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Abstract of the Dissertation

Understanding up-down asymmetry in ferroelectric oxide materials

by

Simon Divilov

Doctor of Philosophy

in

Physics

Stony Brook University

2018

Ferroelectrics are defined as materials whose spontaneous electric polar-
ization can be reversed with an applied external electric field. An impor-
tant family of ferroelectrics is oxides (chemical formula ABO3), whose simple
structure and robustness to degradation make them attractive candidates for
both theoretical and engineering applications. However, ferroelectric oxides
typically exhibit an unwanted phenomenon, known as up-down asymmetry,
where one polarization state is easier to switch, using an external electric
field, than the other. In the first part of this thesis we study bulk PbTiO3

using Landau-Ginzburg-Devonshire mean field theory (LGDT) and density
functional theory (DFT). We find that the up-down asymmetry can be un-
derstood as a built-in electric field, inside the ferroelectric, produced from
the collective interactions of Pb-O divacancy (DV) dipole moments, caus-
ing one polarization state to be more energetically favorable. These collec-
tive interactions are represented, in the free energy of the ferroelectric, as
linear coupling of the built-in electric field to the bulk polarization and in-
terfaces of divacancies. In the second part of this thesis we study, using
DFT, PbTiO3/SrTiO3 and PbTiO3/SrRuO3 superlattices. We show that
the up-down asymmetry in PbTiO3/SrTiO3 is determined by the growth
direction of the superlattice that fixes the direction of Pb-O DV dipole mo-
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ments. However, in PbTiO3/SrRuO3 we find two regimes, based on the
PbTiO3 layer thickness, with di↵erent polarization states that are more en-
ergetically favorable. For thin PbTiO3 layers, the state is determined by the
ordering of the PbO and RuO2 planes at the interface of the PbTiO3 and
SrRuO3 layers. While for thick PbTiO3 layers, the state is determined by
a Pb-O DV in those planes. Using the understanding of how the preferred
polarization state is determined in each superlattice, we show, that we can
control and e↵ectively remove the up-down asymmetry by growing combined
PbTiO3/SrTiO3/PbTiO3/SrRuO3 superlattices.
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Preface

I have chosen to write this thesis in two parts. The first part of my
thesis includes a non-exhaustive collection of derivations and detailed expla-
nations (with plenty of references) about useful theories and methods needed
to understand my work. Primarily, this was done to further my own under-
standing of the research topics. However, I hope my attempts will be fruitful
to perspective students looking to build and improve on my work. The sec-
ond part of my thesis includes the actual details of my work, which seasoned
researchers of the field should skip to.
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Part I

Theory and Methods

1 Introduction

Ferroelectric materials are insulators with multiple stable or metastable
states, defined by their electric polarization, where switching between the
states is achieved with an applied external electric field. In this section we
discuss the basis of ferroelectricity, specifically its microscopic origins and
dynamics, as well as, experimentally detecting ferroelectric states. Then we
discuss a specific family of materials, known as perovskite oxides, some of
which are ferroelectric, in superlattice nanostructure form. Finally, we briefly
discuss some applications of ferroelectric oxides and the problems associated
with them which we investigate in the thesis.

1.1 Ferroelectricity

1.1.1 Crystallography

The stable or metastable states in a ferroelectric material are referred
to as spontaneous polarizations. Physically, the spontaneous polarization,
in a conventional ferroelectric, is a product of the atomic positions in the
crystal. However, it is important to note, that just because the crystal is
polarized does not make it a ferroelectric. The key attribute is the abil-
ity of the crystal to transition between di↵erent polarization states through
atomic displacements forced by the external electric field. For this to exist,
a ferroelectric crystal must have a non-polar, high symmetry phase and a
polar, lower symmetry phase, where the symmetry-breaking transition oc-
curs through atomic displacements. It turns out that this constraint severely
limits the crystallographic structures which allow for ferroelectricity.[1]

1.1.2 Microscopic origins

Perovskite oxides, chemical formula ABO3, where A and B are cations
and O is an anion, are a class of crystal structures that allow for such a
symmetry-breaking transition. In their non-polar high symmetry phase, the
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perovskite has a cubic centrosymmetric structure shown in Fig. 1. How-
ever, for atomic displacements to occur and create a ferroelectric phase the
long range Coulomb forces need to be more energetically favorable than the
short range repulsion forces that stabilize the centrosymmetric phase. Such
a condition depends on the bonding characteristics of the ions and is known
as a second-order Jahn-Teller (SOJT) e↵ect. We can define this e↵ect by a
perturbative expansion of the centrosymmetric state energy in terms of the
atomic distortion Q as[1]

E(Q) = E(0) +
1

2

 
⌦
0|�2H/�Q

2
|0
↵
� 2
X

n

0 | h0|�H/�Q|ni |
2

En � E(0)

!
+ · · · (1.1.1)

where the linear term in Q is discarded due to the centrosymmetry of the
system. Here H, E(0) and En is the Hamiltonian of the system, the energy of
the centrosymmetric state and the energy of the excited states, respectively.
The first term in the bracket describes the energy change due to atomic dis-
tortions, which is dominated by Coulomb repulsion, and therefore it is always
positive. The second term in the bracket describes the energy change due to
atomic distortions, taking into account electron redistribution, and from in-
spection is always negative. Evidently, to produce a SOJT e↵ect and achieve
ferroelectricity the second term must be larger than the first. For this to
occur the excited state needs to be close in energy with the centrosymmetric
state such that En�E(0) is as small as possible, and h0|�H/�Q|ni cannot be
zero, meaning that the excited state, where the electrons redistribute, cannot
be centrosymmetric. A simple physical example where this occurs is BaTiO3

where the Ti cation is shifted o↵-center, due to the hybridization between the
Ti 3d and O 2p orbitals, creating a polarized non-centrosymmetric structure.

Another possible mechanism to stabilize polar order in a centrosymmetric
perovskite is oxygen octahedra rotations. While such rotations do not pro-
duce a ferroelectric nor a non-centrosymmetric state, they lower the overall
energy di↵erence En � E(0) and in conjunction with SJOT help facilitate
a ferroelectric phase transition. Sometimes the rotations stabilize dipole
moments in adjacent cells that are in opposite directions giving no net polar-
ization in the material, as in the case of antiferroelectric PbZrO3. Hence the
oxygen octahedra rotations are sometimes referred to as antiferrodistortive
rotations.
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Figure 1: Unit cell of a cubic centrosymmetric perovskite crystal. The A
cation, B cation and O anion are represented by white, black and grey
spheres, respectively. Taken from Ref. [1]

1.1.3 Switching dynamics

The switching of a ferroelectric into a di↵erent state is not an instanta-
neous process nor is the switching process uniform throughout the material.[6]
Nevertheless, Landau theory of phase transitions, which models the physics
of switching the spins in a ferromagnet from up to down, has been used to
great success to model the switching of the spontaneous polarization in a
ferroelectric. However, the caveat is that Landau theory predicts the electric
coercive field to be several orders of magntitude higher than what is observed
experimentally.[6] This is because in the Landau theory the switching is gov-
erned by homogeneous nucleation, whereas, in reality, domains and domain
wall kinetics are important in explaining the switching. Typically the switch-
ing occurs via the following step-wise Kolmogorov-Avrami-Ishibashi process:
(i) a spherical microscopic domain, of opposite polarization, is formed in
the polarized material, (ii) the domain spherically expands, at the speed of
sound, until it reaches a critical diameter, determined by the surface ten-
sion of the domain wall, (iii) then the domain expands along the direction
of the applied electric field, and (iv) finally when it reaches the boundary
of the material or electrodes, it expands in the perpendicular direction.[6]
However, in perovskite oxides the switching rate is limited by the nucleation
of domains.[7] This is because the dependence of the domain nucleation time
on the applied electric field E is ⇠ exp(1/E2). Hence even for an infinite
applied electric field, the nucleation time approaches a constant and does not
go to zero.
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1.1.4 Experimental measurement of switching

In an ideal ferroelectric, measuring the polarization while varying the
applied electric field to switch between the two spontaneous polarization
states would produce a (polarization-Efield) P-E hysteresis loop analogous
to a M-H hysteresis loop in ferromagnets. However to accurately measure
the hysteresis curve, in an experiment, can be a challenge, since not only
can the sample be less than ideal, but also the electrodes and wires need
to be accounted for. One popular way to measure the polarization, while
discriminating against artifacts, is the positive-up negative-down (PUND)
measurement. This measurement, shown in Fig. 2, involves a succession of
five pulses, where the pulse is a brief period of an applied electric field or
voltage. To begin the measurement an initial pulse (0) is sent to polarize the
material in a particular polarization direction (up or down), then two pulse
(1 and 2) in the opposite direction are applied, finally two more pulses (3
and 4) are sent in the direction of the initial pulse. Two pulses of the same
voltage are sent to verify that the sample is fully polarized. In addition, we
should not observe a change in the current between two pulses of the same
voltage sign, allowing us to verify that no artifacts exist. A current is only
produced when the sign of the voltage between two pulses is di↵erent and
integrating the current with respect to time yields the polarization.

1.2 Perovskite Oxides

Perovskite oxides, with chemical formula ABO3, is a very diverse family
of materials. The compound, depending on the A and B cations, can be
insulating or metallic and exhibit polar or magnetic order.[1]

1.2.1 PbTiO3

PbTiO3, the main material of interest in this thesis, has a paraeletric-
ferroelectric phase transition at 760K. When PbTiO3 is paraeletric, the unit
cell is cubic with space group Pm3̄m where the Pb cation is on the corners
of the cube, the Ti cation is in the center of the cube, and the O anion
is on the faces of the cube, which make up an oxygen octahedra. In the
ferroelectric state, the material is tetragonal with space group P4mm and
lattice constants a = 3.904 and c = 4.152 with a polarization of 75 µC/cm2

at room temperature.[1] As previously discussed, the polarization is much
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Figure 2: PUNDmeasurement of a ferroelectric PbTiO3/SrTiO3 superlattice.
The lower inset shows the voltage and time delay of the pulses. The upper
inset shows the di↵erence in the current between the 1st and 2nd pulse and
the 3rd and 4th pulse. Taken from Ref. [1]
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higher than one would expect if we just consider a simple ionic model, where
Pb, Ti and O have charges of +2, +4, and -2, respectively. The primary
reason for this is the hybridization between the Ti and O orbitals and the Pb
and O orbitals.[8] The hybridization of the Ti 3d and O 2p orbitals weakens
the short-range ionic repulsion, allowing for a larger displacement of the Ti
ion from the center (shorter Ti-O bond), which enhances the ferroelectric
order. Likewise, hybridization of the Pb 6s and 6p orbitals with the O 2p
orbitals allow for shorter Pb-O bonds, stabilizing the polar tetragonal phase
which indirectly enhances the ferroelectric order. The secondary reason,
like for many perovskite oxides, is a strong coupling between the strain and
ferroelectricity.[1] The in-plane strain, from the relatively small ionic radius
of Pb, helps stabilize the polar tetragonal phase of the material.

1.2.2 SrTiO3

SrTiO3 is paraelectric and cubic with space group Pm3̄m and lattice
constant a = 3.905Å. At 120K the material undergoes a structural phase
transition where the oxygen octahedra undergo a antiferrodistortive (AFD)
rotation, shown in Fig. 3, around a crystallographic axis lowering the overall
symmetry of the crystal to the I4/mcm space group. The material has a po-
lar phonon, which is responsible for ferroelectric stability, with a frequency
that decreases as the temperature is lowered. If the frequency of the polar
phonon vanishes then SrTiO3 can have a paraeletric-ferroelectric phase tran-
sition. However, even at low temperatures, the ferroelectric transition never
occurs due to zero-point energy, preventing the frequency of the phonon from
disappearing.[1] Hence the material is commonly referred to as an incipient
ferroelectric. Although, it is possible, through the engineering of epitaxial
strain or defect gradients, to convert the material into a ferroelectric.

1.2.3 SrRuO3

SrRuO3 is a metallic, itinerant ferromagnet with Tc around 150K which
does not exhibit ferroelectric characteristics. The material is pseudo-cubic
with space group Pnma and lattice constant a = 3.93Å. The lack of polar or-
der in the material has to due with the competing nature of ferromagnetism
and ferroelectricity in perovskite oxides. To stabilize ferromagnetism, the d

orbitals in the B ion need to be localized, where as, to stabilize ferroelectri-
cicty, the d orbitals in the B ion need to hybridized.[1] Due to the oxygen
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Figure 3: Oxygen antiferrodistortive rotations by angle � in SrTiO3 around
the q vector. If the system was also ferroelectric the polarization would
be along the p vector. The green text represents the symmetry operators
associated with the rotations. Taken from Ref. [2]

7



octehdra that surround the Ru ion, the five degenerate Ru 4d orbitals split in
energy into doubly degenerate eg orbitals and triply degenerate t2g orbitals.
Both the eg and t2g orbitals are important for magnetic order.[9] Transport
experiments on the the material reveal that it has a relatively poor conduc-
tivity and the temperature dependence on the conductivity does not follow
conventional Drude theory.[10]

1.3 Superlattices

Superlattices are nanostructures where two or more materials are artifi-
cially layered on top of each other, in an alternating pattern, resulting in the
interplay between the materials and leading to interesting physics.

1.3.1 PbTiO3/SrTiO3

PbTiO3/SrTiO3 superlattices are good candidate to probe the strain-
ferroelectrcity coupling present in many perovskite oxides. The strain is
produced due to the in-plane lattice mismatch during the growth process
(aPTO = 3.935 Å and aSTO = 3.925 Å). First principles and electrostatic
models reveal that the system prefers to have the same polarization in both
PbTiO3 and SrTiO3 layers, even at the energy cost of polarizing the paraelec-
tric layers.[11] One would also expect that the ferroelectricity of the whole
superlattice to scale with the thickness of the PbTiO3 layers. However, exper-
imental data has shown[11] that even for a single layer of PbTiO3 the super-
lattice retains its ferroelectricity and domain structure. It turns out that for
the short periods superlattices there are AFD rotations in the bilayers. This
leads to a coupling between AFD rotations and polarization which lowers the
overall energy and allows the superlattice to retain its ferroelectricity.[12]

1.3.2 PbTiO3/SrRuO3

Similar to PbTiO3/SrTiO3 superlattices, PbTiO3/SrRuO3 superlattices
also involve the coupling of strain to ferroelectricity, which is achieved by
growing the superlattice on an SrTiO3 substrate. However there are also
a number of di↵erences. The first di↵erence is that we have a ferroelec-
tric/metal bilayer and second is that the interface has a broken inversion
symmetry because the two materials have di↵erent A and B cations. The
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metallic characteristics of the superlattice leads to a two dimensional elec-
tron gas at the interface for su�ciently thick PbTiO3 layers.[13] While the
compositional breaking of the inversion symmetry leads to the superlattice
self-poling in a particular direction due to one polarization state being more
energetically favorable than the other. This e↵ect is particularly attractive in
piezoelectric devices where the goal is to apply an electric field either with or
against the preferred polarization to increase or decrease the size of the ma-
terial, respectively. The strength of the self-poling scales with the thickness
of the PbTiO3 layer. Theoretical and experimental data has shown[13] that
the superlattice is not ferroelectric below 3/1, is an asymmetric ferroelectric
between 3/1 and 7/1, and above 7/1 it is a conventional ferroelectric.

