αβ → eσK̂αβ. B7 and B8 are then

manifestly covariant under Weyl rescaling. They are the only nonzero scalars that can be

formed from either three factors of K̂, or one factor of K̂ and one of the Weyl tensor. They

cannot be eliminated by the addition of a local counterterm and are trivially Wess-Zumino

consistent, and so represent genuine boundary anomalies. The tr(K̂3) term first appeared in

ref. [71], while the Wαβγδγ
αγK̂βδ term appeared later in ref. [72]. The DJ are

D1 = �̊K , D2 = ∇̊α∇̊βK
αβ , D3 = R̊nµ∂µ , D4 = Rnµ∂µ .

D5 = KαβK
αβnµ∂µ , D6 = K2nµ∂µ , D7 = KnµnνDµDν , D8 = nµnνnρDµDνDρ ,

(4.185)

Continuing with step 2, the most general local boundary counterterm is

WCT =

∫
∂M

d3y
√
γ

6∑
I=1

dIBI . (4.186)

10In compiling the list of these sixteen terms, we have made extensive use of the Gauss and Codazzi

equations (4.103). We also use that the action of nµDµ is only well-defined on bulk tensors.
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The dI represent a choice of scheme. They can be adjusted to eliminate various coefficients

in δσWb. We would like to deduce which coefficients can be eliminated. This is an exercise

in linear algebra. As
√
γB7 and

√
γB8 are invariant under Weyl rescalings, we do not include

them in WCT . The Weyl variation of WCT may then be understood as a linear map Σ :

R6 → R8 which maps the {BI} (for I = 1, .., 6) to the {DJ} as

δσ

∫
∂M

d3y
√
γ BI =

∫
∂M

d3y
√
γ

8∑
J=1

ΣJ
IDJ . (4.187)

The number of DJ which can be eliminated is given by the dimension of the image of Σ, and

the null vectors of Σt encode the linear combinations of the DJ which cannot be removed by

a judicious choice of scheme.

A straightforward computation gives

Σ =



−4 −6 −1 0 0 6

0 0 −1 0 0 0

3 0 1 0 0 −3

0 3 0 0 0 1

0 0 0 3 0 3

0 −6 0 0 9 3

0 −6 0 0 0 −6

0 0 0 0 0 −6


(4.188)

The map Σ is injective, so six of DJ can be eliminated. The null vectors of Σt are given by

χ1 =
(

3 1 4 0 0 0 −3 4
)
, χ2 =

(
0 0 0 6 0 0 3 −2

)
, (4.189)

so the image of Σ is given by R8 modulo the R2 spanned by χ1 and χ2. In terms of the DJ ,

the linear combinations

3D1 +D2 + 4D3 − 3D7 + 4D8 , 6D4 + 3D7 − 2D8 , (4.190)

are never generated from the variation of WCT . Said another way, the dI can be adjusted to

eliminate all of the DJ except for D1 and D4. So the most general boundary Weyl variation,

having modded out by local counterterms, is

δσWb =

∫
∂M

d3y
√
γ

{
8∑
I=1

bIBI +B1�̊K +B4Rn
µ∂µ

}
δσ . (4.191)

Now we implement step 3, by computing the second Weyl variation. The second variations

of B1δσ2 through B8δσ2 follow (almost) immediately from the δσWCT that we computed
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above. Let us then consider carefully the second Weyl variation of the terms proportional

to B1 and B4. From these terms we get

δσ1δσ2Wb =

∫
d3y
√
γ
{
B1

(
3(nµ∂µδσ1)(�̊δσ2) + 2K(∂αδσ1)(∂αδσ2)

)
−6B4(nµ∂µδσ2)

(
�̊ + nνnρDνDρ +Knν∂ν

)
δσ1 + . . .

}
,(4.192)

where the ellipsis denotes terms that depend on b1 through b6. The only terms with a

normal derivative of δσ2 come from B4. Given that fact, it is impossible to symmetrize

under δσ1 ↔ δσ2 the term involving one normal derivative of δσ2 and two normal derivatives

of δσ1. Thus Wess-Zumino consistency forces B4 = 0.

It is slightly more involved to see that B1 must vanish. First, observe that the B6 term is

the only one which produces a second variation δσ2D8δσ1, which has three normal derivatives

and is not symmetric under δσ1 ↔ δσ2 and so is not WZ consistent. So b6 = 0. In fact, the

same sort of reasoning tells us that b2 = b4 = b5 = 0 and that b3 is proportional to b1 as

b3 = −3b1. In terms of the remaining parameters b1, B1, the second Weyl variation is simply

δσ1δσ2Wb =

∫
d3y
√
γ
{

3b1δσ2K̂
αβ∇̊α∇̊βδσ1 +B1

(
3(nµ∂µδσ1)(�̊δσ2) + 2K(∂αδσ1)(∂αδσ2)

)}
.(4.193)

This expression is not symmetric under δσ1 ↔ δσ2 for any nonzero value of b1 and B1, and

so WZ consistency enforces that they both vanish b1 = B1 = 0.

The only “boundary central charges” that survive are b7 and b8, and the boundary term

in the anomaly is

δσWb =

∫
∂M

d3y
√
γ
{
b7trK̂3 + b8γ

αγK̂βδWαβγδ

}
. (4.194)

Putting the pieces together, the total anomaly is given by (4.108) as advertised in Subsec-

tion 4.2.4. In the text, we relabel: b7 → b1 and b8 → b2.

4.6.3 Effective Action from Dimensional Regularization

In this appendix we consider the anomaly effective action W in even d dimensions as

obtained from dimensional regularization via the expression (4.114), which we recall here

W [gµν , e
−2τgµν ] = A lim

n→d

1

n− d

{(∫
M

En,m −
∫
∂M

Qn,m
)
−
(∫

M

Ên,m −
∫
∂M

Q̂n,m
)}

,(4.195)

where m = d/2 and A = (−1)d/24a/(d! Vol(Sd)). Here we obtain the explicit forms of W in

d = 4, 6 including boundary terms. (In d = 6 the boundary action will be evaluated in a

conformally flat geometry.) The bulk dilaton effective actions can be found in the literature;

the boundary terms to our knowledge are new results.
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We begin with the Lipschitz-Killing curvature En,m and the associated boundary term

Qn,m defined in (4.111) and (4.112) respectively. Denote the densities associated with these

forms as En,m and Qn,m. The first step in evaluating the expression (4.114) for W is to

deduce how En,m and Qn,m change under Weyl rescalings. Starting with the metric gµν and

performing a Weyl transformation to ĝµν = e−2τgµν , the transformed curvatures Ên,m and

Q̂n,m are√
ĝ Ên,m =

√
g e−(n−d)τ

{
Ed + DµJ

µ + (n− d)G+O(n− d)2
}
.√

γ̂ Q̂n,m =
√
γ e−(n−d)τ

{
Qd + nµJ

µ + ∇̊αH
α + (n− d)B +O(n− d)2

}
,

(4.196)

where it remains to determine Jµ, G, Hα, and B. Note that, in the n → d limit, (4.196)

implies

lim
n→d

(∫
M

Ên,m −
∫
∂M

Q̂n,m
)

= lim
n→d

(∫
M

En,m −
∫
∂M

Qn,m
)
, (4.197)

which is just a consequence of the fact that the Euler characteristic is a topological invariant

and so is invariant under Weyl rescalings. This has the practical effect that the dimensionally

regulated formula (4.114) for W is well-defined. From (4.196) we see that the integrand

of (4.195) is√
ĝÊn,m −

√
gEn,m =

√
g
{

DµJ
µ − (n− d)

(
τEd − Jµ∂µτ −G+ Dµ(τJµ)

)
+O(n− d)2

}
,√

γ̂Q̂n,m −
√
γQn,m =

√
γ
{
nµJ

µ + ∇̊αH
α − (n− d)

(
τQd + τ(nµJ

µ + ∇̊αH
α)−B

)
+O(n− d)2

}
.

In order to write W in as simple a way as possible, it will be useful to decompose G as

G = G0 + DµK
µ , (4.198)

for some current Kµ. Putting the pieces together, we find that the anomaly action W is

W [gµν , e
−2τgµν ] =A

(∫
M

ddx
√
g {τEd − Jµ∂µτ −G0}

−
∫
∂M

dd−1y
√
γ {τQd −Hα∂ατ −B + nµKµ}

)
.

(4.199)

Besides obtaining B and G defined in (4.196), we also need to determine Jµ, Kµ and Hα.

d = 4

To obtain the bulk action in d = 4, we find that Jµ is

Jµ = −8 {Eµν∂ντ + (Dµ∂ντ)∂ντ + (∂µτ)(∂τ)2 − (�τ)∂µτ} , (4.200)
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and we find it useful to split G into G0 and Kµ as

Kµ =
3

2
Jµ + 4Eµν∂ντ ,

G0 = 4Eµν(∂µτ)(∂ντ)− 8�τ(∂τ)2 + 6(∂τ)4 .
(4.201)

We find that the boundary data Hα and B are given by

Hα = 8
{(
Kαβ − γαβK

)
∂βτ + τn∂

ατ
}
,

B = nµKµ + 4∇̊α

{
∂βτ

(
Kαβ − γαβK

)}
− 4

(
Kαβ − γαβK

)
(∂ατ)(∂βτ)

− 8(∇̊τ)2τn −
8

3
τ 3
n ,

(4.202)

where we have denoted the normal derivative of τ as τn ≡ nµ∂µτ . Substituting these ex-

pressions into the general formula (4.199) for W , we find the result (4.126) quoted in sub-

section 4.3.1.

d = 6

After some tedious computation, we find that the current Jµ in d = 6 for general gµν is

given by

Jµ(6d) = Jµ1 + Jµ2 + Jµ3 + Jµ4 + Jµ5 , (4.203)

where Jµn contains n powers of τ , and

Jµ1 = 6E(2)µ
ν (∂ντ) ,

Jµ2 = 48Eµ
ν

(
(Dρ∂

ντ)(∂ρτ)− (∂ντ)�τ
)

+ 48Rµ
ρνσ(∂ντ)(Dσ∂ρτ)

+48Rνρ

(
(∂ντ)(Dρ∂µτ)− (Dρ∂ντ)(∂µτ)

)
,

Jµ3 = 48Eµ
ν (∂ντ)(∂τ)2 + 48(∂µτ)(�τ)2 − 96�τ(∂ντ)(Dν∂

µτ) (4.204)

+96(∂ντ)(Dρ∂ντ)(Dρ∂µτ)− 48(D∂τ)2(∂µτ) ,

Jµ4 = −144(∂τ)2�τ(∂µτ) + 144(∂τ)2(∂ρτ)(Dρ∂µτ) ,

Jµ5 = 144(∂τ)4(∂µτ) .

The quantities E(2)µν and Cµνρσ are defined in (4.129).

We have also computed G for a general metric gµν . We split it into G0 and Kµ so that

the bulk part of the anomaly action W matches the expression obtained in ref. [15]. The

resulting Kµ is

Kµ =
11

6
Jµ − 5E(2)µν∂ντ + 16Eµν

(
(∂ντ)�τ − (Dρ∂ντ)(∂ρτ)

)
+ 16Cµ

νρσ(Dρ∂ντ)(∂στ)

+48(Dµ∂ντ)(∂ντ)(∂τ)2 + 72(∂τ)4(∂µτ)− 48(∂τ)2�τ(∂µτ) , (4.205)
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and the expression for G0 is too lengthy to be worth writing here. It can be deduced by

comparing the general expression for W given in (4.199) with the bulk part of the anomaly

action in (4.130), using the formulae for Jµ and Kµ above. Similarly we decompose Hα into

powers of τ as

Hα = Hα
1 +Hα

2 +Hα
3 +Hα

4 . (4.206)

The computation on the boundary becomes much more tedious. We have computed B in

general but its expression is too lengthy to present here. We have not yet succeeded in finding

the current Hα when for a general metric gµν . When ĝµν is conformally flat, ĝµν = e−2τδµν ,

we find

Hα
1 = 48Pα

β ∂
βτ + 6Q4[δµν ]∂

ατ ,

Hα
2 = 48Kα

β (∂βτ)�̊τ − 48Kα
β (∇̊γ∂

βτ)(∂γτ)− 48K(∂ατ)�̊τ

+ 48Kβ
γ (∇̊γ∂βτ)(∂ατ) + 48K(∂βτ)(∇̊α∂βτ)− 48Kβ

γ (∇̊α∂βτ)(∂γτ) ,

Hα
3 = −48Kα

β (∂βτ)(∇̊τ)2 + 48K(∇̊τ)2(∂ατ) + 48Kτ 2
n(∂ατ)− 48τ 2

nK
α
β (∂βτ)

+ 96τn�̊τ(∂ατ)− 96τn(∇̊α∂βτ)(∂βτ) ,

Hα
4 = −144τn(∇̊τ)2∂ατ − 48τ 3

n(∂ατ) ,

(4.207)

where we defined Pαβ in (4.132). Using the expressions present above and the general

expression for the boundary term ofW in (4.199), we obtain the explicit form in d = 6 given

in (4.131).
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Chapter 5

Boundary Conformal Field Theory

and a Boundary Central Charge

This chapter is an edited version of my publication [4], written in collaboration with

Christopher Herzog.

Motivated by the boundary terms in the trace anomaly of the stress tensor, in this chapter

we continue the investigation into the structure of boundary conformal field theory (bCFT)

begun over thirty years ago [86, 87, 88].

A term in the trace anomaly of four dimensional CFTs mentioned is the square of the

Weyl curvature with a coefficient conventionally called c. In flat space, the form of the

two-point function of the stress tensor is fixed up to an overall normalization constant, a

constant determined by c as well [89]. Less well known is what happens when there is a

boundary. In curved space, one of the additional boundary localized terms in the trace of

the stress tensor can be schematically written KW where W is the bulk Weyl curvature and

K the extrinsic curvature of the boundary [3, 85, 90]. Let us call the coefficient of this term

b2. Ref. [85] observed that for free theories, b2 and c were linearly related: b2 = 8c with

our choice of normalization. A bottom up holographic approach to the problem suggests

that for interacting theories, this relation may not always hold [91, 92, 93]. In this chapter,

generalizing a method of Ref. [89] (see also [94]), we argue that b2 is fixed instead by the

near boundary limit of the stress tensor two-point function in the case where the two-point

function is computed in a flat half space. For free theories, the bulk and boundary limits of

the two-point function are related by a factor of two, and our proposal is then consistent with

the b2 = 8c observation. More generally, we will find that interactions modify the relation

between these limits.

To cross the logical chasm between b2 and the stress tensor two-point function, our ap-

proach is to try to fill the chasm rather than just to build a bridge. With a view toward

understanding the b2 charge, we investigate bCFT more generally, in dimension d > 2, em-
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ploying a variety of techniques from conformal block decompositions to Feynman diagrams.

As a result, we find a number of auxiliary results which may have interest in their own right.

One such result is the observation that current and stress tensor two-point functions of

free bCFTs have a universal structure. We consider stress tensor two-point functions for the

scalar, fermion, and p-form in 2p+2 dimensions as well as the current two-point functions for

the scalar and fermion. Additionally, we describe their conformal block decompositions in

detail. These calculations follow and generalize earlier work [87, 88, 95]. By conformal block

decomposition, we are referring to a representation of the two-point functions as a sum over

primary operators. In bCFT, there are two distinct such decompositions. Taking an operator

in the bulk close to the boundary, we can re-express it as a sum over boundary primary

fields, allowing for the boundary conformal block decomposition. Alternately, bringing two

operators close together, we have the standard operator product expansion (OPE) where we

can express the two operators as a sum over primary fields in the bulk, leading to the bulk

conformal block decomposition. Our discussion of conformal blocks is in section 5.2.3 and

appendix 5.7.1. Figure 5.1 represents the two types of conformal block decomposition in

pictorial form.

We find generically for free theories that the two-point correlators can be described by

a function of an invariant cross ratio v of the form f(v) ∼ 1 ± v2∆, where ∆ is a scaling

dimension. Here, v → 1 is the limit that the points get close to the boundary and v → 0 is

the coincident limit. (The behavior for free scalars is in general more complicated, but the

limits v → 0 and v → 1 of f(v) are the same as for the functions 1± v2∆.) The 1 in 1± v2∆

then corresponds to the two-point function in the absence of a boundary, and morally at

least, we can think of the v2∆ as the contribution of an image point on the other side of the

boundary.

In the context of the b2-charge, let us call the relevant cross-ratio function for the stress

tensor α(v) ∼ 1 + v2d. (Again, the function α(v) for a scalar is more complicated, but the

limits v → 0 and v → 1 are the same.) In this case, we have the relation α(1) = 2α(0). As we

will see, c is proportional to the bulk limit α(0). It follows that there will be a corresponding

relation between c and α(1) for free theories, which can be understood, given our proposed

general relation (5.155) between α(1) and b2, as the equality b2 = 8c in free theories.

What then happens for interacting theories? A canonical example of an interacting bCFT

is the Wilson-Fisher fixed point, analyzed in either the ε [96, 87] or large N [88] expansion

or more recently using boot strap ideas [95, 97]. Two choices of boundary conditions at the

planar boundary are Dirichlet (ordinary) or Neumann (special). Indeed, one finds generically,

in both the ε expansion and in the large N expansion, that α(1) 6= 2α(0). In precisely the

limit d = 4, the Wilson-Fisher theory however becomes free and the relation α(1) = 2α(0)

or equivalently b2 = 8c is recovered.

We would then like to search for an interacting bCFT in d = 4 dimensions that is

tractable. Our strategy is to consider a free field in four dimensions coupled to a free field on
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the planar boundary in three dimensions through a classically marginal interaction that lives

purely on the boundary. We consider in fact three different examples. Two of our examples

turn out to be cousins of the Wilson-Fisher theory with a boundary, in the sense that, with

appropriate fine tuning, they have a perturbative IR fixed point in the ε expansion, d = 4−ε.
The first example is a mixed dimensional Yukawa theory with a four dimensional scalar

coupled to a three dimensional fermion. The second is a mixed dimensional scalar theory

with coupled three and four dimensional scalar fields. At their perturbative interacting fixed

points, both interacting theories give α(1) 6= 2α(0) at leading order in perturbation theory.

To our knowledge, neither theory has been examined in the literature. Given the interest

in the Wilson-Fisher theory with a boundary, we suspect these cousins may deserve a more

in depth analysis. Our calculations stop at one loop corrections to the propagators and

interaction vertex. While these theories are free in the IR in d = 4 dimensions with ε = 0,

if we set ε = 1 we may be able to learn some interesting data about fixed point theories in

d = 3 with a two dimensional boundary. Unfortunately, neither of these interacting theories

gives us an example of b2 6= 8c.

The third and perhaps most interesting example consists of a four dimensional photon

coupled to a three dimensional massless fermion of charge g. The photon wave function is not

renormalized at one or two loops [98, 99]. Indeed, a simple power counting argument suggests

it is not perturbatively renormalized at all. A Ward identity then guarantees that the β

function for the coupling g vanishes. Perturbatively, it follows that this mixed dimensional

QED is exactly conformal for all values of g. The theory provides a controllable example

where α(1) 6= 2α(0) in exactly four dimensions. A leading order calculation in perturbation

theory indeed demonstrates that α(1) 6= 2α(0).

While we do not demonstrate the relation between α(1) and b2 for mixed QED in particu-

lar, we do provide a general argument based on an effective anomaly action. The argument is

similar in spirit to Osborn and Petkou’s argument [89] relating c and α(0). The basic idea is

the following. On the one hand, an effective anomaly action for the stress tensor will produce

delta-function distributions that contribute to the stress tensor two-point function in the co-

incident and near boundary limits. As the effective anomaly action is constructed from the

W 2 and KW curvature terms with coefficients c and b2, these delta-function distributions

will also have c and b2 dependent coefficients. At the same time, the coincident limit of the

stress tensor two-point function has UV divergences associated with similar delta-function

distributions. Keeping track of boundary contributions, by matching the coefficients of these

distributions, we obtain a constraint (5.155) relating b2 and α(1).

The quantity α(1) is related to the coefficient of the two-point function of the displace-

ment operator. In the presence of a boundary, the Ward identity for stress tensor conservation

is modified to

∂µT
µn = Dnδ(x⊥) , (5.1)

∂µT
µA = −∂BT̂ABδ(x⊥) , (5.2)
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where δ(x⊥) is the Dirac delta function with support on the boundary, µ, ν are d dimensional

indices, A,B are tangential indices and n is the normal direction. We can identify a scalar

Dn displacement operator, sourced by perturbing the location of the boundary. Through

a Gauss law pill box type argument, the operator Dn is equal to the boundary limit of

T nn. Moreover, the value α(1) is proportional to the contribution of Dn to the stress tensor

two-point function in the boundary limit. A novel feature of all three boundary interacting

theories, which distinguishes them from the Wilson-Fisher theory, is that in the perturbative

limit, they have degrees of freedom that propagate on the boundary and an associated

boundary stress tensor T̂ABδ(x⊥). We expect that a classical non-zero T̂AB generally exists

in theories with boundary degrees of freedom that are coupled to bulk degrees of freedom.

This boundary stress tensor is not conserved on its own, ∂BT̂
AB 6= 0, and conservation

of energy and momentum in the full theory is guaranteed through an inflow mechanism

involving the boundary limit of the normal-tangential component of the full stress tensor.

We have

Classical : T nn|bry = Dn , T nA|bry = −∂BT̂AB . (5.3)

While this story makes sense classically, renormalization effects alter the story non-

perturbatively. Because T̂AB is not conserved, its scaling dimension will shift upward from

the unitarity bound at ∆ = d − 1. It then no longer makes sense to separate out T̂AB

as a delta function-localized stress tensor; renormalization has “thickened” the degrees of

freedom living on the boundary. Instead, one has just the bulk stress tensor T µν , which is

conserved, and whose conservation implies

Operator : T nn|bry = Dn , T nA|bry = 0 , (5.4)

understood as an operator statement (at quantum level). Any insertion of T nA|bry in a

correlation function sets that correlation function to zero. In other words, there can be a

localized, nonzero T nA|bry classically, but quantum effects smear it out. This renormalization

effect leads to subtleties with commuting the small coupling and near boundary limits in our

perturbative calculations. For recent discussions of displacement operators, see [100, 101,

102, 103, 104, 105].1

Before moving to the details, it is worth remarking several features of this mixed dimen-

sional QED theory. While its bCFT aspects have not to our knowledge been emphasized,

1As an application of the boundary conformal anomaly, in [9] we introduced a notation of reduction

entropy (RE). We observed that the RE intriguingly reproduces the universal entanglement entropy upon a

dimensional reduction, provided that b2 = 8c and a term 〈Tnn〉 is added in the RE. Interestingly, from the

present chapter, we realize that 〈Tnn〉 in RE is the displacement operator. Moreover, since we find more

generally that b2 ∼ α(1), the RE encodes the information about boundary conditions for interacting CFTs.

The entanglement entropy, when computed by introducing a conical singularity, to our knowledge, however,

does not seem to depend on boundary conditions. It would be interesting to revisit the calculations in ref.

[9] in view of the results presented here.
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the theory is closely related to models of graphene and has been studied over the years

[106, 98, 99, 107, 108] in various contexts. Son’s model [109] of graphene starts with charged,

relativistic fermions that propagate in 2+1 dimensions with a speed vf < 1 and their electric

interactions with 4d photons. There is a β function for vf with an IR fixed point at vf = 1.

Restoring the magnetic field and interactions at this IR fixed point, one finds precisely this

mixed dimensional QED [98]. Similar statements about the non-renormalization of the cou-

pling g can be found in the graphene literature (see e.g. [110]). This mixed QED was recently

considered as a relativistic theory exhibiting fractional quantum Hall effect [111].