1.4 Applications

Ferroelectrics have a wide range of applications, of which, we only par-
tially cover here and suggest Ref. [1] for further reading. For many years,
ferroelectrics have been considered to be the most likely candidates for the
next generation technology of non-volatile memory. Non-volatile memory is
a highly desirable method of information storage with the advent of FLASH
technology. Ferroelectric field e↵ect transistors is an active field of research,
where the ferroelectricity can potentially modify superconducting and mag-
netic properties of materials. In addition, since all ferroelectric are piezo-
electrics, atomic force microscopy can be used to write extremely dense do-
mains for information storage. Finally, ferroelectric nanostructures, such as
superlattices are ideal candidates for nanocapacitor technology, due to reten-
tion of ferroelectricity at sub-micron sizes.

1.5 Problems

There are a number of problems associated with ferroelectric perovskite
oxides which are related to the switching dynamics. The two most com-
monly discussed are fatigue and up-down asymmetry (sometimes referred
to as imprint).[14] Fatigue is the decrease in magnitude of the polarization
after repeated switching between the two polarization states, and up-down
asymmetry occurs when one polarization state is easier to switch than the
other. In this thesis we address the problem of up-down asymmetry for bulk
PbTiO3, as well as, PbTiO3/SrTiO3 and PbTiO3/SrRuO3 superlattices. In
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understanding this problem we provide potential solutions on how to synthe-
size symmetric ferroelectric devices.
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2 Phenomenology

2.1 Mean Field Theories

A mean field theory ignores long range correlations to create a simpler
model in an attempt to explain physical phenomena. In this section we will
focus on Landau’s formulation of a mean field theory to explain continuous
phase transitions. While it is known that a phase transition in a crystal
is accompanied by an abrupt change in its symmetry, Landau made the
realization[15] that near the transition the electron density should exhibit a
continuous change. This is evident if we think of the electron density ⇢(r)
near the phase transition as ⇢0 + �⇢, where ⇢0 is the electron density of
the initial phase of space group S1 and �⇢ is a perturbation of the electron
density with a lower space group S2, therefore ⇢ has space group S2. Clearly
the phase transition in symmetry from S1 to S2 is discrete, yet the change in
the electron density is continuous. This observation led Landau to formulate
the energetics of the phase transition in a similar fashion, where, given a
lowering of the space group, you have a perturbation in some continuous
variable.

2.1.1 Landau Theory

We begin by considering the relevant thermodynamic potential ��, with
a set of state variables {�}, for the system, as a functional of the electron
density. Near the phase transition, using the properties of functionals, we
may write

��[⇢] = ��[⇢0 +�⇢] = ��[⇢0] + ��[�⇢]. (2.1.1)

Next we can expand the second term in a functional Taylor series[16] arriving
at

�[⇢] = �[⇢0] +

Z
��[⇢0]

�⇢(r)
�⇢(r)dr+

1

2

Z
�
2�[⇢0]

�⇢(r)�⇢(r0)
�⇢(r)�⇢(r0)drdr0 + · · ·

(2.1.2)
where � is omitted for clarity. Now let us represent the symmetry group of
�⇢ as linear representations, so that

�⇢(r) =
X

i

c
0
i�i(r) (2.1.3)
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where c0i and �i is the normalization coe�cient and the electron density of the
i’th irreducible representation, respectively.[15] Inserting Eq. 2.1.3 into Eq.
2.1.2 and making use of Schur’s lemma for irreducible representations,[15, 17]
we can set all terms with odd powers of �i to zero. In other words, we can
write

�⇢(r)�⇢(r0) =
X

i

c
0
i�i(r)

X

j

c
0
j�j(r

0) )
X

i,j

�ijc
0
ic

0
j�i(r)�j(r

0)

=
X

i

c
02
i �i(r)�i(r

0) =
X

j

c
2

j

X

i

�i(r)�i(r
0)

(2.1.4)

where �ij and cj is the Kronecker delta and the renormalized coe�cient,
respectively. Now let us define the following

�� = �[⇢]� �[⇢0] (2.1.5a)
X

j

c
2

j = ⌘
2 (2.1.5b)

A =
X

i

Z
�
2�[⇢0]

�⇢(r)�⇢(r0)
�i(r)�i(r

0)drdr0 (2.1.5c)

where ⌘ is referred to as the order parameter. This allows us to recast Eq.
2.1.2 as

�� =
1

2
A�⌘

2 +
1

4
B�⌘

4 + · · · (2.1.6)

where B has a similar definition as A.[15] This is one of the main results of
Landau theory, where ⌘ now controls the strength of the perturbation. It is
interesting to note, from the definition, ⌘ is positive definite, and therefore
the usual undergraduate derivation of Landau theory based on symmetry
arguments of the order parameter would not be applicable. In principle, we
can have more than one order parameter, but we do not consider this case
here.

The applicability of Landau theory is determined by the Ginzburg criterion,[18]
which can be written as ⌦

(�⌘)2
↵
⌧
⌦
⌘
2
↵

(2.1.7)

where �⌘ is the fluctuation of the order parameter. Deferring the details of
calculation, we simply state that for Landau theory to be valid the average
fluctuations of the order parameter should be much smaller than the order
parameter itself.
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2.1.2 Landau-Devonshire Theory

A comprehensive application of Landau’s theory to ferroelectricity was
first attempted by Devonshire,[19] where the order parameter is associated
with the polarization P . For completeness we expand the Helmholtz free
energy, truncating terms higher than 4th order

F =
1

2
AP

2 +
1

4
BP

4
� EP (2.1.8)

where E is the applied electric field. As an example we derive the Curie-Weiss
law for a ferroelectric, in the absence of an applied field, by first minimizing
Eq. 2.1.8 with respect to P , and solving

@F

@P
= AP +BP

3 = 0 (2.1.9)

giving us two solutions, P = 0 and P
2 = �A/B. The two solutions corre-

sponding to a stable paraelectric and ferroelectric phase. Usually, A is taken
to be A0(T � Tc), where Tc is the Curie temperature and B is temperature
independent. Hence we arrive at the well known result

P (T ) =

r
A0(Tc � T )

B
. (2.1.10)

An important characteristic of some ferroelectrics (called piezoelectrics)
is their response to strain and in general we can write[5] the free energy
(again truncated), only for uniaxial strain, as

F =
1

2
Ks

2 +Q1sP +Q2sP
2
� �s (2.1.11)

where K, Qi, �, is the elastic constant, coupling constant and hydrostatic
stress constant, respectively. Since we now have two order parameters, we
should minimize Eq. 2.1.11 for both order parameters. For now let us mini-
mize with respect to s and solve

@F

@s
= Ks+Q1P +Q2P

2
� � = 0 (2.1.12)

for s yielding

s = �
Q1

K
P �

Q2

K
P

2 +
�

K
. (2.1.13)
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We note that if P = 0 we arrive at Hooke’s law. We can plug Eq. 2.1.13 into
Eq. 2.1.11 and combine with Eq. 2.1.8 to arrive, after some algebra, at

F =
1

2

�
A�

Q
2

1

K

�
P

2
�

Q1Q2

K
P

3 +
1

4
(B �

Q
2

2

K

�
P

4
� EP +

�
2

2K
. (2.1.14)

After relabeling, we obtain

F =
1

2
A

0
P

2 +
1

4
B

0
P

4
� CP

3
� EP (2.1.15)

allowing us to discuss the free energy of the piezoelectric strictly in terms of
only the polarization.

2.1.3 Landau-Ginzburg-Devonshire Theory

We begin by generalizing the order parameter ⌘ from a scalar to a scalar
field ⌘(r).[18] Hence we can begin talking about spatial variation of the order
parameter, such as its gradient r⌘. Making use of Eq. 2.1.8 and following
the same symmetry arguments as before, as well as, only keeping the lowest
order terms we arrive at

F =

Z 
1

2
AP

2(r) +
1

2
C|rP (r)|2

�
dr (2.1.16)

where now P (r) is the polarization density.[5] We can convert the gradient
operation to multiplication by a Fourier transform

P (r) =

Z
P (k)eik·rdk (2.1.17)

and, using Plancherel’s theorem, arrive at

F =

Z
1

2

�
A+ k

2
C
�
|P (k)|2dk. (2.1.18)

We now return to the derivation of the fluctuation of the order parameter
in the framework of the polarization density. First, by making use of the
equipartition theorem for quadratic degrees of freedom[5] and Eq. 2.1.18 we
can write

|P (k)|2 =
2kBT

A+ k2C
(2.1.19)
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where kB is the Boltzmann constant. Then, defining the square of the fluc-
tuation in P as

g(r) ⌘
�
�P (r)

�2
= hP (r)P (0)i � hP (0)i2 (2.1.20)

which is also known as the two-site correlation function. Since we are inter-
ested in fluctuations near the phase transition, we can set hP (0)i = 0 because
of the paraelectric phase. Then, making use of Fourier transform again, we
obtain �

�P (k)
�2

= h|P (k)|2i. (2.1.21)

Inserting Eq. 2.1.21 into Eq. 2.1.19, we arrive at

�
�P (k)

�2
=

2kBT

A+ k2C
(2.1.22)

and taking the inverse Fourier transform yields

�
�P (r)

�2
=

kBT

2⇡C

e
�r/⇠

r
A 6= 0 (2.1.23a)

�
�P (r)

�2
=

kBT

2⇡C

1

r
A = 0 (2.1.23b)

where ⇠ =
p

C/A is known as the correlation length. Physically, ⇠ corre-
sponds to the length scale which the polarization exists and we note that it
is temperature dependent.[5]

Equipped with our knowledge of correlations, we can now attempt to
evaluate the Ginzburg criterion. Assuming the general behavior for A, we
redefine

⇠ =

r
C

A
=

s
C

A0(T � Tc)
=

r
C

A0Tc

s
Tc

|T � Tc|
= ⇠0|t|

�1/2 (2.1.24)

where

⇠0 =

r
C

A0Tc
(2.1.25)

and

t =
T � Tc

Tc
(2.1.26)
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is the correlation length scale and the reduced temperature, respectively.
First, to determine (�P )2, near the phase transition, we assume |r| ⇠ ⇠

because that is the region where P 6= 0 and use Eq. 2.1.23b which yields

(�P )2 =
kBTc

2⇡C

1

⇠
⇠ ⇠

�3

0
|t|

1/2 (2.1.27)

where we have used C ⇠ ⇠
2

0
. Likewise, using Eq. 2.1.10 we find

P
2 =

A0(Tc � T )

B
⇠ |t|. (2.1.28)

Finally, evaluating Eq. 2.1.7 we derive the Levanyuk-Ginzburg criterion

1

⇠
6

0

⌧ |t| (2.1.29)

whose validity, near the transition temperature, is strongly dependent on the
correlation length scale.

2.2 Applications

Mean field theories have a number of applications such as predicting the
behavior of physical quantities near critical points of the system, like the
change in the resistance or polarization due to a phase transition. It turns
out for ferroelectrics that the correlation length is quite large, which allows
the modeling of polarization (the order parameter in question) a good deal
away from the transition temperature. This becomes useful for materials
that after synthesis are meant to stay in the same phase. Since the materials
that we care about are ferroelectric superlattices, this section will be devoted
to studying their properties from a mean field approach, however the work
can be generalized to any layered structure with arbitrary order parameters.

2.2.1 Layered structures

The main aspect of a layered structure is that it is composed of unit
cells designated either for the bulk of the materials or the interfaces. We
assume that we have two alternating materials, however it can be easily
generalized to more, as shown in Fig. 4 for a single bilayer. We observe that
we have two bulk regions and three interface regions in this setup and note
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Figure 4: Schematic diagram of a bicolor ferroelectric superlattice grown
along the z direction. Taken from Ref. [3]

that both material A and B need not be ferroelectrics, but at least one does.
Concerning ourselves with only the planar averaged out of plane polarization
1/S

R
Pz(x, y, z)dxdy ⌘ P (z) we can use the Landau-Ginzburg-Devonshire

(LGD) theory[3] to write

FA =

Z
0

�d1

"
1

2
A1P

2

1
+

1

4
B1P

4

1
+

1

6
C1P

6

1
+

1

2
D1

⇣
@P1

@z

⌘2
#
dz

+
D1

2�11

h
P1(0)

2 + P1(�d1)
2

i
+

D
2

1

2�12

h
P1(0)

4 + P1(�d1)
4

i (2.2.1a)

FB =

Z d2

0

"
1

2
A2P

2

2
+

1

4
B2P

4

2
+

1

6
C2P

6

2
+

1

2
D2

⇣
@P2

@z

⌘2
#
dz

+
D2

2�21

h
P2(0)

2 + P2(d2)
2

i
+

D
2

2

2�22

h
P2(0)

4 + P2(d2)
4

i (2.2.1b)

FI =� ⇠

h
P1(0)P2(0) + P1(�d1)P2(d2)

i

� ⌘1

h
P1(0)

3
P2(0) + P1(�d1)

3
P2(d2)

i

� ⌘2

h
P1(0)P2(0)

3 + P1(�d1)P2(d2)
3

i
(2.2.1c)

where FA, FB and FI is the free energy of material A, the free energy of mate-
rial B and the free energy of the interfaces, respectively. The constants A, B,
C, D, �, ⇠ and ⌘ are in principle known a priori through experiments, DFT
calculations or intuition. The terms in Eq. 2.2.1c are produced by assuming
only nearest neighbor coupling of adjacent unit cells at the interfaces. We

17



note that the last two terms in Eq. 2.2.1a and Eq. 2.2.1b can be associated
with the paraelectric order of the material.[20] Next we minimize the total
free energy FA+FB +FI with respect to P1 and P2 and obtain the following
Euler-Lagrange equations

D1

d
2
P1

dz2
� A1P1 � B1P

3

1
� C1P

5

1
= 0 (2.2.2a)

D2

d
2
P2

dz2
� A2P2 � B2P

3

2
� C2P

5

2
= 0 (2.2.2b)

with the corresponding Robin boundary conditions

�D1

dP1

dz

����
z=�d1

+
D1

�11
P1(�d1) +

2D2

1

�12
P1(�d1)

3
� ⇠P2(d2)

� 3⌘1P1(�d1)
2
P2(d2)� ⌘2P2(d2)

3 = 0

(2.2.3a)

D1

dP1

dz

����
z=0

+
D1

�11
P1(0) +

2D2

1

�12
P1(0)

3
� ⇠P2(0)

� 3⌘1P1(0)
2
P2(0)� ⌘2P2(0)

3 = 0

(2.2.3b)

�D2

dP2

dz

����
z=0

+
D2

�21
P2(0) +

2D2

2

�22
P2(0)

3
� ⇠P1(0)

� 3⌘2P2(0)
2
P1(0)� ⌘1P1(0)

3 = 0

(2.2.3c)

D2

dP2

dz

����
z=d2

+
D2

�21
P2(d2) +

2D2

2

�22
P2(d2)

3
� ⇠P1(�d1)

� 3⌘2P2(d2)
2
P1(�d1)� ⌘1P1(�d1)

3 = 0.

(2.2.3d)

Solving Eq. 2.2.2a and Eq. 2.2.2b is a challenge even numerically because we
are dealing with non-linear coupled di↵erential equations. One technique to
solve these equations with their boundary conditions is to rewrite the equa-
tions using finite di↵erences and build the corresponding matrix associated
with the mesh used. Then, solving for the eigenvectors of that matrix, iter-
atively using Broyden’s method,[21] yields the polarization profiles. While
instabilities do arise from this numerical technique, they can be avoided by
appropriately adjusting the constants (A, B, etc.) at the start of the relax-
ation. Finally, varying d1 and d2 we are able to create polarization profiles
for di↵erent bilayer thicknesses of interest.
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3 Modern Theory of Polarization

3.1 Failures of classical theory

Polarization is a quintessential descriptor of a dielectric material. How-
ever, calculating polarization in an infinite solid becomes problematic when
extending its definition from isolated systems. Naively, we can calculate the
polarization to be

P =
1

⌦

Z

⌦

r⇢(r)dr (3.1.1)

where ⌦ is the volume of the primitive unit cell. To see why there is an
explicit dependence of the polarization on the choice of the primitive unit
cell, consider the following 1D example

⇢(x) = ⇢ sin(
2⇡

L
x) (3.1.2)

and

P =
1

L

Z L+a

a

x⇢ sin(
2⇡

L
x)dx (3.1.3)

where a and L is a rigid shift of the primitive unit cell and the length of the
primitive unit cell, respectively. This yields

P ⌘ P (a) = �
⇢L

2⇡
cos(

2⇡

L
a) (3.1.4)

for the polarization which has explicit dependence on the definition of our
primitive unit cell and can take any value.

We can reconcile the ill-defined polarization by taking a page from the
experimentalists who define it not by absolute values but by its change, or
derivatives. Mathematically, we can write it in the following way[22]

�P =
1

⌦

Z Z

⌦

j(r, t)drdt =

Z
J(t)dt (3.1.5)

where j(r, t) is the current induced when switching the polarization of the
material. Clearly the polarization does not only dependent on the final mea-
surement, but on the path taken, which means

�P =

Z
�t

0

J(t)dt =

Z
�t

0

dP

dt
dt = P(�t)�P(0) (3.1.6)
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where, in the adiabatic limit, J(t) decays to 0 as �t ! 1. In a more
theoretical framework we can generalize Eq. 7.3.13 in the following way

�P =

Z
1

0

dP

d�
d� (3.1.7)

where � is a scaled adiabatic parameter.[23] The adiabaticity of the polariza-
tion switching is essential since it means that quantum numbers are preserved
when � is varied,[24] which will be important when calculating polarization.
We make a few observations about Eq. 3.1.7. First, a centrosymmetric
configuration does not imply that P = 0. Therefore when calculating �P
of some arbitrary configuration it is very convenient to take P(0) to be a
centrosymmetric configuration, so that Eq. 3.1.7 yields the spontaneous po-
larization. Second, there must exist a path between P(1) and P(0) which is
insulating, or otherwise the flow of charge is ambiguous. Later we will show
how we can lift this restriction. Finally, we just need a method of calculating
dP/d� to evaluate Eq. 3.1.7.

3.2 Berry phase formalism

The Berry phase theory[25] to calculate polarization is given such a name
because the polarization is expressed in terms of a quantum phase. The
derivation begins by assuming that we have an infinite solid that can be
represented by a primitive cell with periodic boundary conditions and no
electric field. Working in the Bloch basis | nki = e

ik·r
|unki the Hamiltonian

which satisfies H0

k|unki = Enk|unki is

H
0

k(�) =
(p(�) + k(�))2

2m
+ V (k,�) (3.2.1)

where � is some parameter such as strain, sublattice displacement, etc. which
has an implicit time dependence. Before continuing, it is fruitful to diago-
nalize the Hamiltonian through a unitary transformation U(�) so that

H̃(�) = U
†(�)H(�)U(�) (3.2.2)

with the transformed eigenstate

| ̃(�)i = U
†(�)| (�)i. (3.2.3)
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The new Scrödinger equation becomes

i
d

dt
| ̃i = i

d

dt
(U †

| i) = i
dU

†

dt
| i+ iU

† d

dt
| i = i

d�

dt

@U
†

@�
| i+ U

†
H| i

= �̇i
@U

†

@�
U | ̃i+ U

†
HU | ̃i = (H̃ � �̇Ã�)| ̃i

(3.2.4)

where we have suppressed the � dependence for brevity. Here Ã� = �iU
†
@�U

is called the adiabatic guage potential[26] and it is responsible for the tran-
sitions between energy levels. Dropping the tildes since we can preform an
inverse unitary transformation, we can write the full Hamiltonian as

Hk(�) = H
0

k(�)� �̇A�. (3.2.5)

If � is adiabatic then the wave function to first order is

| nk(t)i = cn|unki � �̇

X

m 6=n

humk|A�|unki

Enk � Emk
|umki

= cn|unki+ i�̇

X

m 6=n

humk|@�|unki

Enk � Emk
|umki ⌘ |0i+ |1i

(3.2.6)

where

|cn|
2 = 1� �̇

2
X

m 6=n

|humk|@�|unki|
2

(Enk � Emk)2
= 1 +O(�̇2) (3.2.7)

from the normalization condition. To calculate the rate of change of the
polarization, we try extend the classical definition of the dipole moment into
the quantum one[23] such that

dP

dt
= e

dr

dt
)

e

⌦

Z
d

dt
hridr = �

ie

⌦

Z
h[r, Hk]idr =

e

m

Z
hp+ ki

dk

(2⇡)3

(3.2.8)
where we have made use of Ehrenfest’s theorem and transforming to recip-
rocal space. Now inserting Eq. 3.2.6 into Eq. 3.2.8 yields

dPn

dt
=

e

m

Z

⌦BZ

�
h0|p+ k|0i+ h1|p+ k|0i+ h0|p+ k|1i+ h1|p+ k|1i

� dk

(2⇡)3

(3.2.9)
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where the n index is present because we are calculate the polarization for
| nk(t)i.

We can simplify Eq. 3.2.9 by noting that when p+k acts on an eigenstate
it changes it to a di↵erent eigenstate and therefore h0|p + k|0i is 0 due to
the orthogonality condition. Next, we drop any terms with O(�̇2) or higher
since we are working with only the first order corrections. Finally, note that
due to �̇ we have dt on both sides of the equation that we can cancel out
which yields

dPn

d�
=

ie

(2⇡)3m

X

m 6=n

Z

⌦BZ

hunk|p+ k|umkihumk|@�|unki

Enk � Emk
dk+ c.c. (3.2.10)

where c.c is the complex conjugate. We can further simplify Eq. 3.2.10 by
noting the following property[27] of |unki

rk|unki =
1

m

X

m 6=n

|umkihumk|
p+ k

Enk � Emk
|unki+ ig(k)|unki (3.2.11)

where g is an arbitrary function, not dependent on �. This allows us to
rewrite Eq. 3.2.10 as

dPn

d�
=

ie

(2⇡)3

Z

⌦BZ

hrkunk|@�unkidk+ c.c. +Gnm(k) (3.2.12)

where

Gnm(k) =
e

(2⇡)3

Z

⌦BZ

hunk|g(k)|umkidk. (3.2.13)

Performing the integration over � the last term results in

e

(2⇡)3

Z

⌦BZ

h
hunk(1)|g(k)|umk(1)i � hunk(0)|g(k)|umk(0)i

i
dk (3.2.14)

which is equal to zero, under the assumption that V (k, 0) = V (k, 1) and
therefore |unk(0)i = |unk(1)i. For the first two terms, after integration by
parts, we find

Pn =
ie

(2⇡)3

Z

⌦BZ


hunk(�)|rk|unk(�)i

���
1

0

�

Z
1

0

rkhunk(�)|@�|unk(�)id�

�
dk

=
ie

(2⇡)3

 Z

⌦BZ

hunk(�)|rk|unk(�)i
���
1

0

dk�

Z
1

0

hunk(�)|@�|unk(�)i
���
@⌦BZ

d�

�

(3.2.15)
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where the last term yields zero because @�|unk(�)i is also periodic in the
Brillouin zone. Finally summing over n we can write the total contribution
of the electronic polarization to be

Pel(�) =
e

(2⇡)3
=

X

n

Z

⌦BZ

hunk(�)|rk|unk(�)idk (3.2.16)

where Pel is to be evaluated at di↵erent �. To obtain the total polarization,
we add the ionic contribution which results in

P =
e

(2⇡)3
=

X

n

Z

⌦BZ

hunk(�)|rk|unk(�)idk+
e

⌦

X

I

ZIRI (3.2.17)

where we note that ZI should be the bare nuclear charge, although in actual
calculations the core electrons should be included since they are not treated
explicitly.

We conclude this section by noting that the polarization is a gauge de-
pendent quantity. This can be seen explicitly by going to a di↵erent Bloch
basis through a unitary transformation

|ũnki = e
i✓n(k)|unki (3.2.18)

then the polarization becomes

P̃ = P+
e

(2⇡)3

X

n

Z
rk✓n(k)dk. (3.2.19)

We can simplify the above equation by the physical restriction that ✓n(k)
should be periodic in the Brillouin zone. Then without loss of generality[25]
we can write

✓n(k) = �n(k) + k ·Rn (3.2.20)

where �n(k) is periodic in the Brillouin zone and Rn is a lattice vector.
Finally, inserting Eq. 3.2.20 into Eq. 3.2.19 yields

P̃ = P+
e

(2⇡)3

X

n

�n(k)
���
@⌦BZ

+ e

X

n

Rn

Z
dk

(2⇡)3
(3.2.21)

Since �n(k) is periodic, evaluating the limits at the boundary is zero and
therefore we are left with

P̃ = P+
e

⌦

X

n

Rn ⌘ P+
e

⌦
R (3.2.22)

where the polarization is only defined modulo the lattice vector R.
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3.3 Wannier formalism

Recasting the modern theory of polarization in the Wannier representa-
tion is beneficial from a conceptual point of view. As we will show, we can
think of polarization as changes in the positions of electronic ”molecular”
orbitals allowing for easier visualization than working in reciprocal space.
We begin with the realization that using the atomic orbitals in crystals as a
basis is problematic because although they have translation symmetry, they
are, in general, not orthogonal.[28] In other words

Z

⌦

 (r�R) ⇤(r�R0)dr 6= �RR0 (3.3.1)

where ⌦,  , and R is the volume of primitive cell, the atomic orbital and
lattice vector, respectively. To circumvent this problem we make the following
pseudo-Fourier transformation (Bloch sum)

�k(r) = C(k)
X

R

e
ik·R

 (r�R) (3.3.2)

where C(k) is a normalization constant. Now we show that �k are orthonor-
mal by
Z

⌦

�k(r)�
⇤
k0(r)dr = C(k)C⇤(k0)

X

RR0

e
i(k·R�k0·R0

)

Z

⌦

 (r�R) ⇤(r�R0)dr

(3.3.3)
where we can simplify the above expression by multiplying and dividing by
e
ik·R0

to yield

h�k|�k0i = C(k)C⇤(k0)
X

RR0

e
ik·(R�R0

)
e
i(k�k0

)·R0
Z

⌦

 (r�R) ⇤(r�R0)dr

= �kk0C(k)C⇤(k0)
X

R00

e
ik·R00

Z

⌦

 (r) ⇤(r�R00)dr ⌘ �kk0

(3.3.4)

where R00 = R �R0 and the equivalence was made by defining the normal-
ization constant as

1

C2(k)
=
X

R

e
ik·R

Z

⌦

 (r) ⇤(r�R)dr. (3.3.5)
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Since we have constructed an orthonormal basis we can take the inverse
transformation of Eq. 3.3.2 to yield

w(r�R) ⌘ wR(r) =
X

k

e
�ik·R

�k(r) (3.3.6)

an orthonormal basis set in real space that has translational symmetry known
as Wannier functions. We note that while this is a natural scheme to generate
real space orthonormal basis with translational symmetry, it is not unique,
a point that we will come back to later.

In practice we usually do not have access to the atomic orbitals in crystals
and therefore the Wannier functions are typically defined as

wn(r�R) ⌘ hr|Rni =
⌦

(2⇡)3

Z

⌦BZ

e
�ik·R

hr| nkidk (3.3.7)

where | nki is the Bloch wavefunctions, respectively. Likewise the inverse
transformation leads to

| nki =
X

R

e
ik·R

|Rni (3.3.8)

where we have dropped the hr| since it appears on both sides of the equation.
We note that since the Bloch functions are completely delocalized, we can
think of the Wannier functions as localized orbitals. The connection between
Wannier functions and the polarization can be seen by calculating the center
of mass of a Wannier function in the home cell (R = 0)

h0n|r|0ni ⌘ hrin =

✓
⌦

(2⇡)3

◆2 Z

⌦BZ

h nk0 |r| nkidkdk
0 (3.3.9)

where we have used Eq. 3.3.7 in recasting the Wannier functions as Bloch
functions. We can manipulate Eq. 3.3.9 using the following property[29]

rµ| nki = ir
µ
k| nki � i

X

n0

hunk|r
µ
k|un0ki| n0ki (3.3.10)

and write

hrin =

✓
⌦

(2⇡)3

◆2 Z

⌦BZ

i

✓
h nk0 |rk| nki �

X

n0

h nk0 | n0kihunk0 |rk|un0ki

◆
dkdk0

=

✓
⌦

(2⇡)3

◆2 Z

⌦BZ

1

2
ih nk0 | nki

���
@⌦BZ

dk� i
⌦

(2⇡)3

Z

⌦BZ

hunk|rk|unkidk

(3.3.11)
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where we have used integration by parts for the first term and h nk0 | n0ki =
�nn0�kk0 for the second term. We can simplify Eq. 3.3.11 by noting that | nki

are periodic in the BZ, and therefore the first term is zero because we are
evaluating at the boundary, which yields

hrin = �i
⌦

(2⇡)3

Z

⌦BZ

hunk|rk|unkidk. (3.3.12)

Comparing our previous result for the electric polarization we observe that
we can write the total polarization as

P =
e

⌦

X

n

hrin +
e

⌦

X

I

ZIRI (3.3.13)

which we note again is defined modulo eR/⌦.
While we have defined the polarization in terms of the Wannier centers,

we have not given as scheme as to which gauge we should be working in.
This is answered by considering the gauge where the Wannier functions are
maximally localized, which means that the Wannier functions are real and
exponentially decaying in real space.[30] Therefore, in this gauge we can
think of the Wannier functions as electronic molecular orbitals of the crystal.
Mathematically, these Wannier functions are constructed by minimizing the
spread X

n

�
hr

2
in � hri2n

�
(3.3.14)

where

h0n|r2|0ni ⌘ hr
2
in =

⌦

(2⇡)3

Z

⌦BZ

|hunk|rk|unki|
2
dk (3.3.15)

which can be derived in a similar fashion as Eq. 3.3.12. Numerically, the
minimization is achieved by beginning with trial wavefunctions which then
undergo unitary transformations such that the gradient of the spread is
steepest.[30]
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4 Computational Methods

4.1 Density Functional Theory

Inhomogeneous electron gas systems are the basis of solid state physics.
Tackling the many-body problem to understand these systems would be im-
possible if we were to treat each electron explicitly. Instead we work with the
electron density of the system, which is the focal point of density functional
theory (DFT). The method developed by Kohn and Sham[31] involves a set
of self consistent equations that are solved iteratively to obtain the ground
state. Here we attempt to give a short introduction into the methodology of
DFT, as well as, also highlighting the shortcomings of the theory.