In the large N limit where one has many fermions, this QED-like theory can be mapped

to three dimensional QED in a similar large N limit, with g ∼ 1/N [107]. Indeed, three

dimensional QED is expected to flow to a conformal fixed point in the IR for sufficiently

large N . This map thus replaces a discrete family of CFTs, indexed by N , with a continuous

family of bCFTs, indexed by g. Such a map is reminiscent of AdS/CFT, with g playing

the role of Newton’s constant GN . More recently, Hsiao and Son [112] conjectured that

this mixed QED theory should have an exact S-duality. Such an S-duality has interesting

phenomenological consequences. Using it, they calculate the conductivity at the self-dual

point. Their calculation is in spirit quite similar to a calculation in an AdS/CFT context

for the M2-brane theory [113].

An outline of this chapter is as follows. In section 5.1, we review the various boundary

terms that appear in the trace anomaly of bCFTs. In section 5.2, we first review the general

structure of the two-point functions in bCFT. Then, we discuss constraints on these two-

point functions. We also give the boundary and bulk conformal block decompositions. Our

decompositions for the current two-point function (5.84, 5.102–5.105, 5.107) have not yet

been discussed in the literature to our knowledge. Nor have certain symmetry properties

of the boundary blocks (5.109) and positivity properties of the current and stress tensor

correlators (5.65, 5.67). In section 5.3, we give our argument relating α(1) to b2-charge in

4d bCFTs. We also review how α(0) is related to the standard bulk c-charge. In section 5.4,

we discuss two-point functions for free fields, including a conformal scalar, a Dirac fermion

and gauge fields. In particular, the discussion of p-forms in 2p + 2-dimensions is to our

knowledge new. Lastly, in section 5.5, we introduce our theories with classically marginal

boundary interactions. In Appendix 5.7.1 we review how to derive the conformal blocks for

scalar, vector, and tensor operators in the null cone formulation. Appendix 5.7.2 describes

some curvature tensors and variation rules relevant to the discussion of the trace anomaly

in sections 5.1 and 5.3. We discuss gauge fixing of the mixed QED in Appendix 5.7.3.

5.1 Boundary Conformal Anomalies

Considering a classically Weyl invariant theory embedded in a curved spacetime back-

ground, the counterterms added to regularize divergences give rise to the conformal (Weyl)
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anomaly, which is defined as a non-vanishing expectation of the trace of the stress tensor.

The conformal anomaly in the absence of a boundary is well-known, in particular in d = 2

and d = 4 dimensions; see for instance [24, 114] for reviews. There is no conformal anomaly

in odd dimensions in a compact spacetime. In the presence of a boundary, there are new

Weyl anomalies localized on the boundary and their structure turns out to be rather rich.

There are also new central charges defined as the coefficients of these boundary invariants.

One expects that these boundary central charges can be used to characterize CFTs with

a boundary or a defect, in a similar way that one characterizes CFTs without a boundary

using the bulk central charges.

For an even dimensional CFTd with d = 2n+ 2;n = 0, 1, 2, ..., the Weyl anomaly can be

written as

〈T µµ〉d=2n+2 =
4

d! Vol(Sd)

[∑
i

ciIi + δ(x⊥)
∑
j

bjIj − (−1)
d
2ad

(
Ed + δ(x⊥)E(bry)

)]
.(5.5)

We normalize the Euler density Ed such that integrating Ed over an Sd yields d!Vol(Sd). We

denote E(bry) as the boundary term of the Euler characteristic, which has a Chern-Simons-

like structure [68, 79]. See the previous chapter or [3] for an extensive discussion. Notice

that E(bry) is used to preserve the conformal invariance of the bulk Euler density when a

boundary is present, so its coefficient is fixed by the bulk a-charge. We are here interested

in a smooth and compact codimension-one boundary so we do not include any corner terms.

The normalizations of local Weyl covariant terms, Ii and Ij, are defined here such that

they simply have the same overall factor of the Euler anomaly. One can certainly adopt a

different convention and rescale central charges a, ci and bj. The numbers of the local Weyl

covariant terms vary depending on the dimensions. We emphasize that, since Ii and Ij are

independently Weyl covariant, there are no constraints relating bulk charges ci to bj from an

argument based solely on Weyl invariance of the integrated anomaly.

For an odd dimensional CFTd with d = 2n + 1, n = 1, 2, 3, . . . there is no bulk Weyl

anomaly. In the presence of a boundary, however, there can be boundary contributions. We

write

〈T µµ〉d=2n+1 =
2

(d− 1)! Vol(Sd−1)
δ(x⊥)

(∑
i

biIi + (−1)
(d+1)

2 adE̊d−1

)
, (5.6)

where E̊d−1 is the boundary Euler density defined on the d− 1 dimensional boundary. The

coefficient ad with odd d is an a-type boundary charge. Similarly, Ii represents independent

local Weyl covariant terms on the boundary.

An important boundary object is the traceless part of the extrinsic curvature defined as

K̂AB = KAB −
hAB
d− 1

K , (5.7)

where hAB is the induced metric on the boundary. K̂AB transforms covariantly under the

Weyl transformation.
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Note that we have dropped terms that depend on the regularization scheme in (5.5)

and (5.6). For instance, the �R anomaly in d = 4 CFTs can be removed by adding a

finite counterterm R2. It is worth mentioning that, from the previous chapter, Wess-Zumino

consistency rules out the possibility of a boundary total derivative anomaly in d = 4 [3].

Let us consider explicit examples. In d = 2 one has

〈T µµ〉d=2 =
a

2π
(R + 2Kδ(x⊥)) . (5.8)

One can replace the anomaly coefficient a with the more common d = 2 central charge

c = 12a. Note c = 1 for a free conformal scalar or a Dirac fermion. The d = 2 bCFTs

have been a rich subject but since there is no new central charge, in this chapter we will not

discuss d = 2 bCFTs. Interested readers may refer to [115] for relevant discussion of d = 2

bCFTs and their applications.

In d = 3 the anomaly contributes purely on the boundary. One has [66]

〈T µµ〉d=3 =
δ(x⊥)

4π

(
aR̊ + b tr K̂2

)
, (5.9)

where tr K̂2 = trK2 − 1
2
K2 and R̊ is the boundary Ricci scalar. Restricting to free fields of

different spin s, the values of these charges are

as=0 = − 1

96
(D) , as=0 =

1

96
(R) , as=

1
2 = 0 , (5.10)

and

bs=0 =
1

64
(D or R) , bs=

1
2 =

1

32
, (5.11)

where (D)/(R) stands for Dirichlet/Robin boundary conditions. Neumann boundary con-

ditions in general do not preserve conformal symmetry, but there is a particular choice of

Robin boundary condition involving the extrinsic curvature which does. The quantity b for

the scalar with Dirichlet and Robin boundary conditions was first computed to our knowledge

by refs. [116] and [56] respectively. The complete table can be found in [117].

In d = 4 CFT, the conformal anomaly reads

〈T µµ〉d=4 =
1

16π2

(
cW 2

µνλρ − aE4

)
+
δ(x⊥)

16π2

(
aE

(bry)
4 − b1 tr K̂3 − b2h

αγK̂βδWαβγδ

)
, (5.12)

where

E4 =
1

4
δµνλρσωηδR

σω
µνR

ηδ
λρ , (5.13)

E
(bry)
4 = −4δABCDEF KD

A

(
1

2
REF

BC +
2

3
KE
BK

F
C

)
, (5.14)

tr K̂3 = trK3 −K trK2 +
2

9
K3 , (5.15)

hαγK̂βδWαβγδ = Rµ
νλρK

λ
µn

νnρ − 1

2
Rµν(n

µnνK +Kµν) +
1

6
KR , (5.16)
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with δµνλρσωηδ/δ
ABC
DEF being the bulk/boundary generalized Dirac delta function, which evaluates

to ±1 or 0. Because of the tracelessness and symmetry of the Weyl tensor, one can write

hαγK̂βδWαβγδ = −KABWnAnB. The coefficients b1 and b2 are new central charges. The

values of these charges were computed for free theories. The bulk charges are independent

of boundary conditions and are given by

as=0 =
1

360
, as=

1
2 =

11

360
, as=1 =

31

180
, (5.17)

cs=0 =
1

120
, cs=

1
2 =

1

20
, cs=1 =

1

10
, (5.18)

(see e.g. [29]). The boundary charge b1 of a scalar field depends on boundary conditions.

One has

bs=0
1 =

2

35
(D) , bs=0

1 =
2

45
(R) , b

s= 1
2

1 =
2

7
(D or R) , bs=1

1 =
16

35
(D or R) . (5.19)

For scalar fields, these results were first obtained for Dirichlet boundary conditions by [71]

and for Robin conditions by [75]. This list is duplicated from the more recent ref. [85] where

standard heat kernel methods are employed. Finally, from free theories one finds

b2 = 8c , (5.20)

independent of boundary condition [85, 90]. (The result for b2 for scalar fields with Dirichlet

boundary conditions was computed first to our knowledge in [72].) It is one of the main

motivations of this work to understand how general the relation (5.20) is.

The complete classification of conformal anomaly with boundary terms in five and six

dimensions, to our knowledge, has not been given; see [90] for recent progress. Certainly, it

is expected that the numbers of boundary Weyl invariants increase as one considers higher

dimensional bCFTs.

5.2 Boundary Conformal Field Theory and Two-Point

Functions

We would like to first review the general construction of conformal field theory two-point

functions involving a scalar operator O, a conserved current Jµ, and a stress tensor T µν in

the presence of a planar boundary. Much of our construction can be found in the literature,

for example in refs. [87, 88, 95]. However, some details are to our knowledge new. We

provide the conformal blocks for the current-current two-point functions (5.84, 5.102– 5.105,

5.107). We also remark on order of limits, positivity (5.65, 5.67) and some symmetry (5.109)

properties more generally.
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5.2.1 General Structure of Two-Point Functions

A conformal transformation g is a combination of a diffeomorphism xµ → xµg (x) and a

local scale transformation δµν → Ωg(x)−2δµν that preserves the usual flat metric δµν on Rd.

The group is isomorphic to O(d + 1, 1) and is generated by rotations and translations, for

which Ω = 1, and spatial inversion xµ → xµ/x2, for which Ω = x2. In analogy to the rule

for transforming the metric, given a tensor operator Oµ1···µs of weight ∆, we can define an

action of the conformal group

Oµ1···µs(x)→ Ω∆+s
g

(
s∏
j=1

∂xg
µj

∂xνj

)
Oν1···νs(x) . (5.21)

In this language, Jµ and T µν have their usual engineering weights of ∆ = d − 1 and d

respectively. Notationally, it is useful to define the combination (Rg)
µ
ν ≡ Ωg

∂xgµ

∂xν
. Given

the action of Rg on the metric, it is clearly an element of O(d). In a coordinate system

x = (y,x), a planar boundary at y = 0 is kept invariant by only a O(d, 1) subgroup of the

full conformal group, in particular, the subgroup generated by rotations and translations in

the plane y = 0 along with inversion xµ → xµ/x2.

While in the absence of a boundary, one-point functions of quasi-primary operators van-

ish and two-point functions have a form fixed by conformal symmetry, the story is more

complicated with a boundary. A quasi-primary scalar field O∆ of dimension ∆ can have an

expectation value:

〈O∆(x)〉 =
a∆

(2y)∆
. (5.22)

The coefficients a∆ play a role in the bulk conformal block decomposition of the two-point

function, as we will see later. One-point functions for operators with spin are however

forbidden by conformal invariance.

To some extent, the planar boundary functions like a mirror. In the context of two-

point function calculations, in addition to the location x = (y,x) and x′ = (y′,x′) of the two

operators, there are also mirror images at (−y,x) and (−y′,x′). With four different locations

in play, one can construct cross ratios that are invariant under the action of the conformal

subgroup. Most of our results will be expressed in terms of the quantities

ξ =
(x− x′)2

4yy′
, (5.23)

v2 =
(x− x′)2

(x− x′)2 + 4yy′
=

ξ

ξ + 1
. (5.24)

Like four-point correlators in CFT without a boundary, the two-point correlators we consider

can be characterized by a handful of functions of the cross ratios ξ or equivalently v. In the
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physical region, one has 0 ≤ ξ ≤ ∞ and 0 ≤ v ≤ 1. It will be useful to introduce also the

differences

s ≡ x− x′ , s ≡ x− x′ . (5.25)

Following ref. [88], we construct the two-point correlation functions out of weight zero

tensors with nice bilocal transformation properties under O(d, 1). In addition to the metric

δµν , there are three:2

Iµν(x) = δµν − 2
xµxν
x2

, (5.26)

Xµ = y
v

ξ
∂µξ = v

(
2y

s2
sµ − nµ

)
, (5.27)

X ′µ = y′
v

ξ
∂′µξ = v

(
−2y′

s2
sµ − nµ

)
. (5.28)

The transformation rules are X → Rg(x) · X, X ′ → Rg(x
′) · X ′, and the bilocal Iµν(s) →

Rg(x)µλRg(x
′)νσI

λσ(s). One has X ′µ = Iµν(s)X
ν . In enforcing the tracelessness of the stress

tensor, it will be useful to note that

XµX
µ = X ′µX

′µ = 1 . (5.29)

Two-Point Functions

We now tabulate the various two-point functions

〈O1(x)O2(x′)〉 =
ξ−(∆1+∆2)/2

(2y)∆1(2y′)∆2
GO1O2(v) , (5.30)

〈Jµ(x)O(x′)〉 =
ξ1−d

(2y)d−1(2y′)∆
XµfJO(v) , (5.31)

〈Tµν(x)O(x′)〉 =
ξ−d

(2y)d(2y′)∆
αµνfTO(v) , (5.32)

〈Jµ(x)Jν(x
′)〉 =

ξ1−d

(2y)d−1(2y′)d−1

(
Iµν(s)P (v) +XµX

′
νQ(v)

)
, (5.33)

〈Tµν(x)Vλ(x
′)〉 =

ξ−d

(2y)d(2y′)∆

[(
Iµλ(s)Xν + Iνλ(s)Xµ −

2

d
gµνX

′
λ

)
fTV (v)

+ αµνX
′
λ gTV (v)

]
, (5.34)

〈Tµν(x)Tλσ(x′)〉 =
ξ−d

(2y)d(2y′)d

[
αµνα

′
σρA(v) + βµν,σρB(v) + Iµν,σρ(s)C(v)

]
, (5.35)

2In this section we follow the notation in [87, 88] where the normal vector is inward-pointing. In following

sections we will adopt instead an outward-pointing normal vector.
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where ∆1/∆2 is the scaling dimension of O1/O2 and

αµν =
(
XµXν −

1

d
δµν

)
, α′µν =

(
X ′µX

′
ν −

1

d
δµν

)
, (5.36)

βµν,σρ =
(
XµX

′
σIνρ(s) +XνX

′
σIµρ(s) +XµX

′
ρIνσ(s) +XνX

′
ρIµσ(s)

−4

d
δσρXµXν −

4

d
δµνX

′
σX
′
ρ +

4

d2
δµνδσρ

)
, (5.37)

Iµν,σρ(s) =
1

2

(
Iµσ(s)Iνρ(s) + Iµρ(s)Iνσ(s)

)
− 1

d
δµνδσρ . (5.38)

In writing the tensor structures on the right hand side, we have enforced tracelessness T µµ = 0.

However, we have not yet made use of the conservation conditions ∂µJ
µ = 0 and ∂µT

µν = 0.3

The conservation conditions fix (5.31) and (5.32) up to constants cJO and cTO:

fJO = cJOv
d−1 , fTO = cTOv

d . (5.39)

The mixed correlator 〈T µν(x)V λ(x′)〉 is fixed up to two constants, c±TV :

fTV = c+
TV v

d+1 + c−TV v
d−1 , (5.40)

gTV = −(d+ 2)c+
TV v

d+1 + (d− 2)c−TV v
d−1 . (5.41)

If we further insist that the vector V µ = Jµ is a conserved current, such that ∆ = d − 1,

then the correlator is fixed up to one undetermined number, c±TV = cTJ .

The 〈Jµ(x)Jν(x′)〉 and 〈T µν(x)T λσ(x′)〉 correlation functions on the other hand are fixed

up to a single function by conservation. The differential equations are

v∂v(P +Q) = (d− 1)Q , (5.42)

(v∂v − d)(C + 2B) = −2

d
(A+ 4B)− dC , (5.43)

(v∂v − d)((d− 1)A+ 2(d− 2)B) = 2A− 2(d2 − 4)B . (5.44)

This indeterminancy stands in contrast to two (and three) point functions without a bound-

ary, where conformal invariance uniquely fixes their form up to constants.

In the coincidental or bulk limit v → 0, the operators are much closer together than they

are to the boundary, and we expect to recover the usual conformal field theory results in the

absence of a boundary. We thus apply the boundary conditions A(0) = B(0) = Q(0) = 0.

The asymptotic values C(0) and P (0) are then fixed by the corresponding stress tensor and

current two-point functions in the absence of a boundary; we adopt the standard notation,

C(0) = CT and P (0) = CJ . The observables CT and CJ play important roles when analyzing

CFTs. In particular, for a free d = 4 conformal field theory of Ns scalars, Nf Dirac fermions,

and Nv vectors, one has [89]

CT =
1

4π4

(
4

3
Ns + 8Nf + 16Nv

)
. (5.45)

3While these conservation conditions may be altered by boundary terms involving displacement operators,

away from the boundary they are strictly satisfied.
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By unitarity (or reflection positivity), CT > 0.4 A trivial theory has CT = 0. Similarly, we

require that GO1O2(0) = κδ∆1∆2 for some constant κ > 0.

The decomposition of the two-point functions into A(v), B(v), C(v), P (v), and Q(v)

was governed largely by a sense of naturalness with respect to the choice of tensors Xµ

and Iµν rather than by some guiding physical principal. Indeed, an alternate decomposition

was already suggested in the earlier paper ref. [87]. While uglier from the point of view of

the tensors Xµ and Iµν , it is nevertheless in many senses a much nicer basis. This alternate

decomposition, discussed below, is more natural from the point of view of reflection positivity.

It also diagonalizes the contribution of the displacement operators in the boundary conformal

block decomposition.

This basis adopts the following linear combinations:

α(v) =
d− 1

d2
[(d− 1)(A+ 4B) + dC] , (5.46)

γ(v) = −B − 1

2
C , (5.47)

ε(v) =
1

2
C . (5.48)

Ref. [87] motivated these combinations by restricting x and x′ to lie on a line perpendicular

to the boundary, taking x = x′ = 0:

lim
x=x′→0

〈Tµν(x)Tσρ(x
′)〉 =

Aµνσρ
s2d

. (5.49)

In this case, one finds

Annnn = α(v) , (5.50)

AABnn = AnnAB = − 1

d− 1
α(v)δAB , (5.51)

AAnBn = γ(v)δAB , (5.52)

AABCD = ε(v)(δACδBD + δADδBC)− 1

d− 1

(
2ε(v)− α(v)

d− 1

)
δABδCD . (5.53)

Recall that the coincidental limit corresponds to v = 0 and the boundary limit to v = 1,

where in this perpendicular geometry v = |y−y′|
y+y′

. Relating these new linear combination to

C(0), for a non-trival unitary conformal field theory, we have

α(0) =
d− 1

d
CT > 0 , γ(0) = −ε(0) = −1

2
CT < 0 . (5.54)

One can play exactly the same game with the current:

lim
x=x′→0

〈Jµ(x)Jν(x
′)〉 =

Aµν
s2(d−1)

, (5.55)

4See [118] for the discussion of CT in non-unitary CFTs with four-and six-derivative kinetic terms.
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where

Ann = π(v) = P (v) +Q(v) , (5.56)

AAB = ρ(v)δAB = P (v)δAB . (5.57)

Comments on Order of Limits

There are subtleties when considering various limits of the objects v, Xµ and X ′µ. We

define the coincidental (or bulk) limit to be s→ 0 with y, y′ 6= 0. In this limit, v → 0 and

lim
s→0

Xµ = 0 = lim
s→0

X ′µ . (5.58)

We define the boundary limit to be y → 0 and y′ → 0 with s 6= 0. In this limit, we find

instead that v → 1 and

lim
y,y′→0

Xµ = −nµ = lim
y,y′→0

X ′ν . (5.59)

We see that if one imposes the coincidental limit after the boundary limit has been imposed,

the result is different from (5.58).

In the special case where both x and x′ lie on a perpendicular to the boundary, depending

on the sign of y − y′, one instead finds

lim
s=0

Xµ = − lim
s=0

X ′µ = nµ (y > y′ 6= 0) , (5.60)

lim
s=0

Xµ = − lim
s=0

X ′µ = −nµ (y < y′ 6= 0) . (5.61)

The following quantity is then independent of the relative magnitudes of y and y′,

lim
s=0

XµX
′
ν = −nµnν . (5.62)

A confusing aspect about this third case is that having taken this collinear limit, if we then

further take a boundary y → 0 or a coincident y → y′ limit, the answer does not agree

with either (5.58) or (5.59). In the near boundary limit, one finds that AnAnB = −γδAB
while restricting the insertions to a line perpendicular to the boundary, one finds instead

AnAnB = γδAB. In general, when comparing physical quantities, one will have to fix an order

of limits to avoid the sign ambiguity. In this case, however, due to our previous arguments,

we expect that γ(1) = 0 generically under conformal boundary conditions.

5.2.2 Reflection Positivity and Bounds

Unitarity in Lorentzian quantum field theory is equivalent to the reflection positivity in

quantum field theory with Euclidean signature. To apply reflection positivity, let us consider

the case where the coordinates

x = (y, z,0) , x′ = (y,−z,0) , sµ = (0, 2z,0) , (5.63)
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lie in a plane located at a non-zero y, parallel to the boundary. Denoting this plane as P , we

introduce a reflection operator ΘP such that the reflection with respect to P gives ΘP(x) = x′.

The square of ΘP is the identity operator. Acting on a tensor field, ΘP(Fµ1···µn(x)), ΘP will

flip the overall sign if there are an odd number of 2 (z-direction) indices. The statement of

reflection positivity for a tensor operator is that

〈Fµ1···µn(x)ΘP(Fν1···νn(x))〉 , (5.64)

treated as a dn×dn matrix, has non-negative eigenvalues. (Note this reflection operator acts

on just one of the points; when it acts on the difference it gives ΘP(s) = 0.) In our particular

choice of frame (5.63), ΘP(Iµν(s)) = δµν and ΘP(X ′µ) = Xµ. Making these substitutions in

the current and stress tensor correlators (5.33) and (5.35), we can deduce eigenvectors and

corresponding eigenvalues.

For the current two-point function, Xµ is an eigenvector with eigenvalue proportional to

π while δµ3 is an eigenvector with eigenvalue proportional to ρ, with positive coefficients of

proportionality. (Instead of 3, we could have chosen any index not corresponding to the y

and z directions.) Thus we conclude that

π(v) ≥ 0 , ρ(v) ≥ 0 , (5.65)

for all values of v, 0 ≤ v ≤ 1. For the stress tensor, αµν , X(µδν)3, and δ3(µδν)4 are eigenvectors

with eigenvalues proportional to α, −γ, and ε, demonstrating the positivity that5

α(v) ≥ 0 , −γ(v) ≥ 0 , ε(v) ≥ 0 . (5.67)

With these positivity constraints in hand, one can deduce a couple of monotonicity properties

from the conservation relations, re-expressed in terms of π, ρ, α, γ, and ε:

(v∂v − (d− 1))π = −(d− 1)ρ ≤ 0 , (5.68)

(v∂v − d)α = 2(d− 1)γ ≤ 0 , (5.69)

(v∂v − d)γ =
d

(d− 1)2
α +

(d− 2)(d+ 1)

d− 1
ε ≥ 0 . (5.70)

The last two inequalities further imply (v∂v−d)2α ≥ 0. While these inequalities provide some

interesting bounds for all values of v, they unfortunately do not lead to a strong constraint

on the relative magnitudes of the two end points of α, α(1) and α(0), a constraint, as we

will see, that could be interesting in relating the boundary charge b2 in (5.132) to the usual

central charge c in d = 4 CFTs.