4.1.1 Hohenberg-Kohn energy functional

We begin with the general formulation of the many-body electronic Hamil-
tonian, to describe the inhomogeneous electron gas under an ionic potential,
given by Hohenberg and Kohn[32] (HK) which has the following form

Ĥ = T̂ + V̂ + Û (4.1.1)

where

T̂ =
1

2

Z
r 

⇤(r)r (r)dr (4.1.2)

V̂ =

Z
v(r) ⇤(r) (r)dr (4.1.3)

Û =
1

2

Z
1

|r� r0|
 

⇤(r) ⇤(r0) (r) (r0)drdr0 (4.1.4)

is the kinetic, potential and interaction (Coulomb) term, respectively. Here
v(r) and  (r) is the ionic potential, under the Born-Oppenheimer approxi-
mation and the second quantized electron field hr| i, respectively. Then the
electron density is given by

n(r) =  
⇤(r) (r) (4.1.5)

which can easily be shown to be a unique functional of v(r) for a given
ground state. Motivated by the idea that we can think of the system as a
liquid, represented by a single parameter rather than a collection of abstract
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wavefunctions, we recast Eq. 4.1.1 in terms of n(r) rather than  (r). This
is done not without di�culty and the new expression, now a functional of
n(r), becomes

Ev[n] =

Z
v(r)n(r)dr+

1

2

Z
n(r)n(r0)

|r� r0|
drdr0 +G[n] (4.1.6)

where G[n] is the kinetic energy of the interacting system. The expression
in Eq. 4.1.6 is known as the HK energy functional. We note that due to the
nonlocal nature of derivatives, G[n] consists of an exchange and correlation
term. We state that Eq. 4.1.6 can always be written in this form for any
many-body system and that given the correct n(r) the true ground state
can be calculated. The proofs to these two claims arise naturally when
considering the formulation using Legendre transformations.[33, 34]

4.1.2 Kohn-Sham equations

A methodology to solving the HK energy functional beyond simple sys-
tems is done by extending the approximation that the interacting kinetic
energy can be written as a sum of the non-interacting kinetic energy and a
correction, as follows

G[n] = T [n] + Exc[n] (4.1.7)

where the correction, Exc, is known as the exchange-correlation energy. The
functional form of Exc is not known for an arbitrary n(r), however we can
make another approximation that the density is slow varying such that

n(r) = n0 + �n(r) (4.1.8)

where n0 and �n(r) is the constant and variational electron density, respec-
tively. The variational electron density is therefore subject to two conditions

�n(r)

n0

⌧ 1 (4.1.9a)

Z
�n(r)dr = 0. (4.1.9b)

Then it can be shown[32] that

Exc[n] =

Z
n(r)✏xc(n(r))dr (4.1.10)
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where ✏xc is the exchange-correlation density of a uniform electron gas. In
practice, ✏xc is determined through parametric fitting.[35] We note that Eq.
4.1.10 is known as the local density approximation (LDA).

Now having simplified the HK functional we want to determine the n(r)
which produces the ground state energy. This minimization of the energy
functional is nothing more than solving the Euler-Lagrange equation[36] as
follows

�E[n]

�n
=

@

@n


vion(r)n(r) +

1

2

Z
n(r)n(r0)

|r� r0|
dr0 + n(r)✏xc(n(r))

�
+
�T [n]

�n
= 0.

(4.1.11)
Simplifying and relabelling terms we arrive at

vion(r) + vH(r) + vxc(r) +
�T [n]

�n
= 0 (4.1.12)

where

vion(r) = �

X

I

Z

|r�RI |
(4.1.13a)

vH(r) =

Z
n(r0)

|r� r0|
dr0 (4.1.13b)

vxc(r) =
@

@n


n(r)✏xc(n(r))

�
(4.1.13c)

is the ionic, Hartree and exchange-correlation potential, respectively. Here
Kohn and Sham (KS) made the realization that Eq. 4.1.12 is a system of non-
interacting electrons under some e↵ective potential and therefore the easiest
way to find n(r) is to solve the following one particle Shrödinger equation

⇢
�

1

2
r

2 + veff (r)

�
 i(r) = ✏i i(r) (4.1.14)

where
veff (r) = vion(r) + vH(r) + vxc(r) (4.1.15)

is the e↵ective potential. This allows us to obtain

n(r) =
X

i

fi| i(r)|
2 (4.1.16)

where fi is the fractional occupation, and hence the ground state energy. The
Eqs. 4.1.9b, 4.1.14, 4.1.15 and 4.1.16 are known as the KS equations which
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have to be solved self-consistently.[31] In practice, with a known vion(r), one
makes a guess for n(r) then constructs veff (r) to produce a new n(r), subject
to the constraint of 4.1.9b, by solving Eqs. 4.1.15 and 4.1.16.

4.1.3 Failures of Density Functional Theory

While DFT has proven its usefulness in computational physics, we high-
light a few of its failures. We begin by noting that DFT, by construction, is a
ground state theory and therefore any conclusions drawn about excitations,
such as the band gap of a system, would be erroneous. Accurate calculations
of the band gap can achieved using the GW approximation[37] which builds
upon the DFT formalism. Next, we emphasize that the exact form of ✏xc
is not possible to determine, and therefore any attempts to approximate it
are uncontrolled. This is in contrast to controlled approximation techniques,
such as the configuration interaction method[38], however they tend to be
much more computationally expensive. Furthermore, we note that the con-
ventional local density approximation does not take into account non local
long range potentials, such as van der Waals, and therefore would produce
the wrong ground state where such potentials are crucial, such as for liquid
water.[39] However, techniques exist[40] that allow long range potentials to
be incorporated into DFT. We conclude with the fact that DFT is able to
calculate the total energies of many-body systems with a high relative, but
not necessarily absolute, accuracy.[41]

4.2 SIESTA program

The SIESTA[42] (Spanish Initiative for Electronic Simulation with Thou-
sands of Atoms) electronic structure code has a number of advantages (and
disadvantages) over other ab initio packages. The main features of the pack-
age are a fully self-consistent DFT using a linear combination of atomic
orbitals (LCAO) with O(N) scaling. We will comment on a select few of the
important methodologies employed by the package.

4.2.1 Pseudopotentials

Pseudopotentials are a method to decrease computational costs by not
explicitly considering the core electrons. In addition, they allow for a smooth
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charge density on a uniform grid. For general calculations the Troullier-
Martins parametrization scheme[43] is used. Under this scheme, the ionic
pseudopotentials are constructed by first assuming spherical screening and
then solving, self-consistently, the all-electron radial KS Schrödinger equation
for the isolated atom

⇢
�

1

2

d
2

dr2
+

l(l + 1)

2r2
+ v

AE
scr (r)

�
rR

AE
nl (r) = ✏nlrR

AE
nl (r) (4.2.1)

where
v
AE
scr (r) = v

AE
ion (r) + v

AE
H (r) + v

AE
xc (r) (4.2.2)

and R
AE
nl is the all-electron screened potential and all-electron wavefunction,

respectively.
With the R

AE
nl we begin to construct the pseudowavefunctions R

PP
nl by

considering four criteria that would increase computational e�ciency and
accuracy. First to reduce oscillations in the R

PP
nl we only consider node-free

solutions to the radial equation. Second, we can tailor our RPP
nl to how much

of the core electrons we want to properly capture and therefore R
AE
nl and

R
PP
nl should be equal below some chosen core radius, rcnl. Third, to improve

the property of transferability[44] (how well a psuedopotential can be used
from one system to another), RPP

nl should satisfy

Z rcnl

0

|R
PP
nl (r)|2r2dr =

Z rcnl

0

|R
AE
nl (r)|

2
r
2
dr. (4.2.3)

Fourth, to further improve transferability, the eigenvalues of RAE
nl and R

PP
nl

must all be equal. The pseudopotential that will be generated from the above
four criteria is referred to as a norm-conserving pseudopotential.

Now using the constructed R
PP
nl we solve for v

PP
scr (r) by inverting Eq.

4.2.1,

v
PP
scr,nl(r) = ✏nl �

l(l + 1)

2r2
+

1

2rRPP
nl (r)

d
2

dr2

⇥
rR

PP
nl (r)

⇤
. (4.2.4)

We note that vPP
scr,l(r) has a dependency on the principle and angular quantum

number, n and l, respectively. We can now calculate the ionic pseudopotential
of interest by rearranging terms as follows

v
PP
ion,nl(r) = v

PP
scr,nl(r)� v

PP
H (r)� v

PP
xc (r) (4.2.5)
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where v
PP
H (r) and v

PP
xc (r) are calculated from R

PP
nl . We can further reduce

computation time by separating v
PP
ion,nl(r) into a local and nonlocal (has l de-

pendence) part, where the nonlocal part can be calculated using a procedure
developed by Kleinman and Bylander.[45]

4.2.2 Numerical basis set

One way to solve the one particle Schrödinger equation is to decompose
the wavefunctions into a linear combination of atomic orbitals as follows

 i(r) =
X

↵

c↵i�↵(r) (4.2.6)

where �↵(r) is the ↵’th atomic orbital. For atom I at position RI , we can
further decompose �↵(r) using separation of variables in spherical coordinates

�↵(r) = RInl(rI)Ylm(r̂I) (4.2.7)

where rI = r �RI · r̂. Our goal is to determine a computationally e�cient
basis set of radial functions.

The method of Sankey and Niklewski[46] to produce such a balanced basis
set involves solving
⇢
�

1

2

d
2

dr2
+

l(l + 1)

2r2
+ v

PP
ion,Inl(r)

�
rRInl(r) =

�
✏Inl + �✏Inl

�
rRInl(r) (4.2.8)

Here �✏Inl is introduced because, in practice, we want to truncate the ra-
dial functions after some cut-o↵ radius r

cut

Inl to zero. This is achieved by
fixing �✏Inl such that RInl vanishes at the first node, located at r

cut

Inl, hence
RInl(rcutInl) = 0. Since the radial dependence, for a given l, is represented by
only one function (just RInl), this is referred to as a single-⇣ basis. Multiple-
⇣ bases can be constructed by di↵erent schemes, of which SIESTA uses the
split-valence method.[47] The formalism outlined in this section allows us
to produce numerical orbitals �↵(r) with di↵erent ⇣ bases, for e�cient cal-
culations, in contrast to, expressing the orbitals using plane waves, such as
LAPW.[48]

4.2.3 Real and reciprocal space integrals

As previously stated we expand the one-particle wavefunctions  i(r) in
terms of basis of atomic orbitals �↵(r) therefore we can write the electron
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density as

n(r) =
X

i

fi 
⇤
i (r) i(r) =

X

i

fi

X

↵

c
⇤
↵i�

⇤
↵(r)

X

�

c�i��(r) (4.2.9)

then rearranging and relabeling terms we arrive at

n(r) =
X

↵�

⇢↵��
⇤
↵(r)��(r) (4.2.10)

where
⇢↵� =

X

i

fic
⇤
↵ic�i (4.2.11)

is the density matrix. We observe that after ⇢↵� is calculated once we only
need a few atomic orbitals to calculate the density at a given grid point, allow-
ing forO(N) scaling. For calculating the Hamiltonian (KS energy functional)
matrix in the atomic orbital basis, we can write

h |H| i =
X

↵�

⇢↵�H↵� (4.2.12)

therefore,

H↵� =

Z
�
⇤
↵(r)H(r)��(r)dr. (4.2.13)

We note that, by convention, the grid fineness is determined by Ecut, the
maximum kinetic energy of the plane waves that could be represented in the
grid without superposition.[49]

While simulations in real space are appropriate for isolated or large sys-
tems, simulating a crystalline solid with a unit cell requires one to take
advantage of reciprocal space to naturally account for the periodicity of the
system. We can perform a Bloch-state expansions of the one-particle wave-
functions

 i(r,k) =
X

↵0

c↵0i(k)�↵0(k)eik·R↵0 (4.2.14)

where R↵ is the vector to the ↵’th unit cell and the primed index runs over
all atomic orbitals in the auxiliary supercell (collection of neighbouring unit
cells). This allows us to obtain the electron density by

n(r) =
X

i

fi(k) 
⇤
i (r,k) i(r,k) =

X

↵0�0

⇢↵0�0�
⇤
↵0(r)��0(r) (4.2.15)
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where

⇢↵0�0 =
X

i

Z

⌦BZ

fi(k)c
⇤
↵0i(k)c�0i(k)e

ik·(R�0�R↵0 ) (4.2.16)

is the density matrix. We note, due to the system being periodic, ⇢↵0�0 = ⇢↵�.
Likewise, we can extend Eq. 4.2.13 to neighbouring cells by

H↵�(k) =
X

�0

H↵�e
ik·(R�0�R↵) (4.2.17)

where the primed index runs over all unit cells. We note that the prefactor
H↵� has no k dependence because it is calculated in the unit cell only. For
performing calculations the k-grid fineness is determined by lcut, which is
related to Ecut by l

2

cut
in atomic units.[49] A method developed by Monkhorst

and Pack[50] to decrease computational cost involves displacing the origin of
the k-grid from k = 0, reducing the amount of inequivalent k-points. The
idea behind this method is that the majority of the contribution to a BZ
integral (e.g. ⇢↵�) is from k near the BZ boundary, with the error for a finite
mesh, for k 6= 0, proportional to e

�|k|.

4.3 LAUTREC program

The LAUTREC (LAUsanne Total REal to Complex energy package) elec-
tronic structure code is an in-house code with a number of features not found
in other electronic structure packages. This package uses plane-waves to
perform self-consistent DFT calculations, with the unique capability to per-
form Wannier based polarization calculations in metallic systems. We will
comment on a select few of the important methodologies employed by the
package, that were not already discussed for the SIESTA program.

4.3.1 Plane-wave basis set

Since DFT focuses on solving problems involving crystals or other large
periodic systems, representing wavefunctions using plane-waves as done by
Bloch turns out to be advantageous.[51] We begin by considering a single
particle electronic wavefunction  i in a lattice potential with lattice vectors
aj. To understand how the wavefunction varies in such a potential, we act
on the wavefunction with a translation operator to get

T̂R i(r) =  i(r+R) = c(R) i(r) (4.3.1)
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where c(R) is the eigenvalue of the translation operator. We show that c(R)
needs to be unitary because the total probability of finding the particle should
be invariant under a translation, as follows
Z

| i(r+R)|2dr =

Z
|c(R) i(r)|

2
dr =

Z
| i(r)|

2
dr ) |c(R)|2 = 1 (4.3.2)

therefore we may write c(R) as ei�(R). To obtain the form of �(R) we note
the following

T̂R1T̂R2 i(r) = c(R1)c(R2) i(r) = T̂R1+R2 i(r) = c(R1 +R2) i(r) (4.3.3)

which means that
c(R1)c(R2) = c(R1 +R2) (4.3.4)

for any R1 and R2. The functional form which fits this criteria is eik·R where
k is, as of now, an arbitrary vector. Now since the wavefunction is in the
lattice potential, the following must hold

T̂R i(r) =  i(r+R) = e
ik·R

 i(r) ) e
ik·R = 1 (4.3.5)

this suggests that
k =

X

i

✓ibi (4.3.6)

where ✓i are arbitrary constants and bi are the reciprocal lattice vectors
defined by ai · bj = 2⇡�ij. Then Eq. 4.3.5 is known as Bloch’s theorem. To
obtain the Bloch wavefunction, we modify Eq. 4.3.5 as follows

 i(r+R)e�ik·r = e
ik·R

 i(r)e
�ik·r (4.3.7)

then after some algebra we arrive at

 i(r+R)e�ik·(r+R) =  i(r)e
�ik·r

⌘ ui(r) )  i(r) = e
ik·r

ui(r) (4.3.8)

where ui(r) is the periodic part of the Bloch wavefunction.
To avoid the calculation of a system with an infinite amount of electrons

we can Fourier transform the periodic part of the electronic wavefunctions
using plane-waves as follows

ui(r) =
X

G

ci,Ge
iG·r (4.3.9)
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where G is the reciprocal lattice vector and the Bloch wavefunction becomes

 i(r) =
X

G

ci,k+Ge
i(k+G)·r

. (4.3.10)

While in theory the sum in Eq. 4.3.10 involving the basis set of G vectors is
infinite, it turns out that the weights for small G are much more important
than for the large ones.[52] Substituting Eq. 4.3.10 into the Kohn-Sham
equations and integrating over r, we arrive at

X

G0

n
|k+G|

2
�GG0 + vion(G�G0) + vH(G�G0)

+ vxc(G�G0)
o
ci,k+G0 = ✏ici,k+G.

(4.3.11)

In calculations, the cut-o↵ of the basis for the Hamiltonian matrix Hk+G,k+G0

is determined by the energy cut-o↵ |k+Gc|
2.

4.3.2 Car-Parrinello dynamics

Density functional theory usually concerns itself with finding the elec-
tronic ground state in the absence of temperature, while molecular dynamics
is able to probe the dynamic evolution of systems at the cost of missing elec-
tronic information. The merging of the two principles was a huge step in ab
initio simulations, and one of the first pioneers in this endeavor were Car
and Parrinello.[53]

The derivation of the scheme begins by considering the energy functional
of a single-particle system

X

i

h i|Ĥ| ii =
X

i

Z
 

⇤
i (r)

n
�
1

2
r

2+veff (r)+vN({R})+vext[{↵}]
o
 i(r)dr

(4.3.12)
where veff includes the ionic, Hartree and exchange-correlation potentials,
vN is the nuclear potential, including external nuclear contributions and vext

is the external functional where {↵} are external constraints such as the
volume or strain. We note that in this scheme our generalized coordinates
are the sets of { }, {R} and {↵}. From Eq. 4.3.12 we can write down the
time dependent Lagrangian

L = K � U � ⇤ (4.3.13a)
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2
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X
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1

2
µ⌫↵̇

2

⌫ (4.3.13b)

U =
X

i

Z
 

⇤
i

n
�

1

2
r

2 + veff (r) + vN({R}) + vext[{↵}]
o
 idr (4.3.13c)

⇤ =
X

j

⇤ij

⇢Z
 

⇤
i  jdr� �ij

�
(4.3.13d)

where we omit the r and t dependence of  for clarity and ⇤ij is the La-
grangian multiplier, µ and µ⌫ are appropriate normalization constants and
MI is the atomic mass. The last term in Eq. 4.3.13a comes from the holo-
nomic constraint that

Z
 

⇤
i (r, t) j(r, t)dr = �ij. (4.3.14)

We note that Eq. 4.3.13b has only quadratic terms since the first term is
subject to constraints of Eq. 4.3.14 and the generalized coordinates of the last
two terms do not have explicit time dependence.[54] Solving for the Euler-
Lagrange equations from Eq. 4.3.13a we obtain the following equations of
motion

µ ̈i(r, t) =
1

2
r

2

r i(r, t)� veff (r) +
X

j

⇤ij j(r, t) (4.3.15a)

MIR̈I = �rRIvN({R}) (4.3.15b)

µ⌫↵̈⌫ = �
@vext[{↵}]

@↵⌫
. (4.3.15c)

Usually to solve the equations of motion numerically, first the generalized
velocities are initialized according to a Maxwellian distribution and then the
Verlet algorithm[55] is employed which leads to a set of recurrence relations.
Finally the equilibrium is reached when  ̈i = 0 corresponding to the Kohn-
Sham ground state.

4.3.3 Finite field calculations

One of the main challenges in ab inito calculations is to relax a periodic
system under an external electric field. This is primarily due to the ambiguity
in calculating the polarization and the electrical boundary conditions that go
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along with it. We begin by using our knowledge of Maxwell’s equations to
write down the energy functional in the presence of a homogeneous electric
field in the framework of DFT as

F [n;E] = EKS[n] +

Z
V (r)n(r)dr = EKS[n]�

Z
E · rn(r)dr (4.3.16)

where n is the electronic density and EKS is the Kohn-Sham energy func-
tional. Minimizing the new functional in Eq. 4.3.16 with respect to n, we
arrive at the following Hamiltonian

Ĥ = �
1

2
r

2 + veff (r)� E · r ⌘ Ĥ
0
� E · r. (4.3.17)

We can interpret Eq. 4.3.17 in the Bloch wavefunction basis and working in
reciprocal space, we arrive at

F [unk;E] =
X

n

Z

⌦BZ

hunk|Ĥ
0

k|unkidk�
⌦

(2⇡)3
E ·

X

n

Z

⌦BZ

hunk|irk|unkidk

(4.3.18)
where ⌦ is the volume of the supercell. While it looks like the minimization
of Eq. 4.3.18 with respect to unk is tractable and can be solved, it actu-
ally turns out that stationary (bounded) states cannot exist because V (r)
is unbounded.[56, 57] Luckily, stationary solutions can exist, under a weak
field, for a discrete k-mesh, which would be the case when Eq. 4.3.18 is
solved numerically.[58]

Sometimes, having to fix E is not ideal, such as, in the case of ferro-
electrics, where a non-zero electric field would prevent probing the proper-
ties near the centrosymmetric metastable state, like the energy barrier height.
The paradigm shift to analyze these type of situations is by considering the
displacement field D as the fixed variable rather than E.[59] We begin by
invoking the modern theory of polarization to realize that the last term in
Eq. 4.3.18 contains the polarization, allowing us to write

F [n;E] = EKS[n]� ⌦E ·P[n] (4.3.19)

which is known as the electric enthalpy.[58] Then, we can create the following
Legendre transformation (LT) relationship

F [E] = min
P

h
EKS[P]�⌦E ·P

i
, EKS[P] = max

E

h
F [E] +⌦E ·P

i
(4.3.20)
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where we dropped the n dependence for clarity. From Eq. 4.3.20 we have
the following conjugate variables

P = �
1

⌦

dF

dE
(4.3.21a)

E =
1

⌦

dEKS

dP
(4.3.21b)

which describe the same physics but in di↵erent ways. Another way to think
about this is that the variable that is not fixed becomes a Lagrangian multi-
plier used in the extremization.[60] However, P is an awkward variable to fix
since we do not know a priori what is a suitable polarization range to work
with. Instead what we want are the conjugate variables of E and D. This
can be realized by noting that the long-range (G = 0) field e↵ects are missing
from Eq. 4.3.19.[59] Including this contribution is equivalent to adding the
energy from the electric field, resulting in

F̃ [E] = EKS � ⌦E ·P�
⌦

8⇡
|E|2. (4.3.22)

Then we build a new LT relationship

U [D] = max
E

h
F̃ [E] +

⌦

4⇡
D · E

i
, min

D

h
U [D]�

⌦

4⇡
D · E

i
(4.3.23)

with

E =
4⇡

⌦

dU

dD
(4.3.24a)

D = �
4⇡

⌦

dF̃

dE
(4.3.24b)

where the functional U is known as the internal energy. It is trivial to verify
that Eq. 4.3.24b does indeed equal E + 4⇡P as to be associated with the
displacement field. Finally, rewriting U using Eq. 4.3.24a and after some
algebra we arrive at

U [D] = EKS[n] +
⌦

8⇡

�
D� 4⇡P[n]

�2
(4.3.25)

which needs to be minimized with respect to n, using essentially the same
technique employed in Eq. 4.3.18.
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5 Interfaces

5.1 Non-polar crystals

Interfaces are a natural part of materials and give them their properties
much like the bulk. Even if the material is not known to have any intrinsic
interfaces, it still comes in contact with the vacuum and if electrical properties
need to be measured, a metal. We will highlight the microscopic e↵ects at
interfaces and how these e↵ects contribute to the measurable macroscopic
properties of the material. As it turns out these microscopic e↵ects are crucial
to understanding the electrostatics in superlattices. While the derivations
here will be for semiconductors, modifications to the ideas and formulas for
metals should be readily apparent.

5.1.1 Surfaces

Before we discuss interfaces, it is important to understand what happens
in quasi-infinite crystals. We begin by intuitively stating that surface states
should exist near the surface region and decay inside the bulk. If we consider
a perfect crystal then the Bloch wavefunctions are a natural basis to work
with. Then, if we want decaying solutions it is evident that k should take on
complex values. This observations motivates us to solve

�r
2
 (r) + V (r) (r) = E (r) (5.1.1)

where V (r) is the crystal potential, such that V (r + R) = V (r). For a
given E, we let  1(r, E) and  2(r, E) be the two solutions of Eq. 5.1.1.
Then, assuming the full solution  have the same periodicity as the crystal
potential we may write

 (R) = � (0) (5.1.2a)

 
0(R) = � 

0(0) (5.1.2b)

with
 (r) = ↵ 1(r) + � 2(r) (5.1.3)

where � is the eigenvalue of the translation operator and ↵ and � are arbitrary
constants to be determined. Inserting Eq. 5.1.2a and Eq. 5.1.2b into Eq.
5.1.3 we arrive at

�
2
� 2�µ(E) + 1 = 0 (5.1.4)
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where

µ(E) ⌘
1

2

⇥
 1(R, E) +  

0
2
(R, E)

⇤
(5.1.5)

is referred to as the energy function. From the properties of the translation
operator, � can be written as eik·R and Eq. 5.1.4 can be rewritten as

cos(k ·R) = µ(E) (5.1.6)

and if we restrict ourselves to real k, we recover the Bloch wavefunctions.[61]
The energy function gives the relation between k and E and has the

following properties
Ek = E�k (5.1.7a)

Ek = Ek+2⇡/R (5.1.7b)

Ek⇤ = (Ek)
⇤
. (5.1.7c)

In addition, in the large E limit, we should recover the free particle scenario,
so that |k| ⇡ E

1/2 and µ(E) ⇡ cos(E1/2
|R|). Then writing |k| as 2⇡n/|R| we

can infer
dµ

dE

����
E=En

= 0, n 2 N (5.1.8)

where negative integers were discarded because it would lead to solutions
that blow up at large negative E. Furthermore from Eq. 5.1.8 we can Taylor
expand near En to obtain

µ(E) = µn + ↵n(E � En)
2 + · · · (5.1.9)

which can be rearranged to

E(µ) = En +
1

p
↵n

(µ� µn)
1/2 (5.1.10)

near the extremum. Note that inserting Eq. 5.1.6 into Eq. 5.1.10, shows
that each µn is a branch point of E(µ). This is seen more clearly seen by
considering

dE

dk
=

dE

dµ

dµ

dk
= �

dE

dµ
(k̂ ·R)sin(k ·R) (5.1.11)

which means that E is analytical with respect to k except when dµ/dE

vanishes, occurring at
µn = cos(kn ·R). (5.1.12)
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Then again, near En we can write

E(kn) = En + �n(k� kn)
1/2 (5.1.13)

where kn is a solution to Eq. 5.1.12 and likewise has the same branch
order.[61] We conclude by noting that the branch points E(kn) are always
found in between two adjacent bands and therefore we can physically at-
tribute surface states to the density of states found in an energy gap.

Now we will highlight other properties of surfaces, from a macroscopic
perspective, beginning with a physical fact that the electric potential V must
be smooth. Then, for the infinite crystal let us define the cell averaged crystal
potential

V̄ (r) =
1

⌦

Z

⌦

V (r+ r0)dr0 (5.1.14)

where ⌦ is the volume of the primitive cell. For a perfect infinite crystal
V̄ (r) is a constant Vcell, arbitrarily chosen, because we cannot reference a
point out at infinity, away from the charge distribution. In the literature it is
conventional to set Vcell to either ✏F or ✏V BM , the Fermi energy of the metal
(chemical potential in gapped materials) or the eigenenergy of the valence
band maximum, respectively.

However once a surface is introduced, V̄ is no longer a constant and, near
a surface, we can write

V̄ (r) = Vcell + VSXD(r) (5.1.15)

where VSXD is the electric potential due to surface e↵ects (both intrinsic and
extrinsic), enforcing the smoothness as we pass from the bulk region into the
vacuum and is usually slow varying. The r dependence of V̄ means that the
energies of the crystal have the same dependency as follows

Ei(r) = ✏i + V̄ (r) (5.1.16)

where ✏i are the eigenenergies of the bulk Hamiltonian defined in Eq.5.1.1.
To highlight why this is important, Fig. 5 shows a semiconductor-vacuum in-
terface where the band edges (ECBM and EV BM) are bent (aligned) towards
the vacuum energy level at infinity (E1

vac = 0). Details of the surface states
are responsible for this band alignment, which modifies experimentally mea-
surable quantities, such as the ionization energy IS and the electron a�nity
�S.[4] We defer discussing the specific form of VSXD(r) and just state that it
can be recovered from ab initio calculations.[62]
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Figure 5: The distribution of electric potentials as well as the band edges
near a surface of a semiconductor. Taken from Ref. [4]

5.1.2 Charge neutral Fermi energy

Throughout this discussion we will restrict ourselves to only considering
interfaces between non-polar crystals, such as most semiconductors and met-
als. In mathematical terms, any material that does not have a polar point
group symmetry.[63] The important idea governing interfaces is the redistri-
bution of free charge, at the interface between two materials, occurring in
such a way that the average charge around the interface region should be
neutral. In other words, combining two charge neutral materials should not
give rise to large regions of net deficient or excess charge.

The main principle behind a net neutral system is that the position of the
Fermi energy must be matched (pinned) between the two materials, such that
the total contributions from the surface density of states averages to zero.[4]
From our previous discussion on complex bands, we know that surface states
exist on branch points kn between bands of real k and therefore it is likely
that the pinned Fermi energy should be near those branch points.[64] In
addition because the Bloch wavefunctions form a complete basis, we could
write our surface states as linear combinations of Bloch states. It turns out
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a convenient tool to parse the Bloch wavefunctions (and thus the surface
states) is to analyze their ”response” or more qualitatively their contribution
to the Green’s function of the system.[65]

The Green’s function for the Hamiltonian given in Eq.5.1.1 was calculated[66]
to be

G(r, r0, ✏) =
X

nk

 nk(r) ⇤
nk(r

0)

✏� ✏nk
(5.1.17)

where  nk and ✏nk is the Bloch wavefunction and eigenenergy, respectively.
Since we are interested in contributions over a region, let us use the same
argument to reach Eq. 5.1.14 and write the cell averaged Green’s function

Ḡ(r, ✏) =
1

⌦

X

nk

Z

⌦

 nk(r0) ⇤
nk(r+ r0)

✏� ✏nk
dr0 =

1

⌦

X

nk

e
ik·r

✏� ✏nk
(5.1.18)

where we have used the normalization property of the Bloch wavefunctions
to write the last result. The key to evaluating Eq. 5.1.18 is by choosing r
to be perpendicular to the interface, or the direction with the most charge
redistribution.[65] Finally, using the input of the band structure and varying
✏ until there is a sign change which corresponds to the pinning of the charge
neutral Fermi energy.

We conclude with a qualitative picture of semiconductor interfaces.[67]
In the high surface density (Bardeen) limit, the semiconductor has a lot
of surface states, therefore the Fermi energy is so strongly pinned that the
details of the metal (work function, etc.) have little influence on the bands.
In the low surface density (Schottky) limit, the band alignment is strongly
dependent on the metal, specifically the chemical bonding at the interface.
Finally we emphasize that Vcell in a composite system is arbitrary and in no
way can be computed from the two materials independently. Therefore care
must be taken when comparing density of states, or other properties of the
eigenenergies, between the two materials and their combination.