5For instance, the eigen-equation for αµν is

〈Tµν(x)ΘP (Tλσ(x))〉αλσ =
d

d− 1

α(v)

s2d
αµν . (5.66)
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Using current conservation and our new basis of cross-ratio functions, we can write the

stress tensor and current two-point functions in yet a third way, eliminating ρ, γ, and ε in

favor of derivatives of π and α. This third way will be useful when we demonstrate the

relationship between α(1) and the boundary central charge b2. We write

〈Jµ(x)Jν(x
′)〉 =

1

s2d−2

(
π(v)Iµν(s)−

v∂vπ

d− 1
Îµν(s)

)
, (5.71)

〈Tµν(x)Tρσ(x′)〉 =
1

s2d

[
α

d

d− 1
Iµν,ρσ(s) + v2∂2

vα
Îµν,ρσ

(d− 2)(d+ 1)

− v∂vα

(
β̂µν,ρσ

2(d− 1)
+

(2d− 1)Îµν,ρσ
(d− 2)(d+ 1)

)]
, (5.72)

where we have defined some new tensorial objects in terms of the old ones:

Îµν(s) ≡ Iµν(s)−XµX
′
ν , (5.73)

Îµν,ρσ(s) ≡ Iµν,ρσ(s)− d

d− 1
αµνα

′
ρσ −

1

2
β̂µν,ρσ , (5.74)

β̂µν,ρσ ≡ βµν,ρσ − 4αµνα
′
ρσ . (5.75)

One nice feature of the hatted tensors is their orthogonality to the Xµ and X ′ρ tensors. In

particular

XµÎ
µρ = 0 = ÎµρX ′ρ , (5.76)

XµÎ
µν,ρσ = 0 = Îµν,ρσX ′ρ , (5.77)

XµXν β̂
µν,ρσ = 0 = β̂µν,ρσX ′ρX

′
σ . (5.78)

In the near boundary limit, v → 1, since Xµ, X ′µ → −nµ, only the tangential components

ÎAB and ÎAB,CD of Îµν and Îµν,ρσ are nonzero. In fact, in this limit, these tensors may be

thought of as the d−1 dimensional versions of the original tensors Iµν and Iµν,ρσ. For β̂µν,ρσ,

only the mixed components β̂(nA),(nB) survive in a near boundary limit.

5.2.3 Conformal Block Decomposition

Like four point functions in CFT without a boundary, the two-point functions 〈O1(x)O2(x′)〉,
〈Jµ(x)Jν(x′)〉, and 〈T µν(x)T λσ(x′)〉 admit conformal block decompositions. We distinguish

two such decompositions: the bulk decomposition in which the two operators get close to

each other and the boundary decomposition in which the two operators get close to the

boundary (or equivalently their images). Our next task is to study the structure of these de-

compositions. For simplicity, in what follows, we will restrict to the case that the dimensions

of O1 and O2 are equal and take ∆1 = ∆2 = η.
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Bulk Decomposition

Recall that in the presence of a boundary the one-point functions for operators with

spin violate conformal symmetry. As a result, the bulk conformal block decomposition will

involve only a sum over scalar operators with coefficients proportional to the a∆.

Allowing for an arbitrary normalization κ of the two-point function, the bulk OPE for

two identical scalar operators can be written as

Oη(x)Oη(x
′) =

κ

s2η
+
∑
∆ 6=0

λ∆B(x− x′, ∂x′)O∆(x′) , λ∆ ∈ R , (5.79)

where the sum is over primary fields. The bulk differential operator B(x − x′, ∂x′) is fixed

by bulk conformal invariance and produces the sum over descendants. As the OPE (5.79)

reflects the local nature of the CFT, this OPE is unchanged when a boundary is present.

The bulk channel conformal block decomposition is given by taking the expectation value of

(5.79) using (5.22) and then matching the result with (5.30). We write

GOηOη(v) = κ+
∑
∆ 6=0

a∆λ∆Gbulk(∆, v) , (5.80)

where we have pulled out the leading bulk identity block contribution.6 There are analogous

expressions for the functions P (v), Q(v), A(v), B(v), and C(v) out of which we constructed

〈Jµ(x)Jν(x′)〉 and 〈T µν(x)T λσ(x′)〉. We can write for example

Q(v) =
∑
∆ 6=0

a∆λ∆Qbulk(∆, v) , (5.81)

A(v) =
∑
∆ 6=0

a∆λ∆Abulk(∆, v) , (5.82)

where Gbulk(∆, v), Qbulk(∆, v), and Abulk(∆, v) have a very similar form:

Gbulk(∆, v) = ξ
∆
2 2F1

(
∆

2
,
∆

2
, 1− d

2
+ ∆;−ξ

)
, (5.83)

Qbulk(∆, v) = ξ
∆
2 2F1

(
1 +

∆

2
, 1 +

∆

2
, 1− d

2
+ ∆;−ξ

)
(1 + ξ) , (5.84)

Abulk(∆, v) = ξ
∆
2 2F1

(
2 +

∆

2
, 2 +

∆

2
, 1− d

2
+ ∆;−ξ

)
(1 + ξ)2 . (5.85)

Indeed, one is tempted to define a general form for which each of these functions is a special

case:

G
(s)
bulk(∆, v) = ξ

∆
2 2F1

(
s+

∆

2
, s+

∆

2
, 1− d

2
+ ∆,−ξ

)
(1 + ξ)s . (5.86)

6For two-point functions of scalar operators of different dimension, ∆1 6= ∆2, Gbulk will depend on ∆1

and ∆2. We refer to the literature [88, 95] for the more general expression, but suppress it here as we are

interested in the simpler case.

78



The remaining functions B(v), C(v), and P (v) can be straightforwardly constructed from

the conservation equations (5.42)-(5.44), and can be represented as sums of hypergeometric

functions. Note that the bulk identity block does not contribute to Q(v), A(v), and B(v), but

it does to C(v) and P (v). We review the derivation of these conformal block decompositions

using the null cone formalism in Appendix 5.7.1.

Boundary Decomposition

In the presence of a boundary, a bulk scalar operator Oη of dimension η can be expressed

as a sum over boundary operators denoted as O̊∆(x). We write

Oη(x) =
aO

(2y)η
+
∑
∆ 6=0

µ̃∆B̊(y, ∂̊)O̊∆(x) , µ̃∆ ∈ R, (5.87)

where the sum is over boundary primary fields. Boundary conformal invariance fixes the

operator B̊(y, ∂̊). The two-point function of two identical boundary operators is normalized

to be

〈O̊∆(x)O̊∆(x)〉 =
κd−1

s2∆
, (5.88)

where κd−1 is a constant. The one-point function of the boundary operator vanishes. Reflec-

tion positivity guarantees the positivity of these boundary two-point functions for unitary

theories. The boundary channel conformal block decomposition is given by squaring (5.87),

taking the expectation value using (5.88), and then matching the result with (5.30). We

write

GOO(v) = ξη

[
a2
O +

∑
∆ 6=0

µ2
∆Gbry(∆, v)

]
, (5.89)

where [119]

Gbry(∆, v) = ξ−∆
2F1

(
∆, 1− d

2
+ ∆, 2− d+ 2∆,−1

ξ

)
. (5.90)

To remove the η dependence from the conformal block, it is useful to include an explicit

factor of ξη in the decomposition (5.89). We have made a redefinition µ2
∆ = µ̃2

∆κd−1 to

allow for more generally normalized two-point functions. Reflection positivity applied to the

boundary two-point functions along with the fact that µ̃∆ ∈ R guarantees the coefficients

µ2
∆ in the boundary expansion are non-negative. There was no such constraint on the bulk

conformal block decomposition.

For a field of spin s, there is an extra subtlety that the sum, by angular momentum

conservation, can involve boundary fields of spin s′ up to and including s. For a conserved

current, we need to consider boundary fields of spin s′ = 0 and 1, while for the stress tensor
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we will need s′ = 0, 1, and 2 boundary fields. Fortunately, because of the restricted form of

the 〈Jµ(x)O(x′)〉, 〈Tµν(x)O(x′)〉, and 〈Tµν(x)Vλ(x
′)〉 correlation functions, the sum over fields

with spin strictly less than s is restricted, and the situation simplifies somewhat. Consider

first 〈Jµ(x)O(x′)〉 in the boundary limit, which vanishes for ∆ < d − 1 and blows up for

∆ > d − 1. We interpret the divergence to mean that the corresponding coefficient cJO
must vanish when ∆ > d − 1. It follows that in the boundary conformal block expansion

of 〈Jµ(x)Jν(x
′)〉, the only scalar field that contributes will have ∆ = d − 1. An analogous

argument in the stress tensor case implies that only scalar fields and vectors of dimension

∆ = d can contribute in the boundary conformal block expansion.

These restrictions on the boundary conformal block expansion are reflected in the possible

near boundary behaviors of the functions π, ρ, α, γ, and ε allowed by the current conservation

equations (5.68)–(5.70). From the definitions of π (5.56) and ρ (5.57), ρ corresponds to vector

exchange on the boundary and π to scalar exchange. If we exchange a boundary vector V̂ A of

dimension d−2+δV , where δV is an anomalous dimension, the near boundary behavior for ρ is

ρ ∼ (1−v)−1+δV , which can be deduced from the boundary conformal block expressions given

in this section and the current conservation equations. The unitary bound implies δV > 0,

and there is a descendant scalar operator ∂AV̂
A of dimension d−1+δV . (A boundary vector

operator at the unitarity bound d − 2 would be conserved, ∂AĴ
A = 0.) Correspondingly,

eq. (5.68) enforces the near boundary behavior π ∼ (1− v)δV . The exception to this rule is

when δV = 1. Then the conservation equations allow ρ and π to have independent order one

contributions near the boundary, corresponding to the possibility of having both vector and

scalar primaries of dimension d− 1.

The story is similar for the stress tensor with ε representing spin two exchange, γ spin

one exchange, and α scalar exchange. The generic case is boundary exchange of a spin two

operator ŜAB of dimension d−1+δS with δS > 0. The near boundary behaviors of the stress

tensor correlation function are then ε ∼ (1 − v)−1+δS , γ ∼ (1 − v)δS , and α ∼ (1 − v)1+δS

where the scaling of γ and α is consonant with the existence of descendants of the form

∂AŜ
AB and ∂A∂BŜ

AB. Again, there is one exception to this story, when δS = 1. In this case,

the conservation equations allow α, γ, and ε to have independent order one contributions

near the boundary, corresponding to scalar, vector, and spin two exchange of dimension d.

The scalar of ∆ = d plays a special role in bCFT. It is often called the displace-

ment operator. The presence of a boundary affects the conservation of the stress tensor,

∂µT
µn(x) = Dn(x)δ(y), where Dn is a scalar operator of ∆ = d. The scalar displacement

operator Dn is generally present in boundary and defect CFTs.

For interesting reasons, discussed in what follows, a vector of dimension ∆ = d and scalar

of dimension ∆ = d − 1 are generically absent from the conformal block decompositions of

these two-point functions. In the case of the current two-point function, a natural candidate

for a scalar of dimension ∆ = d − 1 is the boundary limit of Jn. If there are no degrees of

freedom on the boundary, then Jn must vanish as a boundary condition or the corresponding
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charge is not conserved. If there are charged degrees of freedom on the boundary character-

ized by a boundary current ĴA, then current conservation implies Jn|bry = −∂AĴA and the

total charge is conserved by an inflow effect. From the point of view of the conformal field

theory living on the boundary, the current ĴA is no longer conserved, and Jn|bry becomes

a descendant of ĴA. Because conservation on the boundary is lost, the scaling dimension

of ĴA must shift upward from d − 2 by a positive amount δJ . Correspondingly, the scaling

dimension of Jn shifts upwards by δJ from d− 1, and it will appear in the conformal block

decomposition not as a primary but as a descendant of ĴA. We thus expect generically that

a scalar primary of ∆ = d− 1 is absent from the boundary conformal block expansion of the

current-current two-point function.

The story for a vector of dimension ∆ = d is similar. A natural candidate for such

an operator is the boundary limit of T nA. In the free models we consider, the boundary

conditions force this quantity to vanish. The interacting models we introduce in section 5.5

have extra degrees of freedom that propagate on the boundary and an associated boundary

stress tensor T̂AB. By conservation of the full stress tensor, the boundary limit of T nA is

equal to the descendant operator ∂AT̂
AB, neither of which will necessarily vanish classically.

The scaling dimension of T̂AB must shift upward from d − 1 by a positive amount δT .

The boundary operator corresponding to T nA|bry now enters the boundary conformal block

decomposition not as a vector primary but as a descendant of the spin two field T̂AB. We

expect generically that a vector of ∆ = d is absent from the boundary conformal block

expansion of 〈Tµν(x)Tλσ(x′)〉.
We will nevertheless keep these vectors and scalars in our boundary conformal block

decomposition. The reason is that for these interacting models, we only perform leading

order perturbative calculations. At this leading order, we cannot see the shift in dimension

of T nA and Jn, and it is useful to continue to treat them as primary fields.

The boundary block expansions for 〈Jµ(x)Jν(x′)〉 and 〈T µν(x)T λσ(x′)〉 have the forms

π(v) = ξd−1

(
µ2

(0)π
(0)
bry(v) +

∑
∆≥d−2

µ2
∆π

(1)
bry(∆, v)

)
, (5.91)

α(v) = ξd

(
µ2

(0)α
(0)
bry(v) + µ2

(1)α
(1)
bry(v) +

∑
∆≥d−1

µ2
∆α

(2)
bry(∆, v)

)
, (5.92)

where the indices (0), (1) and (2) denote the spins. One has similar expressions for the other

functions ρ(v), γ(v), and ε(v).
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In this basis, we find the following blocks7

α
(0)
bry(v) =

1

4(d− 1)
(v−1 − v)d(d(v−1 + v)2 − 4) , (5.93)

γ
(0)
bry(v) = − d

4(d− 1)2
(v−1 − v)d(v−2 − v2) , (5.94)

ε
(0)
bry(v) =

d

4(d− 1)2(d+ 1)
(v−1 − v)d(v−2 − v2)2 . (5.95)

In the boundary limit ξ →∞, the combinations ξdγ
(0)
bry and ξdε

(0)
bry vanish while ξdα

(0)
bry → 1. In

this basis, the contribution of the displacement operator Dn to the boundary block expansion

is encoded purely by α
(0)
bry.

Similarly, for the spin one exchange, we find

α
(1)
bry(v) =

d− 1

d
(v−1 − v)d(v−2 − v2) , (5.96)

γ
(1)
bry(v) = −1

2
(v−1 − v)d(v−2 + v2) , (5.97)

ε
(1)
bry(v) =

1

2(d+ 1)
(v−1 − v)d(v−2 − v2) , (5.98)

where now ξdγ
(1)
bry → −1 in the boundary limit while the other two vanish. For spin two

exchange with weight ∆ = d, we have

α
(2)
bry(d, v) = (v−1 − v)d(v−1 − v)2 , (5.99)

γ
(2)
bry(d, v) = − 1

d− 1
(v−1 − v)d(v−2 − v2) , (5.100)

ε
(2)
bry(d, v) =

1

(d2 − 1)(d− 2)
(v−1 − v)d(d(v−1 + v)2 − 2(v−2 + v2)) , (5.101)

where now ξdε
(2)
bry → 4/(d + 1)(d − 2) and the other two vanish. We have shifted the nor-

malization convention here relative to (5.93) and (5.97) so that we may write the higher

dimensional blocks (5.106) for α
(2)
bry(∆, v) in a simpler and uniform way.

Playing similar games with the current, we find

π
(0)
bry(v) =

1

2
(v−1 − v)d−1(v−1 + v) , (5.102)

ρ
(0)
bry(v) =

1

2(d− 1)
(v−1 − v)d , (5.103)

and

π
(1)
bry(d− 1, v) = (v−1 − v)d , (5.104)

ρ
(1)
bry(d− 1, v) =

1

d− 1
(v−1 − v)d−1(v−1 + v) . (5.105)

7The results in the basis of A(v), B(v), C(v) are given in [95].
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For higher dimension operators, we have

α
(2)
bry(∆, v) = ξ−∆−2

2F1

(
2 + ∆, 1− d

2
+ ∆, 2− d+ 2∆;−1

ξ

)
, (5.106)

π
(1)
bry(∆, v) = ξ−∆−1

2F1

(
1 + ∆, 1− d

2
+ ∆, 2− d+ 2∆;−1

ξ

)
. (5.107)

The remaining functions γ
(2)
bry(∆, v), ε

(2)
bry(∆, v) and ρ

(1)
bry(∆, v) have a more cumbersome form

but can be straightforwardly derived from the conservation equations (5.42)-(5.44). Evi-

dently, Gbry(∆, v), π
(1)
bry(∆, v), and α

(2)
bry(∆, v) all are special cases of the general form

ξ−∆−s
2F1

(
s+ ∆, 1− d

2
+ ∆, 2− d+ 2∆;−1

ξ

)
. (5.108)

We have written all of these blocks to make a symmetry under v → v−1 apparent. The

transformation v → v−1 or equivalently ξ → −1 − ξ corresponds to a reflection y′ → −y′

keeping y fixed. Under such a partial reflection, the blocks are eigenvectors with eigenvalue

±1 for integer ∆:

f
(s)
bry(∆,

1

v
) = (−1)∆+s+σf

(s)
bry(∆, v) . (5.109)

The shift σ is one for ρ
(s)
bry and γ

(s)
bry and zero otherwise. For the higher dimensional exchanged

operators, this reflection property relies on a hypergeometric identity

2F1(a, b, c; z) = (1− z)−a 2F1

(
a, c− b, c; z

z − 1

)
, (5.110)

in the special case where c = 2b.

5.2.4 Crossing Relations

A crossing relation for boundary conformal field theory is the statement that two-point

functions can be expressed either as a sum over boundary conformal blocks or as a sum over

bulk conformal blocks. (See figure 5.1. The left/right plot represents the bulk/boundary

channel.)

The field theories we consider are either free or have some weak interactions that are

constrained to live on the boundary. The solutions to crossing for the current and stress

tensor correlation functions are remarkably universal for the family of theories we consider.

Roughly speaking, they all involve a decomposition of a function of an invariant cross ratio

of the form

G(v) = 1 + χvη . (5.111)

The parameter χ will depend on the boundary conditions. Roughly, one can think of this

expression in terms of the method of images, where the 1 reproduces the answer in the
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Σ =
Σ

Figure 5.1: Crossing symmetry for two-point functions in bCFTs.

coincident/bulk limit, in the absence of a boundary, and the vη represents the correlation

between points and their images on the other side of the boundary. In the bulk channel,

1 is the identity block and vη will generically involve a sum over a tower of fields. In the

boundary channel, we first decompose G(v) = 1
2
(1 + χ)(1 + vη) + 1

2
(1 − χ)(1 − vη) into

eigenfunctions of the reflection operator v → 1/v and then find infinite sums of boundary

blocks that reproduce 1 ± vη. The two-point function may not be precisely of the form

1 + χvη, but the discrepancy can always be accounted for by adjusting the coefficients of a

few blocks of low, e.g. ∆ = d− 1 or d, conformal dimension.

A number of the blocks have a very simple form. In the bulk, we find

Gbulk(d− 2, v) = vd−2 , Qbulk(d, v) = vd , Abulk(d+ 2, v) = vd+2 . (5.112)

In the boundary, we already saw that the blocks of dimension d− 1 for 〈Jµ(x)Jν(x′)〉 and of

dimension d for 〈T µν(x)T λσ(x′)〉 have a polynomial form. However, we neglected to point out

that for the scalar two-point functions, the boundary blocks of dimension d−2
2

+n where n is

a non-negative integer also have a simple polynomial form. The polynomial like expressions

satisfy the recursion relation

Gbry

(d− 2

2
+ n, v

)
=

4(2n− 1)

(2n− d)

[
(1 + 2ξ)Gbry

(
d− 2

2
+ n− 1, v

)
+

4ξ(ξ + 1)

(d− 4 + 2n)
∂ξGbry

(
d− 2

2
+ n− 1, v

)]
. (5.113)

The first two values are

ξ
d−2

2 Gbry

(
d− 2

2
, v

)
=

1

2
(1 + vd−2) , (5.114)

ξ
d−2

2 Gbry

(
d

2
, v

)
=

2

d− 2
(1− vd−2) . (5.115)

These two particular cases are degenerate in fact: they satisfy the same differential equation

(see Appendix 5.7.1). We have imposed boundary conditions that are consistent with the

recursion relation (5.113) and the reflection symmetry (5.109).
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These simple expressions for the conformal blocks motivate the following remarkably

simple relation:

ξ
d−2

2

[
1 + χ

2
Gbry

(
d− 2

2
, v

)
+

1− χ
2

d− 2

2
Gbry

(
d

2
, v

)]
= 1 + χGbulk(d− 2, v) . (5.116)

(For χ = ±1, this relation is pointed out in [95].) In the next section, we will compute the

two-point function for a free scalar field of dimension ∆ = d−2
2

. We find a free scalar takes

advantage of precisely such a crossing relation (5.116). Moreover, the case χ = 1 corresponds

to Neumann boundary conditions, in which case the contribution from a boundary operator

∂nφ of dimension ∆ = d
2

is absent. Correspondingly, the case χ = −1 is Dirichlet boundary

conditions, and the boundary operator φ itself is absent. An absent or trivial boundary is

the case χ = 0. The contribution from the bulk comes simply from the identity operator

and the composite operator φ2. By adding an interaction on the boundary, we will be able

to move perturbatively away from the limiting cases χ = ±1. However, positivity of the

boundary decomposition (5.89) implies the bounds:

−1 ≤ χ ≤ 1 . (5.117)

Given these bounds, one might interpret that χ = ±1 correspond to “corners” in the boot-

strap program.

More generally, for a function of the form GOO(v) = a2
Oξ

∆ + 1 ± v2∆, the boundary

and bulk decompositions will involve a sum over infinite numbers of operators. Here ξ∆

corresponds to the boundary identity block and the 1 to the bulk identity block. With a

little bit of guess work, one can deduce a general form of these series expansions. (For a more

rigorous derivation, one can use the α-space formalism [120, 121].) One has the boundary

decompositions

ξ−∆

2

(
1 + v2∆

)
=
∑
n∈2Z∗

µ2
nGbry(∆ + n, v) , (5.118)

ξ−∆

2

(
1− v2∆

)
=

∑
n∈2Z∗+1

µ2
nGbry(∆ + n, v) , (5.119)

where Z∗ denotes a non-negative integer and the coefficients are

µ2
n =

2d−2∆−2n
√
πΓ(n+ 2∆− d+ 1)Γ(n+ ∆)

Γ(∆)Γ
(
n+ ∆− d−1

2

)
Γ(n+ 1)Γ

(
∆ + 1− d

2

) , (5.120)

where µ2
0 = 1. In contrast, for the bulk decomposition, the boundary identity block decom-

poses into bulk conformal blocks

ξ∆ =
∞∑
n=0

[(∆)n]2

n!
(
2∆− d

2
+ n
)
n

Gbulk(2∆ + 2n, v) . (5.121)
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One also has the bulk decomposition

v2∆ =
∞∑
n=0

(−1)n

n!