5.2 Polar crystals

For polar crystals, like ferroelectrics, we are primarily interested in what
happens to the polarization as we introduce surfaces or interfaces. Once
we truncate an infinite polar crystal a polarization within the crystal is not
guaranteed. Before, it was energetically favorable for the polarization to ex-
ist throughout the whole space, but now Maxwell’s equations tell us that

44



areas without bound charges should not contain polarization. This physical
principle leads the system to redistribute charge so that the polarization will
be screened outside the polar region, and the mechanism is called the depo-
larization field. We will discuss the depolarization field within the framework
of LGD theory. Finally, regarding band alignment, much of what has been
discussed in the previous section still holds, but now an additional term is
present due to the displacement field caused by the ferroelectric.[68]

5.2.1 Depolarization field

Surfaces and interfaces can not only give rise to a parallel component in
the polarization but also an additional perpendicular component to the bulk
polarization. Usually such contributions lower the overall polarization[69]
and therefore are referred to as depolarization e↵ects or field. The origin of
the depolarization field, in the context of electrodes attached to a film, results
in a build up of free charge at the metal-ferroelectric interface to screen the
bound charge that is responsible for the ferroelectricity. In Fig. 6a we have a
typical setup of a ferroelectric film sandwiched between two metal electrodes
with the free charge, electric potential and depolarization field profiles shown
in Fig. 6b-6d, respectively. We begin by considering the contribution to the
free energy coming from the depolarization field Ed which can be written as

Fd = �
1

2

Z

⌦

Ed(r)P (r)dr (5.2.1)

where ⌦ is the volume of the ferroelectric film. We can further simplify the
above expression[70] by considering spatial changes only along the z direction
and considering a ferroelectric perfectly insulating, allowing us to rewrite the
depolarization field as

Ed(z) = Q/✏f + P (z)/✏f (5.2.2)

where ✏f is the permittivity of the film. Furthermore, if we consider the case
where �⌧ d we can rewrite[69] Q as

Q = �✓P (5.2.3)

where

✓ =
✏e/�

2✏f/d+ ✏e/�
. (5.2.4)
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Figure 6: (a) Schematic of short-circuited ferroelectric capacitor with L �

d � �, where � is the screening length, and accompanying plots of the
spatial distribution of (b) the free charge Q, (c) the potential V and (d) the
depolarization field E. Note that the charge distribution in (b) would simply
be Delta functions at the film-electrode interfaces for perfect electrodes; then
V and E would simply be constant and zero. Taken from Ref. [5]

Finally, inserting Eq. 5.2.2 and Eq. 5.2.3 into Eq. 5.2.1 yields

Fd = �
1

2✏f

Z d/2

�d/2

P
2(1� ✓)dz =

d(✓ � 1)

✏f
P

2
. (5.2.5)

We conclude by noting that if either �! 0 or d ! 1 then the depolarization
field vanishes and also since the new contribution is proportional to P

2 it has
an e↵ect of shifting the Curie temperature.
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6 Defects

6.1 Formation Energy

In experiments, the materials synthesized deviate from an ideal crys-
tal. Imperfections in the form of defects, impurities, elastic deformation
and cracking will be present in the material. The presence of defects are
of great importance, especially in semiconductors and ferroelectrics, where
they can change the electrical and optical properties significantly.[71] From
a theoretical perspective, the quantity of interest is the defect formation en-
ergy, which allows for the calculation of the defect concentration that would
be seen in experiments.[71] However, linking computation and experiment
is problematic due to the computational cost required to simulate realistic
defect concentrations. Large supercells, and therefore many atoms, are re-
quired due to periodic boundary conditions. In this section we will outline
a general formalism of defect calculations and corrections to results for the
defect systems.

Within the DFT formalism of using supercells, the formation energy of
a collection of defects D, with their total charge q, in a host system can be
calculated[72] as follows

�H = ED � EH + q(✏v +�✏F ) +
X

i

niµi (6.1.1)

where ED, EH , ✏v, �✏F , ni and µi is the total energy of host+defect supercell,
total energy of host supercell, energy of the valence band maximum (VBM)
of the host, Fermi energy relative to the VBM, number of i’th defects in the
supercell and chemical potential of the i’th defect.

In principle, ✏v can be calculated from the energy di↵erence with the
host supercell and the host supercell with the missing electron responsible
for the VBM, but, most ab initio packages do not allow removing of specific
electrons. However, it can be shown,[73] with a moderately sized supercell,
the value of ✏v approaches the di↵erence between the host supercell and the
host+hole (q = +1) supercell. With ✏v we can now properly calculate �✏F
with the correct reference.

The chemical potential of a defect is defined as the most stable phase
of the defect in bulk. Since the most stable phase is dependent on the ex-
perimental growth conditions, sometimes it is convenient to redefine µi as
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µ
0

i +�µi, where µ0

i is the chemical potential of the elemental phase and �µi

is a free parameter to account for the growth conditions.

6.2 Defect corrections

6.2.1 Shallow level shift correction

The well known problem of the band gap can be fixed in a simplistic
fashion by introducing a energy shift for the conduction band maximum
(CBM) and valence band maximum (VBM), �✏C and �✏V , respectively.
Since the formation energy linearly depends on the relative Fermi energy, it
can also be possible that it would depend on the energy shift introduced.
It turns out that this statement is true when the defect forms a shallow
(near band edge) level, that modifies the edge bands, which is referred to
as a perturbed-host state.[74] The correction to this e↵ect is adding ze�✏C
or �zh�✏V to the formation energy, where the donor or acceptor level is
occupied by ze electrons or zh holes, respectively.

6.2.2 Moss-Burstein-type correction

If the supercell is small or the density of defects su�ciently high then the
donor (acceptor) states shift the conduction (valence) band edge and thus
decrease the size of the band gap, this is known as the Moss-Burstein e↵ect
(only for donor states).[75] However, we can recover the formation energy in
the dilute defect limit by adding to the total energy the term

EMB = �

X

n

Z
⇥(✏n(k)� ✏C)

�
w(k)fn(k)✏n(k)� ✏C

�
dk (6.2.1)

for donor dominated and

EMB = �

X

n

Z
⇥(✏V � ✏n(k))

�
✏V � w(k)fn(k)✏n(k)

�
dk (6.2.2)

for acceptor dominated supercells. Here ✏n, ✏C , ✏V , w, f and ⇥ is the KS
eigenenergy, CBM eigenenergy, VBM eigenenergy, k-point weight, fractional
occupation and step function, respectively.
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6.2.3 Jellium correction

If the defects present are not charge neutral then we have long range
Coulomb forces and the total energy does not converge. In ab initio calcula-
tions the convention[76] is to set Vion(G = 0) and VH(G = 0) to zero, where
G is the reciprocal lattice vector, allowing for convergence. This is valid for
charge neutral systems because the average potential of the crystal is an arbi-
trary constant, however when the system is charged, such a convention gives
rise to a physical compensating jellium. We can account for the creation of
this jellium by adding �q↵PP to the total energy, with ↵PP defined as

↵PP =
1

⌦

X

j

Z

⌦

✓
V

PP
ion,j(r) +

Zj

r

◆
dr (6.2.3)

where ⌦ is the volume of the supercell.[76]

6.2.4 Image charge correction

Localized charged defects within a periodic system interact with one an-
other, which from an ab initio point of view, can be thought as image charges
interacting between neighbouring supercells. The additional term to the en-
ergy would depend on the distribution of localized charges, as well how well
they are screened by the compensating background. It can be shown[77] that
the contribution to the energy is

EMP =
q
2
↵M

2✏⌦�1/3
+

2⇡qQ

3✏⌦�1/3
(6.2.4)

where ↵M , ✏, and Q is the Madelung constant, static dielectric constant and
the second radial moment, respectively. With Q defined as

Q =

Z

⌦

⇢̃(r)r2dr (6.2.5)

where ⇢̃ is the di↵erence in the electron density between the host+defect and
host supercells.
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7 Stochastic Mechanics

7.1 Brownian Motion

Stochastic processes are commonly classified by a random sequence of
events on some mathematical space,[78] such as phase space, for example,
and exist in many areas of physics. Brownian motion is the quintessential
physical example of a stochastic process. The motion describes a particle as
it is vibrating in a fluid and is governed by the Langevin equation. Later on
we will show that we can generalize the particle and fluid to a multitude of
systems. Understanding these concepts will further motivate discussion on
this topic.

7.1.1 Langevin equation

The Langevin equation is nothing more than Newton’s equation of motion
describing a particle in a viscous medium subject to a random force. This
equation of motion is

m
dv

dt
= ��v + ⌘(t) (7.1.1)

where m, � and ⌘ is the mass, friction coe�cient and the random force,
respectively. To solve the inhomogeneous part of this first-order di↵erential
equation we make the following substitution

v(t) = e
� �

m tu(t) (7.1.2)

then

e
� �

m tdu

dt
= ⌘(t)/m (7.1.3)

with the solution

u(t) = u(0) +

Z t

0

dt
0
e

�
m t0⌘(t0)/m (7.1.4)

where we have used v(0) = u(0). Using Eq. 7.1.2 and combining the homo-
geneous solution, we arrive at the complete solution

v(t) = v(0)e�
�
m t +

Z t

0

dt
0
e

�
m (t�t0)⌘(t0)/m. (7.1.5)
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While we have described the motion of the particle, we did not touch
upon the properties of ⌘(t). Before we begin, it is useful to think about
stochastic quantities by their time average define by

hAi =
1

T

Z T

0

A(t)dt (7.1.6)

where the accuracy of the time average improves as T approaches infinity.
Then, the fluctuation of A is given by

�A(t) = A(t)� hAi. (7.1.7)

For a fluid, it helps to think of the origin of ⌘(t) as the interaction between
the fluid molecules and the Brownian particle. If the fluid is homogeneous
there should not be a preferred direction for the force, and we can associate
⌘(t) with �F(t), where F is produced from said interactions. Then, from the
definition of Eq. 7.1.7, we can state

h⌘(t)i = 0. (7.1.8)

In addition, the random forces should not be correlated in any way and
therefore

hF(t) · F(t0)i = hF(t)i · hF(t0)i = hF i
2
. (7.1.9)

This can be alternatively written, using Eq. 7.1.7, as

h⌘(t) · ⌘(t0)i = 2D�(t� t
0) (7.1.10)

where 2D is the variance of F(t).
To understand where the properties of ⌘(t) are useful, let us consider the

equipartition theorem, which states

hv
2
i = kBT/m (7.1.11)

where kB and T is the Boltzmann constant and the temperature of the system
at thermal equilibrium, respectively. Using Eq. 7.1.5, we can calculate square
of the velocity to be

v(t) · v(t) = v
2(t) = v

2(0)e�2
�
m t + 2v(0) ·

Z t

0

dt
0
e

�
m (t�t0)⌘(t0)/m

+

Z t

0

dt
0
e

�
m (t�t0)⌘(t0) ·

Z t

0

dt
00
e

�
m (t�t00)⌘(t00)/m2

.

(7.1.12)
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Now taking the time average (only on stochastic quantities) and using Eq.
7.1.8 and Eq. 7.1.10, we arrive at

hv
2(t)i = v

2(0)e�2
�
m t +

D

�m
(1� e

�2
�
m t) (7.1.13)

after evaluating the double integral. Observe that in the long time limit we
have

hv
2(t)i =

D

�m
(7.1.14)

meaning that the system is always in motion, and why D is referred to as the
di↵usion constant. Furthermore, in the long time limit, we are in thermal
equilibrium, so that

hv
2
i = kBT/m =

D

�m
(7.1.15)

and the result
D = �kBT (7.1.16)

is known as the fluctuation-dissipation theorem.

7.1.2 Multiparticle Langevin equation

We can extend the Langevin equation to where we have more than one
”particle” and write

mi
dvi

dt
= �ivi + ⌘i(t). (7.1.17)

Clearly the solution to the multiparticle version is Eq. 7.1.5, but now with
an attached index for each particle and with the di↵usion constant given by

h⌘i(t) · ⌘j(t
0)i = 2Dij�(t� t

0). (7.1.18)

Let us now consider the fluctuation-dissipation theorem for the multiparticle
case by calculating

vi(t) · vj(t) = vi(0) · vj(0)e
�(

�i
mi

+
�j
mj

)t
+ vi(0) ·

Z t

0

dt
0
e

�i
mi

(t�t0)⌘j(t
0)/mj

+ vj(0) ·

Z t

0

dt
0
e

�j
mj

(t�t0)
⌘i(t

0)/mi

+

Z t

0

dt
0
e

�i
mi

(t�t0)⌘i(t
0) ·

Z t

0

dt
00
e

�j
mj

(t�t00)
⌘(t00)/(mimj)

(7.1.19)
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and taking the time average of this expression yields

hvi(t) · vj(t)i = vi(0) · vj(0)e
�(

�i
mi

+
�j
mj

)t
+

2Dij

�imj + �jmi

h
1� e

�(
�i
mi

+
�j
mj

)t
i
.

(7.1.20)
Next, in the long time limit, Eq. 7.1.20 becomes

hvi(t) · vj(t)i ⌘ ⌦ij =
2Dij

�ij + �
†
ij

(7.1.21)

where �ij ⌘ �imj. Solving for Dij results in

Dij =
1

2
⌦ij(�ij + �

†
ij) (7.1.22)

which is the multiparticle fluctuation-dissipation theorem. We note that �ij
can be decomposed into a symmetric and antisymmetric matrix, giving rise
to reciprocal relations,[79] however we do not consider this here.

7.2 Fokker-Planck equations

While describing the random motion of particles has its usefulness, the
fact that randomness is involved implies that we can consider the probability
distribution of the particles. This allows us to get additional insights into
the system because once we have a large amount of particles to track they
become hard to analyze and visualize. The Fokker-Planck equations connect
the equations for motion and probability density together.

7.2.1 Derivation

Let us begin by considering a generalized version of the Langevin equation

dai

dt
= �i(a1, a2, · · · ) + ⌘i(t) (7.2.1)

where we have dropped the possibility that dynamic variables ai can be
vectors for simplicity. We also assume that ⌘i is Gaussian noise and therefore

h⌘i(t)⌘j(t
0)i = 2Dij�(t� t

0). (7.2.2)

We can vectorize these equations as

da

dt
= �(a) + ⌘(t) (7.2.3)
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and
h⌘(t)⌘(t0)i = 2D�(t� t

0) (7.2.4)

where the notation a ⌘ (a1, a2, · · · ) is used.
To answer the question what is the probability distribution ⇢(a, t) as-

sociated with the generalized Langevin equation we need to derive some
properties of the distribution. If the system is closed, physically, the total
probability should be conserved and

Z
⇢(a, t)da = 1, 8t. (7.2.5)

The conservation of probability implies the following continuity equation

@⇢(a, t)

@t
= �ra ·

✓
@a

@t
⇢(a, t)

◆
(7.2.6)

and inserting Eq. 7.2.3 into Eq. 7.2.6 we arrive at

@⇢(a, t)

@t
= �ra ·

⇣
�(a)⇢(a, t) + ⌘(t)⇢(a, t)

⌘
. (7.2.7)

To solve Eq. 7.2.7 we make the following ansatz

⇢(a, t) = e
�tL̂

f(a, t) (7.2.8)

where L̂ = ra ·�(a)+�(a) ·ra is analogous to the Liouville operator. Then
Eq. 7.2.7 becomes

@f(a, t)

@t
= �e

tL̂
ra · ⌘(t)e

�tL̂
f(a, t). (7.2.9)

Next, taking the time integral on both sides and using Eq. 7.2.8 again, we
arrive at

⇢(a, t) = ⇢(a, 0)e�tL̂
�

Z t

0

e
�(t�t0)L̂

ra · ⌘(t
0)⇢(a, t0)dt0. (7.2.10)

While Eq. 7.2.10 is hard to work with due to the time integral and ⇢ appear-
ing on both sides, we can insert the solution into Eq. 7.2.7 to yield

@⇢(a, t)

@t
=�ra · �(a)⇢(a, t)�ra · ⌘(t)⇢(a, 0)e

�tL̂

+ra · ⌘(t)

Z t

0

e
�(t�t0)L̂

ra · ⌘(t
0)⇢(a, t0)dt0.

(7.2.11)
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Then taking the time average and using the following identity for Gaussian
noise[80]

h⌘(t)⌘(t0)⇢[⌘(t0)]i = D
@

@⌘(t)
h⌘(t)⇢[⌘(t0)]i

= Dh⇢[⌘(t0)]i+Dh⌘(t)
@

@⌘(t)
⇢[⌘(t0)]i = Dh⇢[⌘(t0)]i

(7.2.12)

results in

@h⇢(a, t)i

@t
= �ra · �(a)h⇢(a, t)i+ra ·D ·rah⇢(a, t)i (7.2.13)

the Fokker-Planck (FP) equations for the time averaged ⇢(a, t).

7.2.2 Properties

In this section we will mention a few of the interesting properties of the
FP equations, specifically their analogy to quantum mechanics. We begin by
writing the FP equations in the following way

@

@t
⇢(a, t) = D̂⇢(a, t) (7.2.14)

where
�ra · �(a) +ra ·D ·ra (7.2.15)

is the FP operator. Then the formal solution to Eq. 7.2.14 is

⇢(a, t) = e
tD̂
⇢(a, 0). (7.2.16)

The expectation value of a stochastic quantity  (a) can be calculated in the
following way

h (a)i =

Z
 (a)⇢(a, t)da =

Z
 (a)etD̂⇢(a, 0)da (7.2.17)

where the expression is evaluated at time t.
Now let us calculate the adjoint of D̂ defined by

f(a)D̂g(a) = g(a)D̂†
f(a) (7.2.18)
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to be
D̂

† = �(a) ·ra(a) +ra ·D ·ra. (7.2.19)

Then the expectation value of a stochastic quantity  (a) can also be written
as

h (a)i =

Z
⇢(a, t) (a)da =

Z
⇢(a, 0)etD̂

†
 (a)da ⌘

Z
⇢(a, 0) (a, t)da

(7.2.20)
where we defined a time dependent stochastic quantity  (a, t).

The approach of either using D̂ or D̂† to calculate the expectation value
is analogous to interpreting quantum mechanics in the Schödinger or Heisen-
berg representation, respectively.[80] Since in the Schödinger representation
we think of the observables (or operators) and the quantum states (and
hence probability density) to be time independent and dependent, respec-
tively. While in the Heisenberg representation the converse is true.

7.3 Kramers problem

The Kramers problem[81] asks what is the rate at which a set of Brownian
particles (or stochastic variables) escape a potential well. We will approach
the answer to this question using the theory of first passage time. As exam-
ples, we will give exact solutions for a single Brownian particle in the large
and small friction limit.

7.3.1 Mean first passage time

We begin by considering a set of stochastic variables (or particles) a which
are initialized to a0 and located inside a region of volume V in a-space.[80]
Then the probability distribution is governed by

@

@t
h⇢(a, t)i = D̂h⇢(a, t)i (7.3.1)

with initial conditions
h⇢(a, 0)i = �(a� a0). (7.3.2)

Now because we want to know how many particles are left in V , we should
limit our solutions of Eq. 7.3.1 to the following boundary condition

h⇢(a, t)i = 0, a 2 @V (7.3.3)
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and let @V be absorbing (non-reflecting). The formal solution, assuming we
limit the solutions, to Eq. 7.3.1 is

h⇢(a, t)i = e
tD̂
�(a� a0). (7.3.4)

To measure the amount of particles in V at time t, we calculate

S(t, a0) =

Z

V

h⇢(a, t)ida (7.3.5)

which explicitly depends on the initial conditions. Then the distribution of
the rate at which the particles leave, also known as first passage time, is
�dS(t, a0)/dt. The mean first passage time is then the the first moment of t

⌧(a0) = �

Z 1

0

dS(t, a0)

dt
tdt = �S(t, a0)t

���
1

0

+

Z 1

0

S(t, a0)dt =

Z 1

0

S(t, a0)dt

(7.3.6)
where we have used the fact that S(t, a0) vanishes at large t due to absorbing
boundary conditions. Then, inserting Eq. 7.3.5 into Eq. 7.3.6 yields

⌧(a0) =

Z 1

0

dt

Z

V

h⇢(a, t)ida =

Z 1

0

dt

Z

V

e
tD̂
�(a� a0). (7.3.7)

To perform the integration over a we do the following

⌧(a0) =

Z 1

0

dt

Z

V

e
tD̂
�(a� a0) =

Z 1

0

dt

Z

V

�(a� a0)e
tD̂†

=

Z 1

0

e
tD̂†

dt.

(7.3.8)
Since the delta function replaces a with a0, we can drop the subscript and
notice

D̂
†
⌧(a) =

Z 1

0

D̂
†
e
tD̂†

dt =

Z 1

0

d

dt
e
tD̂†

dt = �1 (7.3.9)

where the upper bound vanishes due to absorbing boundary conditions. Fi-
nally, the equations governing ⌧(a) are

D̂
†
⌧(a) = �1 (7.3.10)

with the boundary conditions given by

⌧(a) = 0, a 2 @V (7.3.11)

which is due to the original absorbing boundary conditions on h⇢(a, 0)i. Solv-
ing Eq. 7.3.10 for general cases is di�cult, so we will consider important 1D
scenarios.
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7.3.2 Overdamped limit

Let us consider the two variable Langevin equation of a particle, where
our variables are x and p. Then our equations are

dx

dt
=

p

m
(7.3.12)

dp

dt
= �

d

dx
U(x)� �

p

m
+ ⌘(t) (7.3.13)

where U(x) is the potential felt by the particle and ⌘(t) is the Gaussian noise.
The corresponding FP equation is
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@t
h⇢(X, t)i =
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@
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m
+
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⇣
d
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U(x)+�

p

m

⌘
+�kBT

@
2

@p2

#
h⇢(X, t)i (7.3.14)

where X = (x, p). We can approximate Eq.7.3.14 in the high friction limit
by noticing the following
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��@x
@t
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�����
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p
m

����� ⇡ � (7.3.15)

where we assume m/� ⌧ 1, which physically means that the relaxation time
to fluctuations of the particle is small. Then, interchanging derivatives, Eq.
7.3.14 becomes
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�U(x)
kBT
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U(x)
kBT h⇢(x, t)i

(7.3.16)

which is known as the Smoluchowski equation (or limit). We can construct
a similar equation for ⌧ by taking the adjoint of the RHS to yield

kBT

�
e

U(x)
kBT

@

@x
e

�U(x)
kBT

@

@x
⌧(x) = �1. (7.3.17)

This equation can be solved by quadrature and results in

⌧(x) =
�

kBT

Z b

x

e

U(y)
kBT dy

Z y

a

e

�U(z)
kBT dz (7.3.18)

where a and b is the bottom of the potential well and the absorbing barrier,
respectively.
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7.3.3 Underdamped limit

A particle governed by Eq. 7.3.12 and Eq. 7.3.13, in an environment with
a low friction implies that energy is conserved. Therefore it will be more
illuminating to consider the probability distribution on the energy domain
rather than the typical xp phase space. Since the relaxation time (⇡ 1/�) is
slow, we will simply write[80] and forgo the derivation for the following FP
equations

@

@t
f(X, t) =

h
L̂0 + �L̂1

i
f(X, t) (7.3.19)

with

L̂0 = �
p

m

@

@x
+

d

dx
U(x)

@

@p
(7.3.20a)

L̂1 =
p

m

@

@p
+ kBT

@
2

@p2
(7.3.20b)

where f(X, t) ⌘ h⇢(X, t)i. To use perturbation theory beyond small t, let us
consider the time scale to be slow or t = �t and hence write

@

@t
f(X, t) =

h1
�
L̂0 + L̂1

i
f(X, t). (7.3.21)

Next, consider a power series expansion in �

f(X, t) =
1X

n=0

�
n
fn(X, t) (7.3.22)

Then, after equating terms with equal powers of � in Eq. 7.3.21 we arrive at

L̂0f0(X, t) = 0 (7.3.23a)

L̂0f1(X, t) = �L̂1f0(X, t) +
@

@t
f0(X, t) (7.3.23b)

where we have dropped higher order terms.[82] To solve the matched equa-
tions notice the following property

L̂0H(X) = 0 (7.3.24)

where

H(X) = H(x, p) =
p
2

2m
� U(x) ⌘ E (7.3.25)
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and solvability condition (constraint to avoid secular solutions)[83]

Z
L̂0f(X, t)F (H(X))dX = f(X, t)F (H(X))

���
1

�1
�

Z
f(X, t)L̂0F (H(X))dX

= �

Z
f(X, t)L̂0F (H(X))dX = 0

(7.3.26)

where F (H) is a continuous function that decays to 0 as |p| ! 1. This
implies that Eq. 7.3.23b must satisfy

Z h
L̂1f0(X, t)�

@

@t
f0(X, t)

i
F (H(X))dX = 0 (7.3.27)

To obtain an equation for the distribution as a function of the energy we
want to be able to exchange X and @p to E and @E, respectively. To proceed
consider the following relationships
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=
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(7.3.28)

and
@
2
f

@p2
=

@

@p

@f

@E
=
@f

@E
+
⇣
p

m

⌘2 @2f
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. (7.3.29)

Then Eq. 7.3.20b can be written as

Z Z h
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f(E, x, t)F (E)
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p
dxdE = 0

(7.3.30)
where we have used dp = m

p dE from Eq. 7.3.25. To absorb the integration
over x we take a page from classical mechanics and define the following
action-angle variables

I(E) =

Z
p(E, x)dx (7.3.31)

and
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(7.3.32)

60



Then observing that for Eq. 7.3.30 to be 0 for an arbitrary function F (E)
the term in the bracket needs to be equal to 0 and we can write

!(E)

2⇡
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@t
f(E, t)�

⇣
kBT

!(E)
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f(E, t) = 0

(7.3.33)
which after rescaling back t results in
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the FP equation in the Freidlin-Wentzell limit.[84]
Finally, to obtain ⌧ we use the same technique as before, which is to take

the adjoint of the RHS in Eq. 7.3.34 and set it equal to -1. After some
manipulation,[80] this yields

⌧(E) =
m

2�kBT

Z Eb

E

e
E0/kBT

I(E 0)
dE

0
Z E0

0

!(E 00)

2⇡
e
�E00/kBT

dE
00 (7.3.35)

where Eb is the energy at the absorbing boundary (barrier).

7.4 Applications

Stochastic mechanics can be applied to a variety of problems ranging
from physics to biology and even finance. In fact, Einstein’s mathematical
description of the Brownian particle is predated by Bachelier’s thesis on the
stock market, which was later used as a springboard by Kolmogorov. In this
section we will explain how we can use the equations previously derived to
work out idealized systems.

7.4.1 Hysteresis

Hysteresis can be broadly understood as an overshoot phenomena, where
a system responds, relative to the rate of transitions between its states, to
a time dependent perturbation. For a uniaxial ferroelectric material, we
typically present its states, within the Landau framework, as a free energy
surface defined by the double well potential

�(P, t) =
1

4
bP

4
�

1

2
aP

2
� E(t)P (7.4.1)
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and
E(t) = E0 + E!t (7.4.2)

where E0 and E! is the built-in bias and sweep rate of the electric field,
respectively. Here the coupling between the time dependent electric field
and the polarization is the perturbation that leads to the transition between
the stable and metastable state.

Modeling the hysteresis involves determining the probability distribution
⇢ of a successful transition at E(⌧), where ⌧ is the mean first passage time
(MFPT), the average time needed for one state to transition into the other.
For E! = 0, the MFPT can be approximated, in the overdamped limit, by
quadrature to be

⌧(P ;E) =
1

D

Z Pb

P

dP
0
e
�(P 0

)/D

Z P 0

Pm

dP
00
e
��(P 00

)/D
, Pb > Pm (7.4.3)

where D, Pb and Pm is the di↵usion constant, the polarization at the barrier
and the polarization at the local minimum we start in, respectively. When
E! 6= 0 it turns out that ⌧ and likewise ⇢ cannot be calculated by quadra-
ture because the bounds, Pb and Pm, now have a time dependence, which is
equivalent to having time independent bounds, but at the cost of a multidi-
mensional ⌧ .[85]

Instead we consider the sweeping field to be a series of successive ”mi-
crosteps” such that

E(⌧) ⌘ En = E0 + E!n� (7.4.4)

where � is the time step connecting rapidly equilibrated states, whose value
does not influence the results. Under such an approximation,[86] we can
write an iterative solution for the probability distribution as

⇢(E(⌧)) ⌘ ⇢(En) =
h
1�

n�1X

i

⇢(Ei)�
i
e
��/⌧(Pm;En)

⌧(Pm;En)
. (7.4.5)

We emphasize that the approximation breaks down when E0 is near the
transition where � has a single well. Finally, we can write the polarization,
normalized to its maximum magnitude, as

P (E(⌧)) = 1� 2

Z E0

E(⌧)

⇢(E 0)dE 0 (7.4.6)
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which gives the upper branch of the hysteresis loop, with the lower branch
given by recalculating ⌧ when Pb is less than Pm and the sign of E! is reversed.
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Part II

Results and Discussion

8 Bulk PbTiO3

8.1 Introduction

Ferroelectric perovskites, with chemical formula ABO3, have a wide range
of applications and serve an important role in data storage, being good can-
didates for non-volatile memory devices.[87] However, even in ideal growth
conditions, the devices present atomic defects or impurities, which a↵ect
their electronic properties. Among the standard problems associated to the
presence of these defects are ferroelectric fatigue and up-down asymmetry
(sometimes referred to as imprint)[14] are the two most commonly discussed.
Fatigue is the decrease in magnitude of the polarization after repeated switch-
ing between the two polarization states, and up-down asymmetry is when one
polarization state is easier to switch than the other. The problem of fatigue
has been extensively studied [88, 89, 90] and can be well explained by local
distortions of oxygen octahedra caused by charged oxygen vacancies which
result in domain wall pinning. Although other, more complex, interactions
have been proposed.[91]

The problem of up-down asymmetry is much more nuanced. The exis-
tence of a preferred polarization state is observed in experiments as a voltage
(or field) shift of the hysteresis loop. The proposed origin of this e↵ect is the
presence of dipolar defects (DDs).[92, 93] The dipole moments of the DDs
produce an electric field that changes the relative energy between the two
spontaneous polarization states through the E ·P term in the free energy of
the ferroelectric.