(∆)n
(
∆− d

2
+ 1
)
n(

2∆ + n− d
2

)
n

Gbulk(2∆ + 2n, v) . (5.122)

There are similar decompositions for the 〈Jµ(x)Jν(x′)〉 and 〈T µν(x)T λσ(x′)〉 correlation

functions. For the current, we need to give the decomposition of

Q(v) = 2χ2v2d−2 , π(v) = 1− χ2v2d−2 , (5.123)

and for the stress tensor, we need to give the decomposition of

A(v) =
4d

d− 1
χ2v2d , α(v) = 1 + χ2v2d . (5.124)

(For free theories, χ2 = 1.) Using the relations

1

2
(1 + v2d−2) = ξd−1

(
π

(0)
bry(v) +

∑
n∈2Z∗+1

µ2
nπ

(1)
bry(d− 1 + n, v)

)
, (5.125)

1

2
(1− v2d−2) = ξd−1

∑
n∈2Z∗

µ2
nπ

(1)
bry(d− 1 + n, v) , (5.126)

where

µ2
n =

21−d−2n
√
πΓ(d+ n− 2)Γ(d+ n)

Γ(d− 2)Γ
(
d
2

)
Γ(n+ 2)Γ

(
d−1

2
+ n
) , (5.127)

and µ2
0 = (d − 1)/2, we can find a decomposition similar in spirit to the lhs of (5.116).

Similarly, for the stress tensor

1

2
(1 + v2d) = ξd

(
α

(0)
bry(v) +

∑
n∈2Z∗

µ2
nα

(2)
bry(d+ n, v)

)
, (5.128)

1

2
(1− v2d) = ξd

(
d2

4(d− 1)
α

(1)
bry(v) +

∑
n∈2Z∗+1

µ2
nα

(2)
bry(d+ n, v)

)
, (5.129)

where

µ2
n =

2−d−2n
√
πΓ(d+ n− 1)Γ(d+ n+ 2)

Γ(d)Γ
(
d
2
− 1
)

Γ(n+ 3)Γ
(
d+1

2
+ n
) , (5.130)

where µ2
0 = (d−2)d(d+1)/8(d−1). Finally, there are also corresponding bulk decompositions

for which there is no obvious positivity constraint. We can write decompositions for the

scalar, conserved current, and stress tensor two-point functions in a unified form:

v2∆ =
∞∑
n=0

(−1)n

n!

(∆ + s)n
(
∆ + 1− d

2
− s
)
n(

2∆ + n− d
2

)
n

G
(s)
bulk(2∆ + 2n, v) . (5.131)
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Similar decompositions of 1 ± v2∆ were discussed in the appendices of ref. [95]. As a

result, many of the formulae here are not entirely new. We have made an attempt to present

them in a way that stresses their symmetry properties under v → 1/v and also stresses the

important role played by the decomposition of 1 ± v2∆ in free theories – for scalar, vector,

and tensor operators.

5.3 A Boundary Central Charge

Consider d = 4 CFTs in curved space with a smooth codimension one boundary ∂M.

The conformal anomaly is given by

〈T µµ 〉 =
1

16π2

(
cW 2

µνλρ − aE4

)
+
δ(y)

16π2

(
aE

(bry)
4 − b1 tr K̂3 − b2h

ABK̂CDWACBD

)
. (5.132)

We construct a projector onto the boundary metric hµν = gµν − nµnν with nµ being a unit,

outward normal vector to ∂M; E4 is the d = 4 Euler density, Wµνλρ is the Weyl tensor and

K̂AB = KAB − K
3
hAB is the traceless part of the extrinsic curvature.

The energy-momentum (stress) tensor in the Euclidean signature is defined by

〈Tµν(x)〉 = − 2
√
g

δW

gµν(x)
, (5.133)

where W is the generating functional for connected Green’s functions. The two-point func-

tion in flat space is

〈Tµν(x)Tσρ(x
′)〉 = lim

gµν→δµν

(
(−2)2 δ2

δgσρ(x′)δgµν(x)
W
)
. (5.134)

We will denote W̃ as the anomalous part of W . Note in general there can be Weyl in-

variant contributions to correlation functions. The theory is assumed to be regulated in a

diffeomorphism-invariant way.

We will adopt the dimensional regulation and will be interested in the mass scale, µ,

dependence in the correlation functions. The a-anomaly is topological so it does not produce

any µ dependence. The b1-charge does not contribute to the two-point function in the flat

limit, since K3 ∼ O(gµν)
3. One will be able to extract b1 from a study of three-point

functions in the presence of a boundary– we discuss them in the next chapter. We here only

consider the c and b2 anomalies. The relevant pieces of the anomaly effective action are

W̃ (c) =
c

16π2

µε

ε

∫
M
W 2
µνλρ , W̃ (b2) =

b2

16π2

µε

ε

∫
∂M

KABWnAnB . (5.135)
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These pieces should allow us to compute anomalous contributions to stress tensor correlation

functions in the coincident limit.8

We will perform the metric variation twice on the anomaly action to obtain anomalous

contributions to the two-point function of the stress tensor. We work in Gaussian normal

coordinates. While we do not impose that δgµν = 0 on the boundary, we do keep δgnA = 0.

In the flat boundary limit (see Appendix 5.7.2),

lim
gµν→δµν

δKAB =
1

2
∂nδgAB . (5.136)

Note the δgnn contribution vanishes in the flat limit in the transformed extrinsic curvature.

The transformed Weyl tensor can be written as

lim
gµν→δµν

δWµσρν = −2Pµσρν,αγδβ∂
γ∂δδgαβ , (5.137)

where Pµσρν,αγδβ, defined in (5.303), is a projector that shares the same symmetries as the

Weyl tensor:

Pµσρν,αγδβ = Pαγδβ,µσρν , (5.138)

Pµσρν,αγδβPµσρν,ηχεω = Pαγδβ,ηχεω . (5.139)

It will be convenient to define the following fourth order differential operator using the

projector:

Pµσρν,αγδβ∂
σ∂ρ∂γ∂δ =

(d− 3)

4(d− 2)
∆T
µναβ . (5.140)

Some additional properties of this tensor along with its definition can be found in Appendix

5.7.2.

It is useful first to recall the story [89] without a boundary. The argument that gives

a relation between c and α(0) will also work with a boundary, provided we arrange for the

variation δgµν to vanish as we approach the boundary, eliminating any boundary terms that

may arise through integration by parts. We then have, in the bulk limit, that

lim
gµν→δµν

δ2
(

lim
v→0

W̃ (c)
)

=
c

4π2

µε

ε

∫
M
Pαγδβ,ηχφψ(δgηψ)(∂φ∂χ∂γ∂δδgαβ) . (5.141)

From the definition of the stress tensor as a variation with respect to the metric, one infers

the scale dependent contribution:

µ
∂

∂µ
〈Tµν(x′)Tαβ(x′′)〉(c) =

c

4π2
∆T
µναβδ

4(x′ − x′′) . (5.142)

8We remark that the �R anomaly in d = 4 does not affect the scale dependent contribution to the

two-point function, since the corresponding effective action, R2, is finite.
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The general form of the two-point function without a boundary (or with a boundary but in

the bulk limit) is given by

〈Tµν(x)Tσρ(x
′)〉 = CT

Iµν,σρ
s8

=
CT
320

∆T
µνσρ

1

s4
, (5.143)

where we have used (5.140) in d = 4. We next regularize the UV divergence in the two-point

function in d = 4 by taking [122]

R 1

x4
= −∂2

(
lnµ2x2

4x2

)
, (5.144)

from which we obtain

µ
∂

∂µ

(
R 1

x4

)
= 2π2δ4(x) , (5.145)

and hence

µ
∂

∂µ
〈Tµν(x)Tσρ(0)〉 = CT

π2

160
∆T
µνσρδ

4(x) . (5.146)

Matching (5.146) with (5.142), one identifies

c =
π4

40
CT , (5.147)

where CT = C(0) = 4
3
α(0).

Now let us consider the variation of the boundary term in the trace anomaly. Given the

variation rules, the b2-anomaly action gives

lim
gµν→δµν

δ2W̃ (b2) =
b2

16π2

µε

ε

∫
∂M

(∂nδg
AB)(PAnBn,αγδβ∂

γ∂δδgαβ) . (5.148)

Thus,

µ
∂

∂µ
〈TAB(x′)Tαβ(x′′)〉(b2) =

b2

2π2
∂yδ(y − y′)PAnBn,αγδβ∂γ∂δδ4(x′ − x′′)|y→0 . (5.149)

However, it is peculiar that such a boundary term should be present at all. By simple power

counting, we do not expect a pure boundary, log divergent contribution to the stress tensor

two-point function. The corresponding momentum space correlator has odd mass dimension,

4 + 4− 3 = 5, which naively should not involve a logarithmic divergence. More convincing,

perhaps, is the flip in sign of this term under reflection y → −y. As we saw in the boundary

conformal block decomposition of the stress tensor, under reflection the ABCD and ABnn

components of the two-point function restricted to the boundary should be even. Although

these two arguments fall short of a rigorous proof, it seems natural for such a pure boundary

log divergence to cancel against something else.
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Consider whether this boundary term (5.149) may cancel against boundary terms we

dropped in calculating (5.141). There is an immediate subtlety associated with the noncom-

mutativity of the boundary and coincident limits. The boundary term (5.149) exists in a

strict boundary limit, while the calculation (5.141), which reproduces the anomalous part

of the 1
s8
Iµν,ρσ tensor structure, was performed in the coincident limit. As we see from the

two-point function (5.72), the coefficient α(v) of the Iµν,ρσ structure varies as v changes from

the coincident limit 0 to the boundary limit 1.

We posit the existence of an effective action which computes correlation functions of the

stress tensor. Almost everywhere, the scale dependent part of this action is W̃ (c). However,

if we introduce a small distance ε to separate the stress tensor insertions, in a very thin

layer of thickness less than ε along the boundary, we should replace the constant c in W̃ (c)

with a generally different constant cbry. The idea is that cbry will give us both the freedom

to reproduce the scale dependence of the α(1)Iµν,ρσ contribution to the two-point function

(5.72) and to cancel the offensive boundary term (5.149). In contrast, the terms in the

expression (5.72) proportional to ∂vα and ∂2
vα give vanishing contribution to the nnnn and

nnAB components of the two-point function. The term proportional to β̂µνρσ in (5.72) near

the boundary only has nAnB contributions. Because of this index incompatibility, it seems

unlikely that terms in an effective action that would produce this index structure would

also lead to a cancellation of the boundary term (5.149). Unfortunately, we cannot offer a

rigorous proof.

Keeping the surface terms, by varying the metric such that δgµν is nonzero close to the

boundary, the near-boundary limit of the c-anomaly action gives

lim
gµν→δµν

δ2
(

lim
v→1

W̃ (cbry)
)

=
cbry

4π2

µε

ε

∫
M
Pαγδβ,ηχφψ(δgηψ)(∂φ∂χ∂γ∂δδgαβ)

+
cbry

4π2

µε

ε

∫
∂M

Pαγδβ,ηnφψ(∂φδgηψ)(∂γ∂δδgαβ)

−cbry

4π2

µε

ε

∫
∂M

Pαγδβ,ηχnψ(δgηψ)(∂χ∂γ∂δδgαβ) , (5.150)

where we have performed integration by parts near the boundary. Consequently, we find for

the scale dependence of the two-point function in the near boundary limit that9

µ
∂

∂µ
〈Tµν(x′)Tαβ(x′′)〉(c) =

cbry

4π2
∆T
µναβδ

4(x′ − x′′)

−2cbry

π2
∂yδ(y − y′)Pµnνn,αγδβ∂γ∂δδ4(x′ − x′′)|y→0

−2cbry

π2
δ(y − y′)PµnAν,αγδβ∂γ∂δ∂Aδ4(x′ − x′′)|y→0

−2cbry

π2
δ(y − y′)Pµφnν,αγδβ∂γ∂δ∂φδ4(x′ − x′′)|y→0 .(5.151)

9The two-point functions presented in this section generalize the results given in [8], which has assumed

a certain boundary condition on boundary geometry that removes normal derivatives acting on the metric

variations [90].
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Next observe, through a direct computation, that

lim
y→0

PµnAν,αγδβ∂
γ∂δ∂A

1

x4
= lim

y→0
Pµφnν,αγδβ∂

γ∂δ∂φ
1

x4
= 0 . (5.152)

This implies, after adopting the regularized expression (5.145), the last two lines of (5.151)

do not contribute.10 The second line of (5.151) suggests to evaluate

lim
y→0

Pµnνn,αγδβ∂
γ∂δ

1

x4
, (5.153)

which turns out to be non-zero. However, this second line has precisely the right form to

cancel the earlier boundary contribution we found from varying the b2 anomaly (5.149). As

explained above, we will eliminate this problematic boundary term by requiring a cancellation

between b2 and c-contributions:

b2 = 4cbry . (5.154)

On the other hand, to reproduce the near boundary structure of the stress tensor two-point

function, α(1)Iµν,ρσ, we must have that cbry = π4α(1)/30. Thus, we conclude that

b2 =
2π4

15
α(1) . (5.155)

With the relation (5.155), we can achieve a better understanding of the previously con-

jectured equality (5.20) (i.e b2 = 8c), and discuss how general it is. Observe first that the

relation (5.20) is true only when α(1) = 2α(0). (Recall in general one has c = π4

30
α(0).)

We will find that α(1) = 2α(0) indeed holds for a large class of free CFTs in the following

sections. However, in the 4d mixed dimensional QED theory which we discuss in section

5.5, the boundary value α(1) depends on the coupling, while the bulk theory is the standard

Maxwell theory with an unchanged value of c or α(0). In other words, the mixed dimensional

QED can provide a counterexample to the relation (5.20).

5.4 Free Fields and Universality

In this section, we consider three families of free conformal field theories: a conformally

coupled massless scalar in d dimensions, a massless fermion in d dimensions and an abelian

p-form in 2p + 2 dimensions. We will see that the corresponding two-point functions take

a remarkably universal form. They correspond to special cases of the crossing relations we

found in section 5.2 with the parameter χ = ±1. The parameter χ can be promoted to a

matrix, with χ2 = 1, an identity. To construct CFTs with more general eigenvalues of χ2

away from unity, we will include boundary interactions in the next section.

10If we also turn on δgnA in the Gaussian normal coordinates when varying the b2 action, restoring the

last term of (5.311) in the flat limit, we find the additional contributions to the two-point function do not

have a scale dependence.
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5.4.1 Free Scalar

We start with the classical Minkowski action for a conformally coupled scalar in d-

dimensions with a possibly curved codimension-one boundary term:

I = −
∫
M

1

2

(
(∂φ)2 +

(d− 2)

4(d− 1)
Rφ2

)
− (d− 2)

4(d− 1)

∫
∂M

Kφ2 , (5.156)

where R is the Ricci scalar and K is the trace of the extrinsic curvature. The surface term

is required by Weyl invariance. Restricting to flat space with a planar boundary at y = 0,

the usual improved stress tensor is given by

Tµν = ∂µφ∂νφ−
1

4

1

d− 1

(
(d− 2)∂µ∂ν + δµν∂

2
)
φ2 − (d− 2)

4(d− 1)
δ(y)hµν(∂nφ

2) , (5.157)

with nµ an outward pointing unit normal vector to the boundary. While in the bulk, the

stress tensor is traceless (on shell), the boundary term requires either Dirichlet φ = 0 or

Neumann ∂nφ = 0 boundary conditions to preserve the tracelessness.

Let us consider a more general case with a vector of scalar fields, i.e φ → φa. (We will

suppress the index a in what follows.) Then, we can introduce two complementary projectors

Π± such that Π+ + Π− = 1 and Π2
± = Π±. The generalized boundary conditions are then11

∂n(Π+φ)|y=0 = 0 , Π−φ|y=0 = 0 . (5.158)

For a single scalar, one can only have either Π+ = 1,Π− = 0 or Π+ = 0,Π− = 1. For the

scalar, the nA component of the stress tensor is

TnA =
d

2(d− 1)
(∂nφ)(∂Aφ)− (d− 2)

2(d− 1)
φ ∂A∂nφ . (5.159)

The boundary conditions (5.158) force that TnA vanishes at y = 0.

It is perhaps useful to discuss the case of a transparent boundary. We have fields φR and

φL on each side of the boundary. Given the second order equation of motion, the boundary

conditions are continuity of the field φR = φL and its derivative ∂nφR = ∂nφL. We can

use the folding trick to convert this interface CFT into a bCFT by replacing the φR fields

with their mirror images φ̃R on the left hand side. We still have continuity of the fields as

a boundary condition φ̃R = φL, but having reflected the normal direction, continuity of the

derivative is replaced with ∂nφ̃R = −∂nφL. In terms of the projectors (5.158), we have

Π± =
1

2

(
1 ±1

±1 1

)
, φ =

(
φ̃R
φL

)
. (5.160)

11These boundary conditions are sometimes called mixed in the literature; for instance, see section 5.3 in

[123].
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As the fields φ̃R and φL do not interact, it is straightforward to go back to the unfolded theory.

One slightly tricky point relates to composite operators like the stress tensor. In the original

theory, there is no reason for a classical TnA to vanish at the boundary. However, in the

folded theory (or bCFT), by our previous argument, we saw the TnA does vanish classically.

In this case there are really two, separately conserved stress tensors, one associated with φ̃R
and one associated with φL. The statement that TnA vanishes classically in the bCFT is

really the statement that TnA computed from the φ̃R fields cancels TnA computed from the

φL fields at the boundary. More generally, a nonzero classical TnA in a bCFT corresponds

to a discontinuity in TnA for the interface theory. From the pill box argument mentioned

before, this situation corresponds to non-conservation of the boundary stress tensor ∂BT̂
AB.

(As mentioned before, we expect quantum effects to restore the condition TnA = 0 on the

boundary for general bCFTs.)

We note in passing that the component T nn of the scalar field will in general not vanish

on the boundary. Indeed, as discussed before, it corresponds to the displacement operator

which is generally present in bCFTs.

The two-point function for the elementary fields φ can be constructed using the method

of images:

〈φ(y)φ(y′)〉 =
κ

sd−2
(1 + χvd−2) , (5.161)

where we denote

κ =
1

(d− 2)Vol(Sd−1)
, Vol(Sd−1) =

2π
d
2

Γ(d
2
)
. (5.162)

Applying the boundary conditions (5.158), one finds that

χ = Π+ − Π− . (5.163)

From the properties of the projectors, χ2 = 1. The eigenvalues of χ must be ±1, +1 for

Neumann boundary conditions and −1 for Dirichlet. The relevant cross-ratio function (5.30)

is then Gφφ(v) = 1+ χvd−2. In section 5.2, we saw that this particular Gφφ(v) admitted the

decomposition (5.116) into a pair of bulk and a pair of boundary blocks. In fact, because of

the restriction on the eigenvalues of χ, we only require a single boundary block, of dimension
d−2

2
for Neumann boundary conditions or dimension d

2
for Dirichlet. We will see in the

next section how to move away from eigenvalues ±1 perturbatively by adding a boundary

interaction.

Next we consider 〈φ2(x)φ2(x′)〉. There is a new element here because φ2 has a nontrivial

one-point function

〈φ2(y)〉 =
κ tr(χ)

(2y)d−2
. (5.164)
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For N scalars, one finds the following cross-ratio function for the two-point correlator:

Gφ2φ2(v) = 2κ2 tr(1 + χvd−2)2 + κ2 tr(χ)2ξd−2 . (5.165)

This function Gφ2φ2(v) is straightforward to decompose into boundary and bulk blocks,

using the results of section 5.2. For the boundary decomposition, the last term on the

rhs of (5.165), proportional to ξd−2, is the boundary identity block. We may decompose

1 + v2(d−2) using the infinite sum (5.118). The piece proportional to 2 tr(χ)vd−2 can be

expressed using vd−2 = ξd−2Gbry(d − 2, v). One may worry that this term comes with a

negative coefficient when tr(χ) < 0, violating reflection positivity. In fact, in the infinite

sum (5.118), the block Gbry(d − 2, v) has coefficient one, which, in the case of Dirichlet

boundary conditions, precisely cancels the Gbry(d − 2, v) reproduced from −vd−2. Indeed,

for Dirichlet boundary conditions, the boundary φ2 operator is absent. There is no issue for

Neumann boundary conditions since all the coefficients are manifestly positive. The bulk

decomposition is similarly straightforward. The “one” in (5.165) is the bulk identity block.

The term proportional to vd−2 can be expressed again as a single block, this time in the

bulk, Gbulk(d − 2, v) = vd−2. The pieces proportional to ξd−2 and v2(d−2) decompose into

bulk blocks using (5.121) and (5.122).

For the stress tensor two-point function, using Wick’s theorem one obtains

α(v) = (d− 2)2κ2

(
tr(1) + tr(χ2)v2d + tr(χ)

d(d− 2)(d+ 1)

4(d− 1)
vd−2(1− v2)2

)
,(5.166)

A(v) =
d(d− 2)2κ2

4(d− 1)2

(
tr(χ)vd

(
−2d(d2 − 4) + d(d− 2)2v−2 + (d2 − 4)(d+ 4)v2

)
+16(d− 1) tr(χ2)v2d

)
. (5.167)

Setting χ = ±1 we recover the results computed in [87, 88] for a single scalar under Dirichlet

or Neumann boundary condition. In the boundary decomposition, looking at α(v), we

recognize the vd−2(1 − v2)2 piece as a contribution from α
(2)
bry(d, v), with a sign depending

on the boundary conditions. Then, decomposing 1 + v2d using (5.128), we see that the

coefficient of the α
(2)
bry(d, v) is precisely of the right magnitude to cancel out the possibly

negative contribution from vd−2(1− v2)2, consistent with the absence of a (∂Aφ)(∂Bφ) type

boundary operator for Dirichlet boundary conditions. Regarding the bulk decomposition, we

can write α
(2)
bry(d, v) as a linear combination of αbulk(d− 2, v), αbulk(d, v), and αbulk(d+ 2, v),

all of which are polynomials in vd±2 and vd, giving a trivial solution of the crossing equations.

Let us also consider a complexified scalar φ = φ1 + iφ2, or equivalently a pair of real

scalars to define a conserved current. We have

Jµ =
i

2
[φ∗(∂µφ)− (∂µφ

∗)φ] = −φ1∂µφ2 + φ2∂µφ1 . (5.168)

We introduce real projectors, Π†± = Π±, acting on the complexified combinations, ∂n(Π+φ) =

0 and Π−φ = 0. With these boundary conditions, the current is conserved at the boundary,
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Jn = 0. Changing the φ(x) to φ∗(x) in (5.161) and using Wick’s Theorem, one finds

Q(v) =
(d− 2)κ2

2

(
tr(χ)vd−2((d− 2)− dv2)− 2 tr(χ2)v2d−2

)
, (5.169)

π(v) =
(d− 2)κ2

2

(
tr(1) + (d− 1) tr(χ)vd−2(1− v2)− tr(χ2)v2d−2

)
. (5.170)

Looking at π(v), we recognize (d − 1)vd−2(1 − v2) as a contribution from π
(1)
bry(d − 1, v).

The 1 − v2d−2 dependence of π(v) decomposes into boundary blocks according to (5.126).

Similar to the 〈φ2(x)φ2(x′)〉 case we analyzed above, one might again be worried that the

contribution from π
(1)
bry(d − 1, v) is negative, violating reflection positivity. However, for

Dirichlet boundary conditions, the contributions from 1 − v2d−2 and (d − 1)vd−2(1 − v2)

precisely cancel, consistent with the absence of a φ∂Aφ type boundary operator. It turns out

that π
(1)
bry(d−1, v) and πbulk(d−2, v) are proportional, giving a trivial solution of the crossing

equations. Indeed, looking at Q(v) we recognize vd−2((d− 2)− dv2) as a contribution from

Qbulk(d− 2, v). Similar to what we found for the 〈φ2(x)φ2(x′)〉 correlation function, looking

now at the 1−v2d−2 dependence of π(v), we recognize the one as the bulk identity block and

decompose the v2d−2 using (5.131).

5.4.2 Free Fermion

The Minkowski action for Dirac fermions in curved space is

I =
i

2

∫
M

(
ψ̄γµD

µψ − (Dµψ̄)γµψ
)
, (5.171)

where, as usual, the covariant derivative contains the spin connection and the bar is defined

by ψ̄ = ψ†γ0. The scaling dimension of the fermion ψ is ∆ = 1
2
(d − 1). The action is

conformally invariant without any boundary term needed. Using a Minkowski tensor with

mostly plus signature the Clifford algebra is given by {γµ, γν} = −2ηµν . In the flat space,

the current and stress tensor in terms of the spinor field ψ are

Jµ = ψ̄γµψ , (5.172)

Tµν =
i

2

(
(∂(µψ̄)γν)ψ − ψ̄γ(µ∂ν)ψ

)
. (5.173)

We symmetrize the indices with strength one, such that

Tnn =
i

2

(
(∂nψ̄)γnψ − ψ̄γn∂nψ

)
. (5.174)

Following [124, 87], we define the following hermitian projectors Π+ and Π−:

Π± =
1

2
(1± χ) , (5.175)
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with the parameter χ = Π+−Π− for the fermion theory acting on the Clifford algebra such

that

χγn = −γnχ̄ , χγA = γAχ̄ , χ2 = χ̄2 = 1 , (5.176)

where χ̄ = γ0χ†γ0. Since the action only has first-order derivatives we only need boundary

conditions imposed on half of the spinor components. We consider boundary conditions

Π−ψ = 0 and its conjugate ψ̄Π− = 0. In terms of χ, they become

(1− χ)ψ|∂M = 0 , ψ̄(1− χ̄)|∂M = 0 . (5.177)

As a consequence, from the equation of motion one can deduce a related but not independent

Neumann boundary condition ∂n(Π+ψ) = 0. A physical interpretation of these boundary

conditions is that they make sure Jn and TnA vanish on the boundary. The two-point function

of the spinor field is then

〈ψ(x)ψ̄(x′)〉 = −κf
(
iγ · (x− x′)
|x− x′|d

+ χ
iγ · (x̄− x′)
|x̄− x′|d

)
, (5.178)

where x̄ = (−x1,x) ≡ (−y,x). The parameter χ enters naturally in the fermion theory

with a boundary. We consider a typical choice of normalization of the two-point function

κf = (d− 2)κ = 1/Vol(Sd−1).

A straightforward application of Wick’s theorem then allows us to calculate the 〈Jµ(x)Jν(x
′)〉

and 〈Tµν(x)Tλσ(x′)〉 correlators. In fact, as we have seen, it is enough to work out just the

components with all normal indices. The remaining components can then be calculated using

the conservation relations. One finds

π(v) = κ2
f trγ(1)

(
1− tr(χ2)vd−1

)
, (5.179)

α(v) =
1

2
(d− 1)κ2

f trγ(1)
(
1 + tr(χ2)v2d

)
, (5.180)

where the value of trγ(1) depends on the particular Clifford algebra we choose. Essentially

the same result for α(v) can be found in ref. [87]; for Dirac fermions, it is common in the

literature to take trγ(1) = 2bd/2c.

The same conformal block decompositions that we worked out for the scalar apply to the

free fermions as well. Observe that, (d − 2) trγ(1) scalars, half of which have Dirichlet and

half of which have Neumann boundary conditions, produce the same 〈Jµ(x)Jν(x
′)〉 two-point

function as the spinor. Similarly, d−1
2

trγ(1) scalars, again split evenly between Neumann

and Dirichlet boundary conditions, produce the same stress tensor two-point function as our

spinor field.
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5.4.3 Free p-Form Gauge Fields

Now we consider an abelian p-form in d dimensions in the presence of a planar, codimen-

sion one boundary. The Minkowski action is

I = − 1

2(p+ 1)!

∫
M

ddxHµ1···µp+1H
µ1···µp+1 , (5.181)

where Hµ1···µp+1 = Dµ1Bµ2···µp+1± cylic permutations; Dµ is the standard covariant derivative.

The action in d = 2(p + 1) is conformally invariant without any boundary term neeeded.

Important special cases are a Maxwell field in four dimensions and a 2-form in six dimensions.

We will again work in a flat half-space with coordinate system xµ = (y,x) with a boundary

at y = 0. In ref. [125], the authors computed two- and three-point functions of the stress

tensor in the absence of a boundary. Here we will generalize their two-point calculations to

include a planar boundary. The stress tensor in flat space is given by

Tµν =
1

p!
Hµµ1···µpHν

µ1···µp − 1

2(p+ 1)!
δµνHµ1···µp+1H

µ1···µp+1 . (5.182)

This stress tensor is traceless only when d = 2p+ 2.

We fix a generalization of Feynman gauge by adding 1
2(p−1)!

(∂µB
µν1···νp−1)2 to the action.12

The two-point function of the B-field is then

〈Bµ1···µp(x)Bν1···νp(x′)〉 = κδν1···νp
µ1···µp

(
1

(x− x′)d−2
+ χ

1

((x− x′)2 + (y + y′)2)(d−2)/2

)
.(5.183)

The choice of χ is based on the presence or absence of a normal index.13 There are two

possible choices of boundary conditions, generalizing the “absolute” and “relative” boundary

conditions of the Maxwell field Fµν [123]. The Neumann-like or “absolute” choice corresponds

to setting the normal component of the field strength to zero HnA1···Ap = 0 and leads to the

two conditions ∂nBA1···Ap = 0 and BnA2···Ap = 0. The Dirichlet-like or “relative” choice

means BA1···Ap = 0 which, along with the gauge fixing condition ∂µB
µµ2···µp = 0, leads to the

additional constraint ∂nB
nA2···Ap = 0. To keep things general, we set χ = χ⊥ when one of

the indices of B is the normal index and χ = χ‖ otherwise.

Conformal covariance suggests that the two-point function of H with itself can be written

12We remark that there are additional subtleties in p-form theories that are worthy of further consideration.

First, the gauge fixing process breaks conformal invariance. An ameliorating factor is that the ghost and

gauge fixing sectors to a large extent decouple from the rest of the theory. For example, the two-point

function of ∂ · B and H = dB vanishes in general. Second, the ghosts required in the gauge fixing process

require further ghost degrees of freedom, so-called “ghosts for ghosts” (see e.g. [126, 127]).
13The parameter χ is a c-number for gauge fields, not a matrix.
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in the form

〈Hµ1···µp+1(x)Hν1···νp+1(x′)〉 =
1

sd

∑
g,h∈Σp+1

(−1)g+h
(
a(v)

p+1∏
i=1

Ig(µi)h(νi)(s)

+b(v)Xg(µp+1)X
′
h(νp+1)

p∏
i=1

Ig(µi)h(νi)(s)
)
, (5.184)

where Σp is the permutation group of p elements. The objects Iµν , Xµ and X ′ν were defined

in section 5.2.

To fix a(v) and b(v) in (5.184), we don’t need to calculate all components of the two-point

function. Let us focus on the diagonal components. In fact, we can further restrict to the

perpendicular geometry where s = 0. From (5.183), we find

〈H2···p+2(x)H2···p+2(x′)〉 =
κ(d− 2)

sd
(p+ 1)(1 + χ‖v

d) , (5.185)

〈H1···p+1(x)H1···p+1(x′)〉 =
κ(d− 2)

sd

(
p+ 1− d+ (pχ⊥ + (d− 1)χ‖)v

d
)
. (5.186)

We then compare these expressions with (5.184) in the same limit,

〈H2···p+2(x)H2···p+2(x′)〉 =
(p+ 1)!

sd
a , (5.187)

〈H1···p+1(x)H1···p+1(x′)〉 = − p!
sd

(
(p+ 1)a+ b

)
. (5.188)

Solving for a(v) and b(v) yields

a(v) =
(d− 2)κ

p!
(1 + χ‖v

d) , (5.189)

b(v) =
(d− 2)κ

p!

(
d− 2(p+ 1)− (χ‖(d+ p) + χ⊥p)v

d
)

= −(d− 2)κ

p!

(
χ‖(d+ p) + χ⊥p

)
vd , (5.190)

where we have set d = 2(p+ 1) to have a traceless stress tensor. In the absolute and relative

cases where χ‖ = −χ⊥ = ±1, we find the simpler

a(v) =
(d− 2)κ

p!
(1± vd) , (5.191)

b(v) =
(d− 2)κ

p!

(
d− 2(p+ 1)∓ dvd

)
= ∓d(d− 2)κ

p!
vd . (5.192)

To pin down the form of the stress tensor, we need the following three two-point functions:

〈Tnn(x)Tnn(y)〉 =
(p!)2

2s2d

((
d− 1

p

)
((p+ 1)a+ b)2 +

(
d− 1

p+ 1

)
(p+ 1)2a2

)
, (5.193)

〈Tn2(x)Tn2(y)〉 = −(p!)2

s2d

(
d− 2

p

)
((p+ 1)a+ b)(p+ 1)a , (5.194)

〈T23(x)T23(y)〉 =
(p!)2

s2d

((
d− 3

p− 1

)
((p+ 1)a+ b)2 +

(
d− 3

p

)
(p+ 1)2a2

)
. (5.195)
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Away from d = 2p + 2, the calculation becomes inconsistent because the stress tensor is no

longer traceless and there should be additional structures that need to be matched to fix the

complete form of the stress tensor two-point function. For d = 2p+ 2, we find

A(v) = 2(2p)!b2

=
2(d− 2)2κ2(2p)!

(p!)2

(
χ‖(d+ p) + χ⊥p

)2
v2d , (5.196)

B(v) = −1

2
(2p)!b2

= −(d− 2)2κ2(2p)!

2(p!)2

(
χ‖(d+ p) + χ⊥p

)2
v2d , (5.197)

C(v) = (2p)!
(
2(p+ 1)2a2 + 2ab(p+ 1) + b2

)
=

(d− 2)2κ2(2p)!

2(p!)2

[
d2 − (d− 2)dvd(χ‖ + χ⊥) +

+
1

2

(
(4 + d(5d− 8))χ2

‖ + 4(d− 2)(d− 1)χ‖χ⊥ + (d− 2)2χ2
⊥

)
v2d
]
. (5.198)

Note that in the bulk limit v → 0, this result agrees with [125], as it should. Restricting to

the absolute and relative boundary conditions where χ‖ = −χ⊥, we find that

α(v) =
d− 1

d
C(v)

=
d(d− 1)(d− 2)2κ2(2p)!

2(p!)2
(1 + χ2v2d) . (5.199)

Observe that, (2p+2)!
2(p!)2 scalars, split evenly between Neumann and Dirichlet boundary con-

ditions, reproduce the same stress tensor as this p-form with either absolute or relative

boundary conditions. This equivalence means that the conformal block decomposition for

the p-form is the same as that for the scalar.

From (5.199), the 4d U(1) gauge field has the following values:

α(0) =
3

π4
, α(1) =

6

π4
. (5.200)

From the bulk relations (5.147) and (5.54), we indeed recover the bulk c-charge given in

(5.18). From the relation (5.155), we get b2 = 4
5
, which is consistent with the heat kernel

computation of the gauge field [85]. Indeed, the free theories considered in this section all

have the relation α(1) = 2α(0), which implies that b2 = 8c as we mentioned earlier. In

the next section, we will see how the story changes when interactions are introduced on the

boundary.

5.5 Models with Boundary Interactions

The free theories we studied generically have a current two-point function characterized

by a π(v) ∼ 1 − v2d−2 and stress tensor two-point function characterized by an α(v) ∼
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1 + v2d.14 Since we saw generally that χ2 = 1, there was as a result no way to modify the

coefficients of v2d−2 and v2d in π(v) and α(v) (respectively) relative to the bulk identity block

contribution. On the other hand, we saw in the boundary conformal block decomposition

that it should be straightforward to realize a bCFT with π(v) ∼ 1 − χ2v2d−2 and α(v) ∼
1 + χ2v2d, χ2 < 1, simply by taking advantage of the sums over blocks (5.125) and (5.129)

with the opposite parity under v → 1/v. An obvious question poses itself. Is it possible to

realize physically interesting bCFTs with χ2 6= 1? In this section we provide several examples

below where we can move perturbatively away from the case where all the eigenvalues of χ

are ±1. Moreover, we will see that a model with perturbative corrections to χ2 = 1 provides

a counter-example to the b2 = 8c relation in 4d.

The idea is to couple a free field in the bulk to a free field in the boundary with a

classically marginal interaction that lives purely on the boundary. For simplicity, we will

restrict the bulk fields to a scalar field and Maxwell field in four dimensions. For boundary

fields, we will allow only scalars and fermions. The fermions require less fine tuning as their

larger engineering dimension allows for fewer relevant interactions. We again consider a

planar boundary located at y = 0 while the bulk fields live in y > 0. Here is our cast of

characters:

1. A mixed dimensional Yukawa theory,

I = −1

2

∫
M

d4x(∂µφ)(∂µφ) +

∫
∂M

d3x
(
iψ̄ /∂ψ − gφψ̄ψ

)
, (5.201)

with the modified Neumann boundary condition ∂nφ = −gψ̄ψ. In our conventions, the

unit normal nµ points in the negative y-direction.

2. A mixed dimensional QED,

I = −1

4

∫
M

d4xF µνFµν +

∫
∂M

d3x
(
iψ̄ /Dψ

)
, (5.202)

where Dµ = ∂µ − igAµ. The boundary conditions are a modification of the absolute

boundary conditions discussed before, with An = 0, and FnA = ∂nAA = gψ̄γAψ.

3. A d = 4 mixed dimensional scalar theory,

I = −1

2

∫
M

d4x(∂µφ)(∂µφ)−
∫
∂M

d3x
(1

2
(∂Aη)(∂Aη) + (∂nφ)(−φ+ gη2)

)
, (5.203)

14The story was slightly more complicated for a vector of free scalars, φa, where additional pieces propor-

tional to tr(χ) appear. While we keep our discussion general, we remark that by having an equal number

of Dirichlet and Neumann boundary conditions, we obtain tr(χ) = 0. In supersymmetric theories, an equal

number of Neumann and Dirichlet boundary conditions appears to correlate with preserving a maximal

amount of supersymmetry. In N = 4 Super-Yang Mills theory in 3+1 dimensions, a 3 + 3 splitting of the

scalars preserves a SO(3) × SO(3) ⊂ SO(6) subgroup of the R-symmetry and a OSp(4|4) subgroup of the

PSU(4|4) superalgebra [128, 129]. Similarly for ABJM theory, a 4 + 4 splitting of the scalars preserves a

SO(4)× SO(4) ⊂ SO(8) subgroup of the R-symmetry [130].
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with modified Dirichlet boundary conditions φ = gη2. Another scalar field η is intro-

duced on the boundary.

The boundary conditions are determined by having a well-posed variational principle

for these classical actions. The coupling g is dimensionless. The limit g → 0 results in

two decoupled free theories, one living in the bulk space and another propagating on the

boundary. We should perhaps emphasize that in each of these models, there is an alternate

trivial choice of boundary conditions – Dirichlet, relative, and Neumann respectively – which

leaves the boundary and bulk theories decoupled. In this case, only the free bulk theory

contributes to central charges, since the free boundary theory can be defined independent of

the embedding space, without “knowing” about extrinsic curvature or bulk curvature.

One can generalize these models to curved space with actions that are explicitly Weyl

invariant. Here we have again focused on flat space. The improved stress tensors of these

models are traceless on shell. This list is not meant to be exhaustive. In general, one can

add additional classical marginal interactions on the boundary, but these toy models are

sufficient to illustrate several interesting features of this class of interacting theories.

Among several other remarkable properties, the mixed QED theory is likely to be exactly

conformal. For the other theories, using dimensional regularization and suitably tuning to

eliminate relevant operators, we will find fixed points in the ε expansion using dimensional

regularization

Apart from the mixed dimensional QED, to our knowledge none of these theories has

been studied in the literature. The canonical example of an interacting bCFT appears to

be scalar φ4 theory in the bulk with no extra propagating degrees of freedom living on the

boundary [87, 88, 95, 97].

The classically marginal interaction serves to alter slightly the boundary conditions on

the bulk field away from Dirichlet or Neumann cases. One may think of these interactions

as a coupling between an operator of dimension d−2
2

and an operator of dimension d
2
. In the

Neumann case, the operator of dimension d−2
2

is the boundary limit of the bulk field φ or

AA. In the Dirichlet case, the operator of dimension d
2

is the boundary limit of ∂nφ.

Recall in the discussion of crossing relations, we found the simple relation (5.116). The

free fields we discussed in the previous section take advantage of this relation only in the

limiting Dirichlet or Neumann cases χ → ±1 (or more generally when the eigenvalues of χ

are ±1). In these cases, the two-point function decomposes either into a single boundary

block of dimension d
2

in the Dirichlet case or a single boundary block of dimension d−2
2

in

the Neumann case. Indeed, the operator of the other dimension is missing because of the

boundary conditions. Now we see, at least perturbatively, how the story will generalize. The

boundary interaction adds back a little bit of the missing block, and the two-point function

for the bulk free field will be characterized instead by a χ = ±(1 − O(g2)). (The story

with the bulk Maxwell field is complicated by the lack of gauge invariance of 〈Aµ(x)Aν(x
′)〉,

but morally the story is the same.) Through Feynman diagram calculations below, we will
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confirm this over-arching picture.

With the modified two-point function of the bulk fields in hand, it will be straightforward

to modify the corresponding two-point functions of the current and stress tensor, using Wick’s

theorem, to leading order in the interaction g. We just need to keep a general value of χ,

instead of setting χ = ±1. For the stress tensor, one finds the structure α(v) = 1 + χ2v2d

instead of α(v) = 1 + v2d, and similarly for the current two-point function.

In the special case of mixed QED, where the theory is purported to be conformal in

d = 4 dimensions, we have an example of a conformal field theory where α(1) < 2α(0) and

b2 cannot be directly related to the the central charge c in the bulk trace anomaly. In fact,

the situation is more subtle. In order to evaluate α(v) at v = 1, we take a near boundary

limit. It is in fact not necessarily true that the v → 1 limit commutes with the perturbative

g → 0 limit in these theories.

For the related function γ(v), a similar perturbative computation indicates that γ(1) =

O(g2) where the nonzero contribution comes from T nA exchange in the boundary conformal

block decomposition. However, as mentioned before, we must have T nA|bry = 0 as an

operator statement since the dimension of T nA is protected. Mathematically, one expects

γ(v) ∼ g2(1 − v)δT where δT ∼ O(g2), leading to noncommuting small g and v → 1 limits

and allowing γ(1) to remain zero.15

From the conservation relations, one could worry there is a similar issue with α(1). But,

looking more carefully, the behavior γ(v) ∼ g2(1− v)δT leads to α(v) ∼ g2(1− v)1+δT which

vanishes at v = 1 independent of the order of limits, and ε(v) ∼ g2δT (1− v)−1+δT whose as-

sociated divergence will only show up at the next order in perturbation theory. We therefore

claim the O(g2) contribution to α(1) we find is independent of the order of limits and comes

from an alteration in the contribution of the displacement operator conformal block to the

two-point function. Indeed, if we were to find a behavior of the form α(v) ∼ g2(1 − v)δT ,

which has the order of limits issue, that behavior through stress tensor conservation cor-

responds to an ε(v) ∼ g2δT (1 − v)−2+δT or equivalently exchange of a boundary spin two

operator of dimension d − 2 + δT which is below the unitarity bound of d − 1 for small δT .

To check these arguments that α(1) 6= 2α(0), ideally we should go to higher loop order in

perturbation theory. We leave such calculations for the future.

It would be interesting furthermore to see if one can bound α(1) and correspondingly the

boundary trace anomaly b2. It is tempting to conjecture that free theories saturate an upper

bound α(1) ≤ 2α(0) in four dimensions.16 The phenomenon that α(1) = 2α(0) at this point

appears to be a special feature of free bCFTs.

15We thank D. Gaiotto for discussions.
16Away from d = 4, there are already counterexamples. For φ4 theory and Neumann (special) boundary

conditions, α(1) > 2α(0) both in the large N expansion in the range 5/2 < d < 4 and also at leading order

in the ε expansion for any N . See (7.31) and (7.23) of ref. [88]. In d = 4, the theory becomes free and one

has α(1) = 2α(0) or b2 = 8c.
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5.5.1 Mixed Yukawa Theory

Let us begin with a one loop analysis of the Yukawa-like theory,

I = −1

2

∫
M

d4x(∂µφ)(∂µφ) +

∫
∂M

d3x
(
iψ̄ /∂ψ − gφψ̄ψ

)
, (5.204)

with modified Neumann boundary conditions ∂nφ = −gψ̄ψ. Again, the normal coordinate

will be denoted by y and the coordinates tangential to the boundary by x: x = (x, y).

Our first task will be to calculate a β-function for the interaction φψ̄ψ to see if we can

find a conformal fixed point. We should comment briefly on the space of relevant operators

and the amount of fine tuning we need to achieve our goal. The engineering dimension of

the ψ field is one, and thus a (ψ̄ψ)2 term should be perturbatively irrelevant. One could

in principle generate relevant φ and φ2 and a classically marginal φ3 interactions on the

boundary through loop effects. We will assume that we can tune these terms away.

As we use dimensional regularization, we need the propagators for the scalar and spinor

fields in arbitrary dimension. The Euclidean propagators are

Gφ(x;x′) = CS

 1(
(x− x′)2 + (y − y′)2

) d−2
2

+
1(

(x− x′)2 + (y + y′)2
) d−2

2

 ,(5.205)

Gψ(x) = CF
γAx

A

xd−1
= − CF

d− 3
γA∂A

(
1

xd−3

)
. (5.206)

A canonical normalization is CS = κ = 1/(d − 2) Vol(Sd−1) for the scalar and CF =

1/Vol(Sd−2) for the boundary fermion, where Vol(Sd−1) = 2πd/2/Γ(d/2). Note that, un-

like what we did in section 5.1, here we have started with a propagator with χ = 1, fixed

by the required Neumann boundary condition (when g = 0) on a single scalar in this toy

model.

For our Feynman diagram calculations, we need the Fourier transforms along the bound-

ary directions:

G̃φ(p) ≡
∫
∂M

dd−1x e−ip·xGφ(y,x; 0, 0) =
e−py

p
, (5.207)

G̃ψ(p) ≡
∫
∂M

dd−1x e−ip·xGψ(x) = −iγ · p
p2

. (5.208)

While G̃ψ(p) takes its canonical, textbook form, the scaling of G̃φ(p) is 1/p instead of the

usual 1/p2. This shift leads to many of the physical effects we now consider. We will perform

our Feynman diagram expansion in Lorentzian signature. Analytically continuing, we find

the usual −i//p rule for an internal spinor line and a −i/|p| for an internal scalar line. As

the beginning and end point of the scalar line must lie on the y = 0 plane, we can remove

the e−py factor from the momentum space propagator.
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(a) (b) (c)

Figure 5.2: For the mixed dimensional Yukawa theory: (a) scalar one loop propagator cor-

rection; (b) fermion one loop propagator correction; (c) one loop vertex correction.

We now calculate the one loop corrections shown in figure 5.2. We begin with the

scalar propagator. The diagram has a linear UV divergence which is invisible in dimensional

regularization:

iΠ̃φ(q) = (−1)(−ig)2

∫
dd−1p

(2π)d−1

tr[i/p i(/p+ /q)]

p2(p+ q)2
(5.209)

= −ig2 25−2dπ2− d
2

cos
(
πd
2

)
Γ
(
d
2
− 1
)qd−3 , (5.210)

where we have used tr(γAγB) = −2ηAB and tr[/p(/p + /q)] = −2(p2 + p · q).17 In d = 4, the

self-energy reduces to

Π̃φ = −q
8
g2 . (5.211)

This result is in contrast to the usual self-energy correction for the 4d Yukawa theory, which

has a logarithmic divergence. As the fermion momentum space propagators are the same

in 3d and 4d, the difference comes from integrating over three rather than four momentum

space dimensions.

The correction to the fermion propagator, in contrast, has a logarithmic divergence:

iΠ̃ψ(q) = (−ig)2

∫
dd−1p

(2π)d−1

(i/p)(−i)
p2|p− q|

(5.212)

= −ig2 42−dπ
1−d

2 Γ
(
2− d

2

)
Γ(d− 2)

Γ
(
d− 3

2

) γ · q
q4−d . (5.213)

In d = 4− ε, the result becomes

Π̃ψ(q) = −/qg2

[
1

6π2ε
+

1

36π2
(10− 3γ − 3 log(q2/π))

]
+O(ε) . (5.214)

The logarithmic divergence is evidenced by the 1/ε in the dimensionally regulated expression,

or we could have seen it explicitly by performing the original integral in d = 4 dimensions

with a hard UV cut-off.

17In this section we take tr1 = 2 for the three dimensional Clifford space.
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Third, we look at the one loop correction to the vertex:

−igΓ̃(q1, q2) = (−ig)3

∫
dd−1p

(2π)d−1

i(/p+ /q1
)i(/p+ /q2

)(−i)
(p+ q1)2(p+ q2)2|p|

. (5.215)

Using Feynman parameters, we can extract the most singular term. In d = 4− ε dimensions,

we find that

gΓ̃(q1, q2) = −g3 1

2π2ε
+ finite . (5.216)

To compute the β-function for g, we introduce the wave function renormalization factors

Zφ and Zψ for the scalar and fermion kinetic terms as well as a vertex renormalization factor

Zg. The β-function follows from the relation

g0Z
1/2
φ Zψ = gµε/2Zg , (5.217)

where we can extract the Z-factors from our one loop computations:

Zψ = 1 + g2

(
− 1

6π2ε
+ finite

)
, (5.218)

Zφ = 1 + g2(finite) , (5.219)

Zg = 1 + g2

(
1

2π2ε
+ finite

)
, (5.220)

and g0 denotes the bare coupling which is µ-independent. It follows that the β-function,

β(g(µ)) = µ ∂
∂µ
g(µ), is given by

β = − ε
2
g +

2

3π2
g3 +O(g4) . (5.221)

For d ≥ 4, the function remains positive which indicates that the coupling flows to zero at

large distance. For d < 4, the coupling increases or decreases with the distance depending

on the strengh of g. Given our fine tuning of relevant operators, we obtain an IR stable fixed

point:

g2
∗ =

3π2

4
ε , (5.222)

in d < 4 dimensions. Note that Zφ has no divergent contribution. Indeed, a general feature

of our collection of theories is that the bulk field will not be renormalized at one loop. In

the case of the mixed dimensional QED theory, we can in fact make a stronger argument.

We claimed above that one effect of the classically marginal interaction was to shift

slightly the form of the scalar-scalar two-point function. Let us see how that works by
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Fourier transforming the result (5.211) back to position space18:

Πφ(x1;x2) =

∫
dd−1p

(2π)d−1
Π̃φ(p)

e−p(y1+y2)

p2
eip·δx (5.223)

= − g2

16π2

1

(y1 + y2)2 + δx2
. (5.224)

As we started with a single component scalar with Neumann boundary conditions χ = 1,

this Fourier transform implies we have ended up with a two-point function with a slightly

shifted χ:

χ→ χ = 1−O(g2) . (5.225)

The corrections to the current and stress tensor two-point functions will be controlled by

the shift in the scalar two-point function, at this leading order O(g2). Thus, we can read

off the corresponding current and stress tensor two-point functions merely by inserting the

modified value of χ in the formulae we found for the free scalar. Note this mixed Yukawa

model becomes free in d = 4 where χ = 1 is recovered. Our next example will be an

interacting CFT in d = 4 where the parameter χ can be different from one.

5.5.2 Mixed Quantum Electrodynamics

The action for the mixed dimensional QED is

I = −1

4

∫
M

d4xF µνFµν +

∫
∂M

d3x
(
iψ̄ /Dψ

)
, (5.226)

where Dµ = ∂µ − igAµ. Note there is a potential generalization to include a Chern-Simons

term on the boundary for this mixed QED model. We will work with a four component

fermion to avoid generating a parity anomaly, and proceed with a standard evaluation of the

one loop corrections (see figure 5.3) using the following Feynman rules: photon propagator,

−i e−py
p
ηAB; fermion propagator,

i/p

p2 ; interaction vertex, igγA. The ghosts are decoupled in

this abelian theory so below we do not need to consider them. A more general version of

this calculation can be found in ref. [98].

The photon self-energy can be evaluated in a completely standard way:

iΠ̃AB
γ (q) = (−1)(ig)2

∫
dd−1p

(2π)d−1

tr[γA i/pγB i(/p+ /q)]

p2(p+ q)2
(5.227)

= −2ig2(q2ηAB − qAqB)
(d− 3)π2− d

2

4d−2 cos
(
πd
2

)
Γ
(
d
2

) 1

q5−d . (5.228)

18For the loop computation, we use a propagator from one point on the boundary to another where we

set y = 0. When Fourier transforming back to real space, we are sewing on external propagators, taking us

from points in the bulk (with non-zero y1 and y2) to points on the boundary.
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(a) (b) (c)

Figure 5.3: For the mixed dimensional QED: (a) photon one loop propagator correction; (b)

fermion one loop propagator correction; (c) one loop vertex correction.

In d = 4, one gets the finite answer in dimensional regularization

Π̃AB
γ (q) = −g

2

8q
(q2ηAB − qAqB) . (5.229)

There is in fact never a logarithmic divergence at any order in the loop expansion for

Π̃AB
γ (q), and the wave-function renormalization for the photon Zγ will be finite in dimensional

regularization. The usual topological argument shows that the photon self-energy diagrams

have a linear superficial degree of divergence. Consider a general n-loop correction to the

scalar propagator with ` internal propagators and v vertices. Momentum conservation tells

us that n− `+ v = 1. We can divide up ` into photon lines `γ and fermion lines `ψ. As each

vertex involves two fermion lines and one photon, it must be that `ψ = v and (recalling that

two photon lines are external) `γ = (v − 2)/2. Therefore n = v/2. The superficial degree of

divergence of the photon self-energy diagrams is thus

n(d− 1)− `e − `γ = n(d− 1)− 3v

2
+ 1 = n(d− 4) + 1 , (5.230)

which in d = 4 dimensions is equal to one. Gauge invariance implies that we can strip

off a qAqB − ηABq2 factor from the self-energy. As a result, it is conventionally argued

that the degree of divergence is reduced by 2. Thus the photon self-energy is finite in this

mixed dimensional context. (In QED, the superficial degree of divergence is 2, and the

gauge invariance argument changes the divergence to a log. There is then a corresponding

renormalization of the photon wave-function.)

Let us again Fourier transform back to position space. There is a subtle issue associated

with gauge invariance. Our Feynman gauge breaks conformal symmetry, and if we proceed

naively, we will not be able to write the correlator 〈Aµ(x)Aν(x
′)〉 as a function of the cross-

ratio v, making it difficult to make use of the results from section 5.4. To fix things up, we

have the freedom to perform a small gauge transformation that changes the bare propagator

by a term of O(g2). In fact, we claim we can tune this transformation such that there is a

O(g2) term in the bare propagator that cancels the qAqB dependence of (5.229). The details

are in appendix 5.7.3. In our slightly deformed gauge, the corrections to the position space

correlation function become

ΠAB
γ (x;x′) = −c

∫
dd−1p

(2π)d−1

e−p(y1+y2)+ip·δx

p5−d ηAB (5.231)
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where

c = (d− 3)
2g2π2− d

2

4d−2 cos
(
πd
2

)
Γ
(
d
2

) . (5.232)

In four dimensions, we obtain

ΠAB
γ (x;x′) = − g2

16π2(δx2 + (y1 + y2)2)
ηAB . (5.233)

Analogous to the Yukawa theory, we can interpret this shift as a shift in the χ‖ parameter

of the 〈AA(x)AB(x′)〉 two-point function. The corresponding current and stress tensor two-

point functions can then be deduced at leading order O(g2) by making the appropriate

substitutions for χ‖ in the Maxwell theory results obtained in section 5.4.

As in the Yukawa theory case, the corrections to the fermion propagator are modified

slightly by the reduced dimensionality of the theory. The calculation is almost identical:

iΠ̃ψ(q) = (ig)2

∫
dd−1p

(2π)d−1

γA i/pγB(−i)ηAB
p2|p− q|

(5.234)

= (ig)2(d− 3)

∫
dd−1p

(2π)d−1

i/p(−i)
p2|p− q|

(5.235)

= −/qg2 1

6π2ε
+ finite . (5.236)

The result is precisely the result for the fermion self-energy in the Yukawa theory.

Finally, we calculate the singular contributions to the one loop vertex correction:

igΓ̃A(q1, q2) = (ig)3

∫
dd−1p

(2π)d−1

γCi(/p+ /q1
)γAi(/p+ /q2

)γB(−i)ηCB
(p+ q1)2(p+ q2)2|p|

. (5.237)

Evaluating this integral in d = 4− ε dimensions yields

Γ̃A(q1, q2) = g2γA
1

6π2ε
. (5.238)

There is a relative factor of -1/3 compared to the Yukawa theory. In fact, there is a well known

and relevant Ward identity argument (see e.g. [131]) that can be employed here. Current

conservation applied to the correlation function 〈Jµ(z)ψ̄(x)ψ(y)〉 implies that Zg/Zψ is finite

in perturbation theory. In the minimal subtraction scheme where all corrections to Zg and

Zψ are divergent, we conclude that Zg = Zψ.

At one loop, we have all the information we need to compute the β-function:

g0Z
1/2
γ Zψ = gµε/2Zg , (5.239)

where

Zψ = 1− g2

(
1

6π2ε
+ finite

)
, (5.240)

Zγ = 1 + g2(finite) , (5.241)

Zg = 1− g2

(
1

6π2ε
+ finite

)
. (5.242)
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Hence the beta function is

β = − ε
2
g +O(g4) . (5.243)

In other words, the β-function vanishes in 4d at one loop. In fact, as we have sketched,

the Ward identity argument Zψ = Zg and the non-renormalization Zγ = 1 + g2(finite) are

expected to hold order by order in perturbation theory, and so we can tentatively conclude

that this mixed dimensional QED is exactly conformal in four dimensions, making this theory

rather special.

From the relation between b2 and α(1) (5.155), the Fourier transformed propagator

(5.233) and the two-point function of U(1) gauge fields in d = 4 (5.199), we obtain the

boundary charge b2 for the mixed conformal QED as

b2(Mixed QED) =
2

5

(
2− g2

2
+ . . .

)
<

4

5
= 8c(Mixed QED) , (5.244)

where 4
5

= b2(EM) is the boundary charge for the standard bulk U(1) theory. This weakly

interacting conformal model therefore provides an example of b2 6= 8c in 4d bCFTs.

In addition to α(v), consider the behavior of γ(v), defined in (5.52), and representing

the correlation function of the boundary limit of T nA. While for free theories, it vanishes

universally, γ(1) = 0, in this mixed conformal QED we find instead that, from the one loop

computation given here, γ(1) = − 3g2

2π4 . But, as mentioned earlier, we must have a vanishing

T nA in the boundary limit as an operator statement. We expect

γ(v) ∼ −3g2

2π4
(1− v)δT , (5.245)

where δT ∼ O(g2) is the anomalous dimension. In this case, the small g and v → 1 limits

do not commute. While perturbatively, we might be fooled into thinking that γ(1) 6= 0, in

point of fact γ(1) should vanish.

While we do not do so here, there are two further calculations of great interest. The first

is to look at the next loop order in the stress tensor two-point function. The stress tensor

conservation equations suggest that the order of limits will not be an issue for evaluating

α(1). It would be nevertheless nice to verify this claim by actually computing more Feynman

diagrams. While we have no expectation that the value of α(1) is somehow protected in

interacting theories, it would be fascinating if it were. The second project is to calculate the

trace anomaly of this theory directly in curved space with a boundary to verify the relation

between α(1) and b2. We leave such projects for the future.

5.5.3 Mixed Scalar

In the two examples we considered so far, the boundary interaction modified a Neumann

boundary condition. In this third example, the boundary interaction modifies a Dirichlet
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(a) (b) (c)

Figure 5.4: For the mixed dimensional scalar theory: (a) a 4d bulk scalar one loop self

energy correction; (b) a 3d boundary scalar one loop self energy correction; (c) one loop

vertex correction.

condition. There will be a corresponding all important change in sign in the correction to

χ = −1. The theory is

I = −1

2

∫
M

d4x(∂µφ)(∂µφ)−
∫
∂M

d3x
(1

2
(∂Aη)(∂Aη) + (∂nφ)(−φ+ gη2)

)
. (5.246)

This theory has many possible relevant interactions on the boundary that can be generated

by loop effects, e.g. φ2, η2, η4, etc. We will assume we can fine tune all of these relevant

terms away. We will also ignore additional classically marginal interactions such as φ2η2 and

η6.

We proceed to a calculation of the three Feynman diagrams in figure 5.4. The propagator

correction for the bulk scalar is

iΠ̃φ = 2(ig)2

∫
dd−1p

(2π)d−1

(−i)2

p2(p+ q)2
(5.247)

= i
g2

4q
(5.248)

We can Fourier transform this result back to position space to see how the two-point function

will be modified:

Πφ =

∫
dd−1p

(2π)d−1
Π̃φ(p)e−p(y1+y2)eip·δx (5.249)

=
g2

8π2(δx2 + (y1 + y2)2)
, (5.250)

where in the last line, we set d = 4. Crucially, the sign here is different from (5.224) and

(5.233), corresponding to a shift in the two-point function for the scalar away from Dirichlet

conditions χ = −1 + O(g2) instead of away from Neumann conditions χ = 1 − O(g2).

Note these results are consistent with the bounds on χ (5.117). At leading order O(g2), we

can compute the corrected current and stress tensor two-point functions as well, merely by

making the appropriate replacement for χ in the free scalar result.
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The correction to the boundary scalar propagator is

iΠ̃η = 4(−ig)2

∫
dd−1p

(2π)d−1

(−i)2(−1)|p|
(p+ q)2

(5.251)

= −i2g
2q2

3π2ε
+ finite . (5.252)

Finally, we give the divergent contribution to the one loop vertex correction:

−igΓ̃(q1, q2) = 8(−ig)3

∫
dd−1p

(2π)d−1

(−i)3(−1)|p|
(p+ q1)2(p+ q2)2

. (5.253)

In d = 4− ε dimensions, this reduces to

gΓ̃(q1, q2) = −g3 4

π2ε
+ finite . (5.254)

We compute the β-function for g using g0Z
1/2
φ Zη = gµε/2Zg and19

Zη = 1− g2

(
2

3π2ε
+ finite

)
, (5.255)

Zφ = 1 + g2(finite) , (5.256)

Zg = 1 + g2

(
4

π2ε
+ finite

)
. (5.257)

The result is that

β = − ε
2
g +

14

3π2
g3 +O(g4) . (5.258)

There is an IR stable fixed point at

g2
∗ =

3π2

28
ε , (5.259)

in d < 4 dimensions. In the d = 4 limit, the theory becomes free and one has α(1) = 2α(0)

and b2 = 8c relations.

5.6 Concluding Remarks

Motivated by recent classification of the boundary trace anomalies for bCFTs [3, 85, 90],

we studied the structure of two-point functions in bCFTs. The main result of this chapter

19We note in passing that bulk fields are not renormalized in our one loop computations. Zφ in (5.219) and

(5.256) and Zγ in (5.241) are finite. There should be an argument based on locality, that boundary interac-

tions can never renormalize the bulk fields. We are not sure how to make precise the relationship between

locality and the actual Feynman diagram computations, however. We thank D. Gaiotto for discussions on

this point.
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(5.155) states a relation between the b2 boundary central charge in d = 4 bCFTs and the

spin-zero displacement operator correlation function near the boundary. Since α(1) = 2α(0)

in free theories, we can explain the b2 = 8c relation observed in [85]. Indeed, from our study

of free theories, we find that two-point functions of free bCFTs have a simple universal

structure.

Going beyond free theory, we define a class of interacting models with the interactions

restricted to the boundary. We computed their beta functions and pointed out the locations

of the fixed points. In particular, the mixed dimensional QED is expected to be exactly

conformal in d = 4. We have provided evidence that this model can be a counterexample

of the b2 = 8c relation in 4d bCFTs. As we summarized before, this mixed QED theory

is interesting for at least three other reasons as well: its connection with graphene, its

connection with three dimensional QED, and its behavior under electric-magnetic duality.

It doubtless deserves further exploration.

A feature of this graphene-like theory is that the near boundary limit of the stress tensor

two-point function, characterized by α(1), depends on the exactly marginal coupling g. Given

the claimed relationship between b2 and α(1) (5.155), it follows that b2 also depends on the

exactly marginal coupling g. This dependence stands in contrast to the situation for the bulk

charges a and c. Wess-Zumino consistency rules out the possibility of any such dependence

for a [132]. The idea is to let a(g(x)) depend on the coupling g which we in turn promote

to a coordinate dependent external field. Varying the Euler density must produce a total

derivative. Any spatial dependence of a spoils this feature.

The situation is different for c (and hence also α(0)). While the Euler density varies

to produce a total derivative, the integrated W 2 term has zero Weyl variation. Thus in

principle, one might be able to find examples of field theories where c depends on marginal

couplings. In [133], an AdS/CFT model without supersymmetry is constructed suggesting

the possibility that the c-charge can change under exactly marginal deformations. In practice,

guaranteeing an exactly marginal direction in four dimensions is difficult and usually requires

supersymmetry. Supersymmetry in turn fixes c to be a constant. For b2, the situation is

similar to the situation for c. The integrated KW boundary term also has a zero Weyl

variation, and b2 could in principle depend on marginal couplings. In constrast to the

situation without a boundary, the presence of a boundary has allowed us to construct a

non-supersymmetric theory with an exactly marginal direction in the moduli space – this

mixed dimensional QED. Correspondingly, we are finding that α(1) and b2 can depend on

the position in this flat direction. A similar situation is that the boundary entropy g in

two dimensional conformal field theories is known to depend on marginal directions in the

moduli space [134].20 There is a potential downside to this dependence. If we are looking

for a quantity that orders quantum field theories under RG flow, it is inconvenient for that

quantity to depend on marginal directions. We normally would like such a quantity to stay

20We would like to thank T. Dumitrescu for this remark.
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constant on the space of exactly marginal couplings and only change when we change the

energy scale. It is nevertheless interesting to understand better how these 4d boundary

central charges behave under (boundary) RG flow.

5.7 Appendix

5.7.1 Null Cone Formalism

The null cone formalism is a useful tool for linearizing the action of the conformal group

O(1, d + 1) [135]. The linearization in turn makes a derivation of the conformal blocks

straightforward [119, 136, 137, 138] for higher spin operators, as we now review, drawing

heavily on [95].

Points in physical space xµ ∈ Rd are in one-to-one correspondence with null rays in

R1,d+1. Given a point written in light cone coordinates,

PA = (P+, P−, P 1, . . . , P d) ∈ R1,d+1 , (5.260)

a null ray corresponds to the equivalence class PA ∼ λPA such that PAPA = 0. A point in

physical space can then be recovered via

xµ =
P µ

P+
. (5.261)

A linear O(d+1, 1) transformation of R1,d+1 which maps null rays into null rays corresponds

to a conformal transformation on the physical space.

We are further interested in correlation functions of symmetric traceless tensor fields

Fµ1···µn . For a tensor field lifted to embedding space FA1···An(P ) and inserted at P ,

FA1···An(λP ) = λ−∆FA1···An(P ) , (5.262)

we reduce this problem to that of correlation functions of scalar operators by contracting

the open indices with a vector Z:

F (P,Z) = ZA1 · · ·ZAnFA1···An . (5.263)

Tracelessness means that we can take Z2 = 0. In the embedding space, the tensor must be

transverse PA1FA1···An = 0, which implies that P · ∂ZF (P,Z) = 0. Given the redundancy in

the embedding space, we can also choose Z · P = 0 without harm.

In the presence of a boundary, we have an extra unit normal vector V = (0, . . . , 0, 1) which

breaks the symmetry O(1, d + 1) down to O(1, d). For two-point functions with operators

inserted at P and P ′, we can form the following scalar quantities invariant under O(1, d):

P · P ′ , V · P , V · P ′ , Z · P ′ , Z ′ · P , V · Z , V · Z ′ . (5.264)
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Note the cross ratio ξ can be written as

ξ = − P · P ′

2(V · P )(V · P ′)
, (5.265)

in this formalism. The game is then to write down functions of these invariants which

correspond to a correlation function with the correct scaling weights and index structure.

For the operator F (Pi, Zi) of weight ∆i, we need one Zi field for each index of the original

Fµ1···µn . Also, the expression should be homogeneous in Pi with degree −∆i. Furthermore,

we will need to make sure that the expressions satisfy transversality.

The one-point function of a scalar operator is

〈O(P )〉 =
a∆

(2V · P )∆
. (5.266)

Note the one-point function of an operator with spin l would introduce a factor (V · Z)l,

which violates the transversality condition. Indeed, only the one-point function of a scalar

is allowed in the presence of a boundary.

The scalar two-point function is

〈O1(P )O2(P ′)〉 =
1

(2V · P )∆1(2V · P ′)∆2
f(ξ) , (5.267)

where

f(ξ) = ξ−
(∆1+∆2)

2 G(ξ) . (5.268)

And, for current and stress tensor, we have

〈Z · J1(P )Z ′ · J2(P ′)〉 =
P (ξ)S1 + v2Q(ξ)S2

ξd−1(V · P )∆1(V · P ′)∆2
, (5.269)

〈Z · T1(P ) · Z Z ′ · T2(P ′) · Z ′〉 =
C(ξ)S2

1 + 4v2B(ξ)S1S2 + v4A(ξ)S2
2

(4ξ)d(V · P )∆1(V · P2)∆2
, (5.270)

where

S1 =
(Z · Z ′)(P · P ′)− (Z · P ′)(Z ′ · P )

P · P ′
, (5.271)

S2 =

(
(V · P )(Z · P ′)

P · P ′
− V · Z

)(
(V · P ′)(Z ′ · P )

P · P ′
− V · Z ′

)
. (5.272)

The conservation conditions can be expressed in terms of the Todorov differential operator

D
(d)
A =

(
d

2
− 1 + Z · ∂

∂Z

)
∂

∂ZA
− 1

2
ZA

∂2

∂Z · ∂Z
. (5.273)

Conservation for an operator F (P,Z) means that (∂P ·D(d))F = 0. The conservation con-

ditions will enforce that ∆i = d− 1 for the current and ∆i = d for the stress tensor, but we

leave them arbitrary for now.
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The Todorov differential is also useful for writing the action of an element LAB of the Lie

algebra o(1, d+ 1) on a symmetric traceless tensor:

LABF (P,Z) =

(
PA

∂

∂PB
− PB

∂

∂PA
+

1
d
2

+ s− 2
(ZAD

(d)
B − ZBD

(d)
A )

)
F (P,Z) . (5.274)

The conformal Casimir equation is then

1

2
LABL

ABF (P,Z) = −C∆,lF (P,Z) , (5.275)

where C∆,l = ∆(∆− d) + l(l+ d− 2). The conformal blocks in the bulk expansion are then

determined by an equation of the form

1

2
(LAB + L′AB)(LAB + L′

AB
)G(P,Z, P ′, Z ′) = −C∆,0G(P,Z, P ′, Z ′) , (5.276)

acting on the two-point function G(P,Z, P ′, Z ′) expressed in the null-cone formalism.

In the boundary conformal block expansion, we need to consider instead the generators

of O(1, d), a, b = ±, 1, . . . , d− 1:

Lab = Pa
∂

∂P b
− Pb

∂

∂P a
+

1
d−1

2
+ s− 2

(ZaD
(d−1)
b − ZbD(d−1)

a ) . (5.277)

In this case, the conformal blocks in the boundary expansion are determined by

1

2
LabL

abG(P,Z, P ′, Z ′) = −C̃∆,lG(P,Z, P ′, Z ′) , (5.278)

where the Casimir operator acts on just the pair P and Z and C̃∆,l = ∆(∆−d+1)+l(l+d−3).

We give some details of the derivation for the conserved current. (For conformal blocks

of stress tensor two-point function, we refer the reader to [95] for details.) In this case,

because of the linearity of the two-point function in Z and Z ′, the Todorov differentials can

be replaced by ordinary partial differentials with respect to Z:

1
d
2
− 1

D
(d)
A →

∂

∂ZA
,

1
d−1

2
− 1

D(d−1)
a → ∂

∂Za
. (5.279)

For what follows, we define the functions

f̃ ≡ P , g̃ ≡ v2Q . (5.280)

In the bulk conformal block decomposition, exchanging a scalar of dimension ∆ with the

boundary leads to the following pair of differential equations:

F : 4ξ2(1 + ξ)f̃ ′′ + 2ξ(2ξ + 2− d)f̃ ′

+ [(d−∆)∆− (∆1 −∆2)2]f̃ − 2g̃ = 0 , (5.281)

G : 4ξ2(1 + ξ)g̃′′ + 2ξ(2ξ − 2− d)g̃′

+ [(2 + d−∆)(2 + ∆)− (∆1 −∆2)2]g̃ = 0 . (5.282)
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The tensor structure S1 gives rise to the differential equation F while the structure S2 gives

the equation G. This system is compatible with the conservation relation. Restricting to

∆i = d− 1, current conservation gives

J : (d+ 1)g̃ − 2ξg̃′ − 2ξ2(f̃ ′ + g̃′) = 0 . (5.283)

One can construct a linear relation of the form c1F
′ + c2G

′ + c3F + c4G + J ′′ + c5J
′ + c6J ,

indicating that either of the second-order differential equations for f̃ and g̃ can be swapped

for current conservation.

The differential equation G may be solved straightforwardly:

g̃bulk(∆, ξ) = ξ1+ ∆
2 2F1

(
1 +

∆ + ∆1 −∆2

2
, 1 +

∆−∆1 + ∆2

2
, 1− d

2
+ ∆,−ξ

)
, (5.284)

where another solution with the behaviour ∼ ξ1−∆
2 is dropped. Note g̃bulk(∆, 0) = 0. We

introduce un-tilde’d functions that will simplify the equations for the boundary blocks:

f̃(ξ) = ξ(∆1+∆2)/2−d+1f(ξ) , (5.285)

g̃(ξ) = ξ(∆1+∆2)/2−d+1g(ξ) . (5.286)

Note the distinction disappears for conserved currents. Plugging the soluton (5.284) into the

the conservation equation J one obtains

fbulk(∆, ξ) + v−2gbulk(∆, ξ) =
d− 1

∆
ξ∆/2

2F1

(
∆

2
, 1 +

∆

2
, 1− d

2
+ ∆,−ξ

)
. (5.287)

In the boundary block decomposition, we find the differential equations for fbry and gbry

as

ξ(1 + ξ)g′′ +

(
2ξ − d

2
(3 + 2ξ)

)
g′

+

(
2 + d+ d2

2ξ
− C∆,`

)
g = (d− 2)f , (5.288)

ξ(1 + ξ)f ′′ +

(
ξ(2− d) + 2− 3d

2

)
f ′

+

(
(d− 2)(1 + d+ 2ξ)

2ξ
− C∆,`

)
f =

1 + 2ξ

2ξ2
g , (5.289)

where

C∆,` = `(`+ d− 3) + ∆(∆− d+ 1) . (5.290)

As in the bulk case, these differential equations are compatible with the conservation condi-

tion, as can be verified by constructing a similar linear dependence between the equations.
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We need to solve these equation for (` = 0 and ∆ = d − 1) and also for (` = 1 and all ∆).

In the first case

f 0
bry(d− 1, ξ) =

1

ξ

(
ξ

1 + ξ

)h
= vd−2(1− v2) , (5.291)

g0
bry(d− 1, ξ) = ξh(1 + ξ)−1−h(d− 2 + 2(d− 1)ξ) = vd(d− 2 + dv2) . (5.292)

There are similarly simple expressions for ` = 1 and ∆ = d− 1:

f 1
bry(d− 1, ξ) =

1

2
ξh−1(1 + ξ)−h(1 + 2ξ) =

1

2
vd−2(1 + v2) , (5.293)

g1
bry(d− 1, ξ) =

1

2
ξh(1 + ξ)−h−1(d− 2− 2ξ) =

1

2
vd(d− 2− dv2) . (5.294)

In general, the spin one exchange is given by

g1
bry(∆, ξ) = −ξd−1−∆

3F2

(
1 + ∆, 3− d+ ∆, 1− d

2
+ ∆

2− d+ ∆, 2− d+ 2∆
;−1

ξ

)
, (5.295)

f 1
bry(∆, ξ) =

ξd−∆−2

2(∆ + 2− d)

[
2ξ(∆ + 1− d) 2F1

(
∆,−d

2
+ ∆ + 1;−d+ 2∆ + 2;−1

ξ

)
+(2ξ + 1) 2F1

(
∆ + 1,−d

2
+ ∆ + 1;−d+ 2∆ + 2;−1

ξ

)]
. (5.296)

5.7.2 Variation Rules

Here we give a brief review on the definitions of the Weyl tensor and extrinsic curvature.

We list relevant metric perturbation formulae.

Under the metric perturbation gµν → gµν + δgµν , the transformed Christoffel connection

is given by

δ(n)Γλµν =
n

2
δ(n−1)(gλρ)

(
∇µδgρν +∇νδgρµ −∇ρδgµν

)
. (5.297)

The Riemann and Ricci curvature tensors transform as

δRλ
µσν = ∇σδΓ

λ
µν −∇νδΓ

λ
µσ , (5.298)

δRµν =
1

2

(
∇λ∇µδgλν +∇λ∇νδgµλ − gλρ∇µ∇νδgλρ −�δgµν

)
, (5.299)

δR = −Rµνδgµν +∇µ
(
∇νδgµν − gλρ∇µδgλρ

)
. (5.300)

The Weyl tensor in d-dimensions (for d > 3) is defined as

W (d)
µσρν = Rµσρν −

2

d− 2

(
gµ[ρRν]σ − gσ[ρRν]µ −

gµ[ρgν]σ

(d− 1)
R
)
. (5.301)
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Note Wµσρν = W[µσ][ρν], Wµ[σρν] = 0 and W µ
σρµ = 0. One can write the transformation of the

Weyl tensor as

δWµσρν = −2Pµσρν,αγδβ∂
γ∂δδgαβ , (5.302)

where Pµσρν,αγδβ is a projector given by

Pµσρν,αγδβ = 1
12

(
δµαδνβδσγδρδ + δµδδσβδραδνγ − µ↔ σ, ν ↔ ρ

)
+ 1

24

(
δµαδνγδρδδσβ − µ↔ σ, ν ↔ ρ, α↔ γ, δ ↔ β

)
− 1

8(d−2)

(
δµρδαδδσγδνβ + δµρδαδδσβδνγ − µ↔ σ, ν ↔ ρ, α↔ γ, δ ↔ β

)
+ 1

2(d−1)(d−2)

(
δµρδνσ − δµνδρσ

)(
δαδδβγ − δαβδδγ

)
. (5.303)

For a symmetric tensor or operator tγδ one has the following symmetric property:

Pµσρν,αγδβt
γδ = Pµσρν,βγδαt

γδ , (5.304)

while in general Pµσρν,αγδβ 6= Pµσρν,βγδα.

Defining the induced metric by hµν = gµν − nµnν , where nµ is the outward-pointing

normal vactor, the extrinsic curvature is

Kµν = hλµh
σ
ν∇λnσ = ∇µnν − nµaν , (5.305)

where aµ = nλ∇λn
µ. On the boundary we have the following variations in general coordi-

nates:

δnµ =
1

2
nµδgnn , (5.306)

δnµ = −1

2
nµδgnn − hµνδgnν , (5.307)

δKµν =
Kµν

2
δgnn +

(
nµK

λ
ν + nνK

λ
µ

)
δgλn −

hλµh
ρ
νn

α

2

(
∇λδgαρ +∇ρδgλα −∇αδgλρ

)
,

δK = −1

2
Kµνδgµν −

1

2
nµ
(
∇νδgµν − gνλ∇µδgνλ

)
− 1

2
∇̊A(hABδgBn) , (5.308)

where ∇̊µ denotes the covariant derivative compatible with the boundary metric.

We can foliate the spacetime with hypersurfaces labelled by y ≡ nµxµ and adopt the

Gaussian normal coordinates. The metric reads

ds2 = dy2 + hAB(y, xA)dxAdxB . (5.309)

In the Gaussian normal coordinate aµ = 0, and one has

KAB =
1

2
∂nhAB , (5.310)

118



and ΓyAB = −KAB, ΓAyB = KA
B , ΓAyy = ΓyyA = Γyyy = 0. The transformation rules of the

extrinsic curvature become

δKAB =
1

2
∇nδgAB +

1

2
KC
A δgBC +

1

2
KC
B δgAC −

1

2
KABδgnn − ∇̊(AδgB)n , (5.311)

δK =
1

2
hAB∇nδgAB −

1

2
Kδgnn − ∇̊AδgAn , (5.312)

∇nδgAB = ∂nδgAB −KC
A δgBC −KC

B δgAC . (5.313)

5.7.3 Gauge Fixing Mixed Dimensional QED

In the presence of a planar boundary, which already breaks the full Lorentz invariance

of the theory, it can be more convenient to consider a more general type of gauge fixing,

characterized by two constants η and ζ instead of just the usual ξ:

I =

∫
M

d4x

(
−1

4
FµνF

µν − 1

2
(η∂nA

n − ζ∂AAA)2

)
+

∫
∂M

d3x
(
iψ̄ /Dψ

)
, (5.314)

where the boundary fermions do not affect the discussion of the gauge field Green’s function

in what follows. Standard Feynman gauge is achieved by setting ζ = η = 1. We will kill the

off-diagonal terms in the equations of motion by setting η = 1/ζ.

Our strategy will be to first proceed by ignoring the presence of a boundary and then to

take it into account at a later stage using the method of images. The (Euclidean) Green’s

function is defined by the equation:(
∂2δAB + (ζ2 − 1)∂A∂B 0

0 ∂2 + (ζ−2 − 1)∂2
n

)
Gµν(x, x′) = δ(4)(x− x′) . (5.315)

Fourier transforming, we obtain(
k2δAB + (ζ2 − 1)kAkB 0

0 k2 + (ζ−2 − 1)k2
n

)
G̃µν(k) = −1 . (5.316)

Inverting this matrix, we don’t quite get the usual result because k2 6= kAk
A. The full result

is a bit messy. Instead, let us take η2 = 1 + δη and expand to linear order in δη. We find

G̃µν(k) = δµν
1

k2
+
δη

k4

(
−kAkB 0

0 k2
n

)
+O(δη2) . (5.317)

The next step is to undo the Fourier transform in the normal direction. We have a

handful of contour integrals to perform:

I0 =

∫
dq

2π

eiq δy

k2 + q2
=
e−|k||δy|

2|k|
, (5.318)

I1 =

∫
dq

2π

eiq δy

(k2 + q2)2
=
e−|k||δy|(1 + |k||δy|)

4|k|3
, (5.319)

I2 =

∫
dq

2π

q2eiq δy

(k2 + q2)2
=
e−|k||δy|(1− |k||δy|)

4|k|
, (5.320)
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where we denote q = kn. In the absence of a boundary, we can then write the partially

Fourier transformed Green’s function in the form

G̃µν(k, δy) = δµν
e−|k||δy|

2|k|
+
δη e−|k||δy|

4|k|3

(
−kAkB(1 + |k||δy|) 0

0 |k|2(1− |k||δy|)

)
.(5.321)

Recall that δy = y − y′. In the presence of a boundary, depending on our choice of abso-

lute or relative boundary conditions, we can add or subtract the reflected Green’s function

G̃µν(k, y + y′). Let the resulting Green’s function be G̃
(B)
µν (k, y, y′). To make contact with

the mixed QED theory considered in the text, we would like absolute boundary conditions,

i.e. Dirichlet for An and Neumann for AB. In this case, the partially transformed Green’s

function restricted to the boundary is

G̃(B)
µν (k, 0, 0) = δµν

1

|k|
+

δη

2|k|3

(
−kAkB 0

0 0

)
. (5.322)

We can thus adopt a small gauge transformation to compensate for the additionalO(g2) kAkB
dependence in the photon self-energy (5.229) when performing the Fourier transform (5.231).
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Chapter 6

Displacement Operators and

Constraints on Boundary Central

Charges

This chapter is an edited version of my publication [5], written in collaboration with

Christopher Herzog and Kristan Jensen.

The motivation of this chapter is to generalize the discussions in the previous chapter to

consider other boundary charges in d = 3 and d = 4 CFTs. Let us begin with a quick review

of the boundary trace anomalies including definitions of the anomaly coefficients a(3d), b, b1,

and b2.

In d = 3 spacetime dimensions with a two-dimensional boundary, the anomaly only

appears on the boundary, and it is given by [66]

〈T µµ〉d=3 =
δ(x⊥)

4π

(
a(3d)R̊ + b tr K̂2

)
, (6.1)

where δ(x⊥) is a Dirac delta function with support on the boundary, and tr K̂2 = trK2− 1
2
K2;

R̊ is the boundary Ricci scalar. For free fields, the values of these boundary charges were

computed in the literature [116, 56, 117]: a
s=0,(D)
(3d) = − 1

96
, a

s=0,(R)
(3d) = 1

96
and a

s= 1
2

(3d) = 0, where

(D)/(R) denotes Dirichlet/Robin boundary condition. (In our notation, s is the spin of the

free field.)

The structure becomes much richer in d = 4 CFTs. Dropping a regularization dependent

term, the trace anomaly reads

〈T µµ〉d=4 =
1

16π2

(
cW 2

µνλρ − a(4d)E4

)
(6.2)

+
δ(x⊥)

16π2

(
a(4d)E

(bry)
4 − b1 tr K̂3 − b2h

αγK̂βδWαβγδ

)
,
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where E4 is the bulk Euler density in d = 4, and Wµνρσ is the Weyl tensor. In the presence

of a boundary, the boundary term of the Euler characteristic, E(bry), is added in order to

preserve the topological invariance. Let us here repeat and list the values of the b1 charge

for free fields: b
s=0,(D)
1 = 2

35
[71], b

s=0,(R)
1 = 2

45
[75], b

s= 1
2

1 = 2
7

[117], bs=1
1 = 16

35
[117].

The general strategy is similar to that adopted in the previous chapter: one simply looks

at the correlation functions of the displacement operator in flat space. But there are several

differences when compared with the computation of the b2 charge. The first difference is

that these b and b1 boundary charges do not talk to bulk charges, while the b2 structure

is intimately related to the surface term generated from varying the bulk c-type anomaly

effective action, as we considered in the previous chapter. The second difference is that in

order to compute b1 in d = 4, one has to look not at two-point functions but at a boundary

three-point function.

We will in this chapter prove that the coefficients b and b1 are related to two- and three-

point functions of the displacement operator. The main results of this chapter are (6.11)

and (6.20). We will conjecture that the a(3d) coefficient satisfies a related constraint (6.23),

from which follows a lower bound (6.24) on a(3d)/b. We will demonstrate that our relations

hold for free theories.

6.1 Displacement Operator and General Relations

To set notation, let W be the generating functional for connected Green’s functions. The

stress tensor in Euclidean signature is

〈Tµν(x)〉 = − 2
√
g

δW

gµν(x)
. (6.3)

Let us first consider d = 3 CFTs with a boundary. Denote W̃ as the anomalous part of

W . The anomaly effective action in dimensional regularization is

W̃ =
µε

ε

1

4π

(
a(3d)

∫
∂M

R̊ + b

∫
∂M

tr K̂2

)
. (6.4)

Consider the special case where ∂M is almost the planar surface at y = 0, and can be

described by a small displacement δy(xA), which is a function of the directions tangent to

the boundary, denoted by xA. In this situation, the normal vector is well-approximated by

nµ = (∂Aδy, 1) . (6.5)

The extrinsic curvature then becomes KAB = ∂A∂Bδy, and we have∫
∂M

tr K̂2 =
1

2

∫
∂M

δy�̊2δy , (6.6)
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where �̊2 = ∂A∂A acts only on the boundary. Correlation functions of the displacement

operator Dn(x) can be generated by varying W with respect to δy(xA). Note that diffeo-

morphisms act on both the metric and the embedding function δy(xA). As the effective

action W is diffeomorphism invariant, there is a Ward identity that relates the stress tensor

to the displacement operator, an integrated version of which in the flat limit becomes

T nn|∂M = Dn . (6.7)

Because the displacement operator lives inside the boundary surface and we have conformal

symmetry in this surface, the two point function is fixed up to a constant, which we call cnn:

〈Dn(x)Dn(0)〉 =
cnn
x2d

. (6.8)

(In the notation of the previous chapter, cnn was called α(1) through its relation to the two

point function of the stress tensor.) Replacing the expression (6.8) with a regularized version

[122, 89] in the case of interest d = 3,

〈Dn(x)Dn(0)〉 =
c

(3d)
nn

512
�̊3(log µ2x2)2 , (6.9)

the scale-dependent part is then

µ
∂

∂µ
〈Dn(x)Dn(0)〉 = π

c
(3d)
nn

32
�̊2δ(x) . (6.10)

Equating the scale dependent pieces yields

b =
π2

8
c(3d)
nn . (6.11)

A similar calculation for the case of a codimension-two defect in four-dimensions was pre-

sented in ref. [103] in the context of entanglement entropy. Note that the b-charge can change

under marginal deformations, although here we do not discuss a 3d example.

Next we consider d = 4. The constraint on the b2 boundary charge was found in the

previous chapter, and it reads

b2 =
2π4

15
c(4d)
nn . (6.12)

In flat space, the two-point function is not enough to constrain the b1 boundary charge,

since the related Weyl anomaly has a O(K3) structure. Thus, we will need to consider the

three-point function. The relevant anomaly effective action is

W̃ (b1) =
b1

16π2

µε

ε

∫
∂M

tr K̂3 . (6.13)
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We again consider ∂M to be nearly flat and described by a small displacement, δy(xA).

Approximating the normal vector by nµ = (∂Aδy, 1), we obtain∫
∂M

tr K̂3 =

∫
∂M

(
tr
[
(∂A∂Bδy)3

]
− (�̊δy) tr

[
(∂A∂Bδy)2

]
+

2

9
(�̊δy)3

)
.

(6.14)

We will relate this b-charge with the displacement operator three-point function defined by

〈Dn(x)Dn(x′)Dn(0)〉 =
cnnn

|x|4|x′|4|x− x′|4
, (6.15)

where cnnn is a constant. The full structure of the stress tensor three-point function with a

boundary has not been studied yet. But, as mentioned earlier, to constrain these boundary

charges one can simply look at the purely normal-normal component of the stress-tensor

correlation functions that represent the displacement operator contributions.

While it is not obvious how to proceed in position space, we note that the Fourier

transform of the three-point function of operators O1, O2 and O3 is generally [139, 140]

C123

∫ ∞
0

dx xα
3∏
j=1

p
βj
j Kβj(pjx) , (6.16)

where Kβj(x) denotes the modified Bessel function of the second kind, and α = δ
2
− 1, βj =

∆j − δ
2
; ∆j is the conformal dimension of operator Oj and δ is the dimension of the CFT.

In this case, we are interested in the CFT living on the boundary, so δ = 3 while the

scaling dimension of the displacement operator is ∆j = 4. Taking c123 as the corresponding

coefficient of the position space three-point function, one has [139]

cnnn =
105√
2π5/2

Cnnn . (6.17)

The 1/x term in a small x expansion of the integrand gives rise to a logarithm in the position

space three-point function and a corresponding anomalous scale dependence. Observe the

1/x term is

3π3/2

32
√

2x

(
p6

1 + p6
2 + p6

3 − p2
1p

4
2 − p2

1p
4
3 − p2

2p
4
1 − p2

2p
4
3 − p2

3p
4
1 − p2

3p
4
2 −

2

3
p2

1p
2
2p

2
3

)
. (6.18)

Through integration by parts along the boundary, the above expression can be rewritten as

9π3/2

4
√

2x

(
(p1 · p2)(p2 · p3)(p3 · p1)− p2

1(p2 · p3)2 +
2

9
p2

1p
2
2p

2
3

)
. (6.19)

The result matches exactly the derivative form (6.14) computed from the b1 boundary trace

anomaly. Including a factor 1
3!

coming from varying with respect to δy three times, we obtain

b1 = 1
3!
· 16π2

(
9π3/2

4
√

2

)(√
2π5/2

105

)
cnnn, which gives

b1 =
2π6

35
cnnn . (6.20)
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This boundary charge in d = 4 can depend on marginal interactions. In particular, if

the charge b2 of the mixed-dimensional quantum electrodynamics (QED) depends on the

marginal interactions (see the previous chapter), so does b1.

6.2 Conjecture for a(3d)

As discussed in the previous chapter, we can write down expressions for the near-

boundary limit of the stress-tensor two-point function:

〈Tµν(x, y)Tρσ(0, y′)〉 = Aµν,ρσ(x, y, y′)
1

|x|2d
, (6.21)

where

Ann,nn(x, y, y′) = α(v) ,

AnA,nB(x, y, y′) = −γ(v)IAB(x, y, y′),

AAB,CD(x, y, y′) = α(v)
d

d− 1
I

(d)
AB,CD

+

(
2ε(v)− d

d− 1
α(v)

)
I

(d−1)
AB,CD ,

(6.22)

where IAB(x) = δAB−2xAxB
x2 and I

(d)
AB,CD = 1

2
(IACIBD + IADIBC)− 1

d
δABδCD. The quantity v

is a cross-ratio v = (x−x′)2

(x−x′)2+4yy′
, which behaves as ∼ 1− 4yy′

|x|2 near the boundary at v = 1. The

functions α, γ and ε are related to each other by two differential constraints. Conservation

of the stress tensor at the boundary, conformal invariance, and unitarity together impose

that γ smoothly vanishes as v → 1, while α is smooth, and ε can blow up as (1− v)δ−1 for

a small anomalous dimension δ > 0. Both α and ε may have O(1 − v)0 terms, which we

refer to as α(1) and ε(1). (Note the relation between α(v) and the Dn two-point function,

α(1) = cnn.)

The symmetries also allow for a boundary stress tensor which would only arise from

decoupled boundary degrees of freedom. If present it appears as a distributional term in the

two-point function CI
(d−1)
AB,CDδ(y)δ(y′).

We conjecture that the boundary anomaly coefficient a(3d) is a linear combination of

α(1), ε(1), and C. The dependence on C is already fixed by the argument relating the

trace anomaly of a two-dimensional CFT to the two-point function of its stress tensor.

More precisely, c(2d) = 2πC, where c(2d) is the 2d central charge in the Euler anomaly

〈TAA 〉 = δ(y)
c(2d)
24π

R̊. The coefficient C vanishes for a theory of free 3d scalars and for free

3d fermions since these theories do not have extra decoupled boundary degrees of freedom.

We fix the dependence on α(1) and ε(1) by the known values for the conformal scalar with

Dirichlet and Robin boundary conditions, giving

a(3d) =
π2

9

(
ε(1)− 3

4
α(1) + 3C

)
. (6.23)
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Note this conjecture gives the correct result for free fermions, reproducing a
s= 1

2

(3d) = 0.

In a general interacting bCFT we suspect only α(1) to be nonzero for the following

reason. Interactions coupling boundary degrees of freedom to the bulk ought to lead to

a unique stress tensor, leading to C = 0. Meanwhile, ε(1) corresponds to a dimension−3

boundary operator appearing in the boundary operator product expansion of TAB, but the

boundary conformal symmetry does not guarantee the existence of such an operator.

Reflection positivity means that the functions α(v) and ε(v) are non-negative, as discussed

in the previous chapter. The coefficient C is also non-negative. If ε(v) is regular near the

boundary, then ε(1) is non-negative, and comparing with the new result (6.11) for b, we

obtain the bounds

d = 3 bCFTs :
a(3d)

b
≥ −2

3
, (b ≥ 0) . (6.24)

These bounds recall the Hofman-Maldacena [141] bounds on d = 4 bulk central charges.

However, if ε(v) is singular near the boundary, then there is no constraint on the sign of ε(1),

and thus, no definite bound on a(3d) charge. We note that a(3d) and b have been computed

in a bottom-up holographic model [142] and their ratio falls below our proposed bound.

6.3 Two- and Three-Point Functions in Free Theories

We would like to verify the general relations (6.11) and (6.20) in free theories, including a

conformal scalar, a Dirac fermion and, in d = 4, Maxwell theory. The stress tensor two-point

functions with a planar boundary for the scalar and fermion were already considered in ref.

[87]. In the previous chapter, we have computed the two-point functions for a Maxwell field.

We will list the relevant two-point function results for completeness, and consider three-point

functions with a boundary in free theories. These latter results are, to our knowledge, new.

Considering first a vector of scalar fields, i.e φ→ φa (the index a will be suppressed), we

introduce complementary projectors Π± satisfying Π+ + Π− = 1 and Π2
± = Π±. The bound-

ary conditions are ∂n(Π+φ)|y=0 = 0 and Π−φ|y=0 = 0. The scalar displacement operator

is

Tnn = (∂nφ)2 − 1

4

1

d− 1

(
(d− 2)∂2

n + �
)
φ2 , (6.25)

which is the boundary limit of the normal-normal component of the improved stress tensor.

The two-point function of the scalar field can be found using the image method:

〈φ(x)φ(x′)〉 =κ
( 1

|x− x′|d−2
+

χ

((x− x′)2 + (y + y′)2)(d−2)/2

)
, (6.26)

where the parameter χ = Π+−Π− is determined by boundary conditions. We have adopted

the normalization κ = 1
(d−2)Vol(Sd−1)

where Vol(Sd−1) = 2π
d
2

Γ( d
2

)
. Note χ2 = 1, and that an

eigenvalue of χ is 1 for Neumann and -1 for Dirichlet boundary conditions.
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To keep the expressions simple, we will focus on the displacement operator two-point

function in d = 3 and the three-point function in d = 4. These two quantities are required

in computing the boundary central charges from the relations (6.11) and (6.20).

A straightforward application of Wick’s theorem gives

〈Dn(x)Dn(0)〉s=0
3d =

tr(1)

8π2x6
, (6.27)

〈Dn(x)Dn(x′)Dn(0)〉s=0
4d =

1

9π6

8 tr(1)− tr(χ)

|x|4|x′|4|x− x′|4
. (6.28)

The result (6.27) implies that the b boundary charge (in d = 3) does not depend on boundary

conditions for a free scalar. Indeed, using the relation (6.20), we recover the known value

of the b charge for a d = 3 free scalar, b = 1
64

. On the other hand, clearly b1 is sensitive to

boundary conditions through the tr(χ). Using the relation (6.20), we can verify that b1 is 2
35

for a Dirichlet scalar and 2
45

for a Neumann scalar.

Next we consider a Dirac fermion. In Minkowski (mostly plus) signature, {γµ, γν} =

−2ηµν . The fermion’s displacement operator and two-point function are

Tnn =
i

2

(
˙̄ψγnψ − ψ̄γnψ̇

)
, (ψ̇ ≡ ∂nψ) (6.29)

〈ψ(x)ψ̄(x′)〉 = −κf
(iγ · (x− x′)
|x− x′|d

+ χ
iγ · (x̄− x′)
|x̄− x′|d

)
, (6.30)

where x̄ = (−y,x) and κf = 1/Vol(Sd−1) and ψ̄ = ψ†γ0. The χ parameter satisfies

χγn = −γnχ̄ , χγA = γAχ̄ , χ2 = χ̄2 = 1 , (6.31)

where χ̄ = γ0χ†γ0. Focusing on the fermion displacement operator two-point function in

d = 3 and the three-point function in d = 4, we find

〈D(x)D(0)〉s=
1
2

3d =
3

16π2

trγ(1)

x6
, (6.32)

〈D(x)D(x′)D(0)〉s=
1
2

4d =
5

4π6

trγ(1)

x4x′4(x− x′)4
, (6.33)

where trγ(1) depends on the Clifford algebra one uses; we will take trγ(1) = 2bd/2c. As

χ2 = 1, the boundary dependence drops out of these two- and three-point functions. We

can again verify the relations (6.11) and (6.20) for the fermion.

Finally, we consider a Maxwell field in Feynman gauge. As the field in d = 3 is not

conformal, we focus on the d = 4 case. The displacement operator is

Tnn =
1

2
FnAFn

A − 1

4
FABF

AB , (6.34)

and the gauge field two-point function is

〈Aµ(x)Aν(x′)〉 = κ
( δνµ

(x− x′)2
+

χνµ
((x− x′)2 + (y + y′)2)2

)
. (6.35)
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The χνµ parameter determines the boundary condition; it is equal to δνµ up to a sign. For

gauge fields one can consider the absolute boundary condition where the normal component

of the field strength is zero, which gives ∂nAA = 0 and An = 0, or the relative boundary

condition where AA = 0 which gives ∂nA
n = 0 when recalling the gauge fixing. See the

previous chapter for more details. We find

〈Dn(x)Dn(x′)Dn(0)〉s=1
4d =

512κ3

|x|4|x′|4|x− x′|4
, (6.36)

independent of the choice of boundary conditions. From the relation (6.20) we recover the

value of b1 charge for the d = 4 Maxwell field with a boundary.

6.4 Discussion

We presented new results for the boundary terms in the trace anomaly for CFTs in 3d

and 4d. By relating b (6.11), b1 (6.20), b2 (6.12), and a(3d) (6.23) to two- and three-point

functions of the displacement operator in flat space, these results make the boundary coeffi-

cients more straightforward to compute. Ultimately, perhaps building on the bound (6.24),

we hope that a classification scheme for bCFT can be organized around these coefficients.

Let us conclude by listing some open problems:

• What can one say about these boundary charges for the maximally supersymmetric

Yang-Mills theory in 4d in the presence of a boundary?

• Search for stronger bounds on boundary charges, building perhaps on the reflection

positivity.

• Understand how these 4d boundary charges behave under boundary RG flow.

• Compute directly the b1 and b2 charges for mixed QED in curved space.

• Search for new interacting bCFTs in 4 and other dimensions.

• Consider the stress tensor two-point function with a codimension-2 surface. Such

geometry has an important relationship to quantum entanglement.

• Classify the structure of three-point functions in bCFTs.

Clearly, there is much to be done.
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[18] H. W. J. Blöte, J. L. Cardy and M. P. Nightingale, “Conformal Invariance, the Central
Charge, and Universal Finite Size Amplitudes at Criticality,” Phys. Rev. Lett. 56, 742
(1986).

[19] L. S. Brown and J. P. Cassidy, “Stress Tensors and their Trace Anomalies in Conformally
Flat Space-Times,” Phys. Rev. D 16, 1712 (1977).

[20] S. Deser, M. J. Duff and C. J. Isham, “Nonlocal Conformal Anomalies,” Nucl. Phys. B
111, 45 (1976).

[21] D. N. Page, “Thermal Stress Tensors in Static Einstein Spaces,” Phys. Rev. D 25, 1499
(1982).

[22] A. Cappelli and A. Coste, “On The Stress Tensor Of Conformal Field Theories In Higher
Dimensions,” Nucl. Phys. B 314, 707 (1989).

[23] A. Schwimmer and S. Theisen, “Diffeomorphisms, anomalies and the Fefferman-Graham
ambiguity,” JHEP 0008, 032 (2000) [hep-th/0008082].

[24] S. Deser and A. Schwimmer, “Geometric classification of conformal anomalies in arbi-
trary dimensions,” Phys. Lett. B 309, 279 (1993) [hep-th/9302047];

[25] L. Bonora, P. Pasti and M. Bregola, “Weyl Cocycles,” Class. Quant. Grav. 3, 635
(1986).

[26] J. Erdmenger, “Conformally covariant differential operators: Properties and applica-
tions,” Class. Quant. Grav. 14, 2061 (1997) [hep-th/9704108].

[27] F. Bastianelli, S. Frolov and A. A. Tseytlin, “Conformal anomaly of (2,0) tensor mul-
tiplet in six-dimensions and AdS / CFT correspondence,” JHEP 0002, 013 (2000)
[hep-th/0001041].

130



[28] N. Boulanger and J. Erdmenger, “A Classification of local Weyl invariants in D=8,”
Class. Quant. Grav. 21, 4305 (2004) [hep-th/0405228].

[29] N. D. Birrell and P. C. W. Davies, Quantum fields in curved space, Cambridge Uni-
versity Press (1982).

[30] V. Balasubramanian and P. Kraus, “A Stress tensor for Anti-de Sitter gravity,” Com-
mun. Math. Phys. 208, 413 (1999) [hep-th/9902121].

[31] R. Emparan, C. V. Johnson and R. C. Myers, “Surface terms as counterterms in the
AdS / CFT correspondence,” Phys. Rev. D 60, 104001 (1999) [hep-th/9903238].

[32] S. de Haro, S. N. Solodukhin and K. Skenderis, “Holographic reconstruction of space-
time and renormalization in the AdS / CFT correspondence,” Commun. Math. Phys.
217, 595 (2001) [hep-th/0002230].

[33] A. M. Awad and C. V. Johnson, “Higher dimensional Kerr - AdS black holes and the
AdS / CFT correspondence,” Phys. Rev. D 63, 124023 (2001) [hep-th/0008211].

[34] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field
theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [hep-th/9905111].

[35] T. Maxfield and S. Sethi, “The Conformal Anomaly of M5-Branes,” JHEP 1206, 075
(2012) [arXiv:1204.2002 [hep-th]].

[36] L. H. Ford, “Quantum Vacuum Energy in a Closed Universe,” Phys. Rev. D 14, 3304
(1976).

[37] M. Marino, “Lectures on localization and matrix models in supersymmetric Chern-
Simons-matter theories,” J. Phys. A 44, 463001 (2011) [arXiv:1104.0783 [hep-th]].

[38] G. W. Gibbons, M. J. Perry and C. N. Pope, “AdS/CFT Casimir energy for rotating
black holes,” Phys. Rev. Lett. 95, 231601 (2005) [hep-th/0507034].

[39] Y. Nakayama, “Does anomalous violation of null energy condition invalidate holographic
c-theorem?,” Phys. Lett. B 720, 265 (2013) [arXiv:1211.4628 [hep-th]].

[40] H. Casini, M. Huerta and R. C. Myers, “Towards a derivation of holographic entangle-
ment entropy,” JHEP 1105, 036 (2011) [arXiv:1102.0440 [hep-th]].

[41] F. Bastianelli, G. Cuoghi and L. Nocetti, “Consistency conditions and trace anomalies
in six-dimensions,” Class. Quant. Grav. 18, 793 (2001) [hep-th/0007222].

[42] M. R. Brown, A. C. Ottewill, D. N. Page ”Conformally invariant quantum field theory
in static Einstein space-times” Physical Review D, 1986

[43] T. J. Osborne and M. A. Nielsen, “Entanglement in a simple quantum phase transition,”
Phys. Rev. A 66, 032110 (2002) [quant-ph/0202162].

131



[44] G. Vidal, J. I. Latorre, E. Rico and A. Kitaev, “Entanglement in quantum critical
phenomena,” Phys. Rev. Lett. 90, 227902 (2003) [quant-ph/0211074].

[45] L. Bombelli, R. K. Koul, J. Lee and R. D. Sorkin, “Quantum source of entropy for black
holes,” Phys. Rev. D 34, 373 (1986).

[46] M. Srednicki, “Entropy and area,” Phys. Rev. Lett. 71, 666 (1993) [hep-th/9303048].

[47] H. Casini and M. Huerta, “A c-theorem for the entanglement entropy,” J. Phys. A 40,
7031 (2007) [cond-mat/0610375].

[48] H. Casini and M. Huerta, “On the RG running of the entanglement entropy of a circle,”
Phys. Rev. D 85, 125016 (2012) [arXiv:1202.5650 [hep-th]].

[49] S. N. Solodukhin, “Entanglement entropy, conformal invariance and extrinsic geometry,”
Phys. Lett. B 665, 305 (2008) [arXiv:0802.3117 [hep-th]].

[50] P. Buividovich and M. Polikarpov, “Entanglement entropy in gauge theories and
the holographic principle for electric strings,” Phys. Lett. B 670, 141 (2008)
[arXiv:0806.3376 [hep-th]].

[51] H. Casini, M. Huerta and J. Rosabal, “Remarks on entanglement entropy for gauge
fields,” Phys. Rev. D 89, 085012 (2014) [arXiv:1312.1183 [hep-th]].

[52] W. Donnelly and A. C. Wall, “Entanglement entropy of electromagnetic edge modes,”
Phys. Rev. Lett. 114, no. 11, 111603 (2015) [arXiv:1412.1895 [hep-th]].

[53] D. Fursaev, “Quantum Entanglement on Boundaries,” JHEP 1307 119 (2013)
[arXiv:1305.2335 [hep-th]].

[54] J. Polchinski, String Theory: Volume 1, Cambridge University Press, 1998.

[55] M. R. Brown and A. C. Ottewill, “Effective actions and conformal transformations,”
Phys. Rev. D 31, 2514 (1985).

[56] K. Jensen and A. O’Bannon, “Constraint on Defect and Boundary Renormalization
Group Flows,” Phys. Rev. Lett. 116, no. 9, 091601 (2016) [arXiv:1509.02160 [hep-th]].

[57] V. Korepin and B.-Q. Jin, “Quantum Spin Chain, Toeplitz Determinants and Fisher-
Hartwig Formula,” J. Stat. Phys. 116, 79 (2004) [quant-ph/0304108].

[58] P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field theory,” J.
Stat. Mech. 0406, P06002 (2004) [hep-th/0405152].

[59] Z. Komargodski, “The Constraints of Conformal Symmetry on RG Flows,” JHEP 1207,
069 (2012) [arXiv:1112.4538 [hep-th]].

[60] J. Wess and B. Zumino, “Consequences of anomalous Ward identities,” Phys. Lett. B
37, 95 (1971).

132



[61] A. Schwimmer and S. Theisen, “Spontaneous Breaking of Conformal Invariance and
Trace Anomaly Matching,” Nucl. Phys. B 847, 590 (2011) [arXiv:1011.0696 [hep-th]].

[62] S. M. Christensen and M. J. Duff, “Quantum Gravity in Two + ε Dimensions,” Phys.
Lett. B 79, 213 (1978).

[63] C. Holzhey, F. Larsen and F. Wilczek, “Geometric and renormalized entropy in confor-
mal field theory,” Nucl. Phys. B 424, 443 (1994) [hep-th/9403108].

[64] S. N. Solodukhin, “The Conical singularity and quantum corrections to entropy of black
hole,” Phys. Rev. D 51, 609 (1995) [hep-th/9407001].

[65] V. P. Frolov, W. Israel and S. N. Solodukhin, “On one loop quantum corrections
to the thermodynamics of charged black holes,” Phys. Rev. D 54, 2732 (1996) [hep-
th/9602105].

[66] C. R. Graham and E. Witten, “Conformal anomaly of submanifold observables in
AdS/CFT correspondence,” Nucl. Phys. B 546, 52 (1999) [hep-th/9901021].

[67] A. Schwimmer and S. Theisen, “Entanglement Entropy, Trace Anomalies and Hologra-
phy,” Nucl. Phys. B 801, 1 (2008) [arXiv:0802.1017 [hep-th]].

[68] T. Eguchi, P. B. Gilkey and A. J. Hanson, “Gravitation, Gauge Theories and Differential
Geometry,” Phys. Rept. 66, 213 (1980).

[69] K. Jensen, R. Loganayagam and A. Yarom, “Anomaly inflow and thermal equilibrium,”
JHEP 1405, 134 (2014) [arXiv:1310.7024].

[70] O. Miskovic and R. Olea, “Counterterms in Dimensionally Continued AdS Gravity,”
JHEP 0710, 028 (2007) [arXiv:0706.4460 [hep-th]].

[71] J. Melmed, “Conformal invariance and the regularised one-loop effective action,” J.
Phys. A: Math. Gen. 21, L1131 (1988).

[72] J. S. Dowker and J. P. Schofield, “Conformal Transformations and the Effective Action
in the Presence of Boundaries,” J. Math. Phys. 31, 808 (1990).

[73] D. M. McAvity and H. Osborn, “Quantum field theories on manifolds with curved
boundaries: Scalar fields,” Nucl. Phys. B 394, 728 (1993) [cond-mat/9206009].

[74] T. P. Branson, P. B. Gilkey and D. V. Vassilevich, “The Asymptotics of the Laplacian on
a manifold with boundary. 2,” Boll. Union. Mat. Ital. 11B, 39 (1997) [hep-th/9504029].

[75] I. G. Moss, “Boundary terms in the heat kernel expansion,” Class. Quant. Grav. 6, 759
(1989).

[76] K. Jensen and A. O’Bannon, “Holography, Entanglement Entropy, and Confor-
mal Field Theories with Boundaries or Defects,” Phys. Rev. D 88, 106006 (2013)
[arXiv:1309.4523].

133



[77] J. Estes, K. Jensen, A. O’Bannon, E. Tsatis and T. Wrase “On Holographic Defect
Entropy,” JHEP 1405, 084 (2014) [arXiv:1403.6475].

[78] D. Gaiotto, “Boundary F-maximization”, [arXiv:1403.8052].

[79] R. C. Myers, “Higher Derivative Gravity, Surface Terms and String Theory,” Phys. Rev.
D 36, 392 (1987).

[80] P. Candelas and J. S. Dowker, “Field Theories On Conformally Related Space-times:
Some Global Considerations,” Phys. Rev. D 19, 2902 (1979).

[81] B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen and D. Martelli, “The
Casimir Energy in Curved Space and its Supersymmetric Counterpart,” JHEP 07, 043
(2015) [arXiv:1503.05537 [hep-th]].

[82] R. C. Myers and A. Sinha, “Holographic c-theorems in arbitrary dimensions,” JHEP
1101, 125 (2011) [arXiv:1011.5819 [hep-th]].

[83] R. C. Myers and A. Sinha, “Seeing a c-theorem with holography,” Phys. Rev. D 82,
046006 (2010) [arXiv:1006.1263 [hep-th]].

[84] The On-line Encyclopedia of Integer Sequences, http://oeis.org.

[85] D. Fursaev, “Conformal anomalies of CFT’s with boundaries,” JHEP 1512, 112 (2015)
[arXiv:1510.01427 [hep-th]].

[86] J. Cardy, “Conformal invariance and surface critical behavior,” Nucl. Phys. B 240, 4,
(1984)

[87] D. M. McAvity and H. Osborn, “Energy momentum tensor in conformal field theories
near a boundary,” Nucl. Phys. B 406, 655 (1993) [hep-th/9302068].

[88] D. M. McAvity and H. Osborn, “Conformal field theories near a boundary in general
dimensions,” Nucl. Phys. B 455, 522 (1995) [cond-mat/9505127].

[89] H. Osborn and A. C. Petkou, “Implications of conformal invariance in field theories for
general dimensions,” Annals Phys. 231, 311 (1994) [hep-th/9307010].

[90] S. N. Solodukhin, “Boundary terms of conformal anomaly,” Phys. Lett. B 752, 131
(2016) [arXiv:1510.04566 [hep-th]].

[91] C.-S. Chu, R.-X. Miao and W.-Z. Guo, “On New Proposal for Holographic BCFT,”
JHEP 1704, 089 (2017) [arXiv:1701.07202 [hep-th]].

[92] R.-X. Miao, C.-S. Chu and W.-Z. Guo, “New proposal for a holographic boundary
conformal field theory,” Phys. Rev. D 96, no. 4, 046005 (2017) [arXiv:1701.04275 [hep-
th]].

134



[93] A. Faraji Astaneh and S. N. Solodukhin, “Holographic calculation of boundary terms
in conformal anomaly,” Phys. Lett. B 769, 25 (2017) [arXiv:1702.00566 [hep-th]].

[94] J. Erdmenger and H. Osborn, “Conserved currents and the energy momentum tensor in
conformally invariant theories for general dimensions,” Nucl. Phys. B 483, 431 (1997)
[hep-th/9605009].

[95] P. Liendo, L. Rastelli and B. C. van Rees, “The Bootstrap Program for Boundary
CFTd,” JHEP 1307, 113 (2013) [arXiv:1210.4258 [hep-th]].

[96] E. Eisenriegler, M. Krech and S. Dietrich, “Absence of hyperuniversality in critical
films,” Phys. Rev. Lett. 70, 619 (1993)

[97] F. Gliozzi, P. Liendo, M. Meineri and A. Rago, “Boundary and Interface CFTs from
the Conformal Bootstrap,” JHEP 1505, 036 (2015) [arXiv:1502.07217 [hep-th]].

[98] S. Teber, “Electromagnetic current correlations in reduced quantum electrodynamics,”
Phys. Rev. D 86, 025005 (2012) [arXiv:1204.5664 [hep-ph]].

[99] S. Teber, “Two-loop fermion self-energy and propagator in reduced QED3,2,” Phys. Rev.
D 89, no. 6, 067702 (2014) [arXiv:1402.5032 [hep-ph]].

[100] D. Gaiotto, S. Gukov and N. Seiberg, “Surface Defects and Resolvents,” JHEP 1309,
070 (2013) [arXiv:1307.2578 [hep-th]].

[101] O. J. C. Dias, G. T. Horowitz, N. Iqbal and J. E. Santos, “Vortices in holo-
graphic superfluids and superconductors as conformal defects,” JHEP 1404, 096 (2014)
[arXiv:1311.3673 [hep-th]].
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