Typically, these DDs are created from a charged oxygen vacancy and a
PtTi impurity created from the di↵usion of the metal electrode atoms into the
ferroelectric perovskite lattice.[94, 14] However, there is no actual detailed
understanding about of how the net alignment of DDs a↵ects the electric
field contribution to the free energy of the ferroelectric. In particular, dis-
agreement exists on whether the electric field produced from the DDs is a
constant electric field always built-in the material[95] or a transient electric
field only present when the polarization of ferroelectric is near the sponta-
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neous polarization.[96, 97] Recently, it has been observed that these types of
DDs are present even in the absence of bulk metal electrodes and the hystere-
sis could not be explained using transient electric fields (See Sec. 9.3.3.2).

In this work we model the dipolar defect problem using phenomenolog-
ical theory and electrostatics to understand how the E · P term in the free
energy is responsible for the up-down polarization asymmetry observed in
ferroelectrics. Then, using atomistic density functional theory (DFT) simu-
lations we attempt to validate the model’s results, in addition to, providing
new insights into the problem. While the focus of this work is on DDs which
are formed from an oxygen anion and an A cation vacancy pair, the method-
ologies are readily applicable to DDs which are formed from any type of
impurities.

8.2 Phenomenological theory

The collective interaction of DDs alter the switching in ferroelectrics by
creating an electric field EDD which modifies the free energy. (See Fig. 7a
and Fig. 7b). Many di↵erent phenomenological models exist for exploring
defects in ferroelectric materials.[98] We model the defects in the ferroelectric
using Landau-Ginzburg-Devonshire theory (LGDT).[19] In the model, the
defects exist in a planar interface, normal to the direction of spontaneous
polarization, within a uniaxial ferroelectric material and couple to the local
polarization of the ferroelectric at the interface. The main advantage to
this method is a straightforward approach, within a mean field theory, to
control the defect concentration and coupling to the ferroelectric. The main
disadvantage to this method is the coupling between di↵erent interfaces of
defects is missing, however this can be recovered by considering multiple
interfaces.[99]

8.2.1 Landau-Ginzburg-Devonshire Theory

We consider a uniaxial ferroelectric, which is only polarized along the z di-
rection, and whose in-plane spatial variation is averaged, such that 1/S

R
Pz(x, y, z)dxdy ⌘

P (z), where S is the surface area. Therefore the system can be fully char-
acterized by a one-dimensional periodic cell, in the z direction, of length L.
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Then, the free energy, to 6th order in the polarization, (cf. Ref [3, 99]) is
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(8.2.1)
where the constants, chosen for the ubiquitous ferroelectric perovskite PbTiO3

at T = 300K, are given in Table 1.[100]
The defect is introduced at the periodic cell boundary. This creates an

interface, whose energetics are sensitive to the direction of polarization due
to local dipole moments of the defects. In addition, the presence of de-
fects should partially weaken the ferroelectric coupling between neighboring
PbTiO3 unit cells across the interface. Therefore we can write the free energy
at the interface to be

FI =
D
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P (0)2 + P (L)2

⇤
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D
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2�0
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P (0)4 + P (L)4
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P (0)3P (L) + P (0)P (L)3

⇤
� ↵1P (0)� ↵2P (L)

(8.2.2)

where the constants are given in Table 1 and the interfacial coupling constants
⇠ and ⌘ are the same as in Ref. [3] and taken to be 1.2 and 0.18, respectively.
Here ↵1 and ↵2 are the coe�cients coupling the polarization to the left and
right surfaces of the defect interface, respectively. Specifically for a DD, ↵1

and ↵2 physically represent the coupling of the tail and head of the DD
with the left and region, respectively and therefore are chosen to be equal
and opposite. The contribution from the DD electric field EDD modifies Eq.
8.2.1 by an additional term in the integral, EDDP . Finally, we note that the
free energy coe�cients can be renormalized due to the lattice strain by the
defects.[101]

8.2.2 Euler-Lagrange equations

We can calculate the polarization profile by minimizing the total free
energy F + FI to obtain the following Euler-Lagrange (EL) equation

D
d
2
P

dz2
� AP � BP

3
� CP

5 +
1

✏
(hP i � P ) + E = 0 (8.2.3)

where

hP i =
1

L

Z L

0

Pdz (8.2.4)
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is the average polarization. We note that E can include an external electric
field in addition to EDD. The corresponding Robin boundary conditions (cf.
Ref [3]) are

�D
dP

dz

����
z=0

+
D

�
P (0) +

2D2

�
0 P (0)3 � ⇠P (L)� ↵1

� 3⌘P (0)2P (L)� ⌘P (L)3 = 0

(8.2.5a)
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(8.2.5b)

In the case when ↵1 = 0 and ↵2 = 0 we have standard periodic boundary
conditions

P (0) = P (L) (8.2.6a)
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=
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����
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. (8.2.6b)

For computational e�ciency[102] we use the following reduced variables
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(8.2.7)

where Ps, A0 and D0 is the spontaneous polarization, A evaluated at 300K
and D/2, respectively, whose values are given in Table 1. We note that the
scaling constants |A0| and D0 were chosen in such a way that the unit of
length

p
D0/|A0| is 1.0 nm. We solve the coupled EL equations, with their

boundary conditions, applying a finite di↵erence method on a discrete grid of
z points, where the integral in hP i is evaluated using trapezoidal quadrature.
In our calculations every two grid points physically corresponds to a PbTiO3

unit cell. We set L = 10a, where a is the lattice constant of PbTiO3, because
this is the minimum number of unit cells required to stabilize both polariza-
tion directions for varying ↵⇤

1
, ↵⇤

2
and E

⇤. Using Broyden’s method,[21] we
randomly initialize the polarization on the grid from a Gaussian distribution
centered at Ps, then iteratively find the eigenvectors of the system which
yield the polarization profile.
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8.2.3 Polarization kinetics

In the most general case, a kinetic model of the one-dimensional polar-
ization will assume

@P

@t
= �[P ] (8.2.8)

where � is some partial di↵erential operator.[103] From a thermodynamic
viewpoint Eq. 8.2.8 is restricted by the second law[104] which requires

dF

dt
+

dJ

dz
 0 (8.2.9)

where F and J is the free energy and free energy current, respectively. If we
assume that J = 0 then it is easy to verify[103] that the simplest �[P ] that
satisfies Eq. 8.2.9 is

�[P ] = �l1
@F

@P
(8.2.10)

where l1 is a positive constant, we define as the first polarization conduc-
tivity coe�cient. We note that Eq. 8.2.10 associates temporal changes in
the polarization with changes in the free energy. Inserting Eq. 8.2.10 into
Eq. 8.2.8 yields the Landau-Khalatnikov transport equation[105] (sometimes
called the bistable di↵usion equation) which is typically used for calculating
dynamical properties in ferroelectric materials.[106, 107]

However, let us examine the case when J 6= 0. Since we associated
temporal changes in the polarization with changes in the free energy, let us
assume for simplicity that J / @P/@t = �. From Eq. 8.2.9 this assumption
yields[108]

�[P ] = �l1
@F

@P
� l2

@

@z
l1
@
2
P

@z@t
(8.2.11)

where l2 is a positive constant, we define as the second polarization con-
ductivity coe�cient. Notice that a non-zero free energy current produced
an additional term in �. Because the additional term is typically neglected
in kinetic calculations of polarization we assume, and later computationally
verify, that l1 � l2 for conventional ferroelectrics.

Using this time-dependent Landau theory we can model the polarization
kinetics, under a periodic external electric field, to calculate the hysteresis
curve. Using Eq. 8.2.1, Eq. 8.2.8 and Eq. 8.2.11 yields the time evolution
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of the polarization
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where

E(t) = Eext(t) + EDD = Eext sin (2⇡ft) + EDD (8.2.13)

and Eext, f , EDD, l1 and l2 is magnitude of the external electric field, fre-
quency of the external field and DD electric field, respectively. To our knowl-
edge this is the first instance the second conductivity coe�cient is included in
ferroelectric calculations. For computational e�ciency the reduced variables
that we employ are

t
⇤ = |A0|l1t, E

⇤
ext

=
Eext

|PsA0|
, f

⇤ =
f

|A0|l1
, E

⇤
DD =

EDD

|PsA0|
.

In addition, for the last term, we can rewrite the reduced time as t
⇤ =

�tD0/l2, where � = l1l2|A0|/D0 is a dimensionless constant. This change of
variables scales t and l2 by l1, allowing us to eliminate l1 from the equation.
The solutions to Eq. 8.2.12 are initialized at t

⇤ = 0 to a random Gaussian
spatial distribution centered at P = 0 and subject to the same spatial Robin
boundary conditions, as before, for all t⇤. We solve Eq. 8.2.12 iteratively
using the implicit Euler method,[109] where, at each iteration, the system
of equations is solved using Broyden’s method. The constants �t

⇤, E⇤
ext

, f ⇤,
and � are set to 0.1, 6.0, 0.1 and 0.01, respectively,

8.3 Density functional theory

To explicitly verify our phenomenological results we perform numerical
experiments on bulk PbTiO3 using density functional theory. First, to purely
understand what role the E ·P term has on the up-down polarization asym-
metry, we perform finite field DFT simulations on pristine PbTiO3 without
any defects. Second, to model DDs, we consider a VPb-VO vacancy pair in a
supercell of PbTiO3. Then, using the modern theory of polarization[?] we can
calculate polarization profiles to assess the accuracy of our phenomenological
model.

In addition, studies on the e↵ects of DD in ferroelectrics perovskites have
been limited to the cubic phase of the material.[14, 110] Therefore, we explore
the energetics and structural relaxations of PbTiO3 as a function of the defect
density.
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(a) (b)

Figure 7: Schematic representation of a double well potential of the free
energy with respect to the polarization in a ferroelectric that is (a) pristine
or (b) with dipolar defects.

A(105 C-2 m2 N) 3.8⇥ (T � 752)
B(107 C-4 m6 N) �7.3
C(108 C-6 m10 N) 2.6
D(10-10 C-2 m4 N) 3.44
✏(10-10 C2 m-2 N-1) 4.43

Ps(C m-2) 0.757
A0(108 C-2 m2 N) �1.72
D0(10-10 C-2 m4 N) 1.72

a(nm) 0.3904
�(nm) 0.3904
�
0
(nm) 1

Table 1: Free energy coe�cients and other material constants for PbTiO3 in
SI units and T in K.
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8.3.1 Computational details

We perform simulations using LAUTREC, an in-house code, utilizing
the projector augmented wave (PAW) scheme.[48] The exchange-correlation
functional used was PW92[111] and the Brillouin zone was sampled for
PbTiO3, with and without a VPb-O, using a 2⇥2⇥1 and 4⇥4⇥4 Monkhorst-
Pack mesh,[50] respectively, with a plane wave cuto↵ energy of 160 Ry. We
initialize the system in the P4mm space group, where the Ti and O atoms
in the TiO2 planes are displaced, in opposite directions, along the [001] (out-
of-plane) axis, from their ideal P4/mmm space group positions. We perform
finite electric field calculations for bulk PbTiO3 using the scheme of Ref.
[58] which minimizes the electric enthalpy. We simulate 4 ⇥ 2

p
2 ⇥ 2

p
2,

9⇥ 2
p
2⇥ 2

p
2, and 4⇥ 3

p
2⇥ 3

p
2 PbTiO3 supercells with a single VPb-VO

vacancy pair, whose defect densities are referred to as n, nk and n?, respec-
tively. We emphasize that nk and n? have the same volumetric density of
defects, but the linear density is more dilute in the parallel and perpendicular
direction relative to the spontaneous polarization, respectively. (See Fig. 8)
The VPb-VO vacancy pair is formed by removing a Pb atom in a PbO plane
and the O atom in the adjacent TiO2 plane so that the vacancy pair dipole
moment is in the [101] axis. Due to computational costs we only simulate
a single VPb-VO vacancy pair, however, using electrostatics (see Appendix
C.3) we verify that multiple VPb-VO vacancy pairs, with di↵erent orienta-
tions, but the same defect density, are not, any more energetically favorable.
The valence electrons explicitly treated for Pb, Ti and O were 6s25d106p2,
3s23p64s23d2 and 2s22p4, respectively. The lattice constants, a and c, were
fixed to 3.854Å and 4.024Å, respectively,[112] while the force tolerance, for
atomic relaxations, was 0.08 eV/Å.

8.3.2 Oxygen octahedra rotations

Even for bulk equilibrium lattice constants it is known that oxygen octa-
hedra tilts and rotations are present in PbTiO3 under an applied field.[113]
Hence it is sensible to consider that such relaxations will occur when a VPb-
VO vacancy pair is present. Since we do not enforce any symmetry constraints
during relaxation, each octahedra rotation in the supercell will have some
spatial variation. Therefore we define the average planar octehdra rotation

R̄
↵
=

1

N

X

j

argmin
R↵

j

X

i

|xij �R↵
j · x0

ij|
2 (8.3.1)
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where N , R↵
j , xij, and x0

ij is the number of oxygen octahedra in the plane,
the rotation tensor around the ↵th axis for the j

th oxygen octahedra, the
relaxed coordinates of the ith oxygen atom in the jth oxygen octahedra of the
plane, and the initial coordinates of the i

th oxygen atom in the j
th oxygen

octahedra of the plane, respectively. We take the rotation axes to be the
crystallographic directions.

8.3.3 Polarization calculation

We calculate the polarization using hybrid Wannier functions,[30] only
localized in the direction of the c axis. Then we define the average planar
polarization

P̄ =
1

Nk

X

k

"
X

↵

Q↵(X↵ � X̄)� 2e
X

i

(xik � X̄l)� 2e
X

i

x
EV
i +QkX̄

#

(8.3.2)
and

Qk =
X

↵

Q↵ � 2eN (8.3.3)

X̄ =
1

N

X

↵

X↵ (8.3.4)

where the indexes ↵, i, k run over atoms in the plane, Wannier orbitals in
the plane, and k-points, respectively. Q↵ and X↵ are the ion core charges
and the position of the ↵th atom, N is the number of atoms in the layer,
xik is the position of the Wannier center of the i, k Wannier orbital, and Nk

is the number of k-points. The third term on the RHS of Eq. 9.2.1 is the
contribution to the polarization due to the use of PAWs.[114]

8.4 Results

To systematically study the free energy of the ferroelectric-DD complex
we vary the interfacial and bulk coupling strengths (↵⇤ and E

⇤, respectively)
to determine how they e↵ect a realistic system. The polarization profile of
the intuitive picture, where the DD only couples to the bulk polarization (low
interfacial coupling limit), is shown in Fig. 9a. We find that when the �EDD ·

P term is negative, the average polarization increases with an increasing EDD,
but when the term is positive there is only a constant decrease in the average
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Figure 8: Schematic representation of the di↵erent supercells and their asso-
ciated defect densities. Here the numbers represent the amount of unit cells
in a particular dimension. Both nk and n? have the same supercell volume.
The black arrow represents the dipole moment of the VPb-VO vacancy pair,
along the [101] axis, in the supercell.

polarization, regardless of the EDD strength. To reduce the energy cost of
a positive �EDD ·P it is more favorable for the system to stay in a specific
weakly polarize state than transition into a non-polar state. As expected, we
also observe that the polarization profile at the interface is insensitive to the
sign of ↵⇤.

The polarization profile for the low bulk coupling limit is shown in Fig.
9b. We find a decrease in the magnitude of the average polarization when
interfacial coupling is present because the long range coupling of the ferro-
electric is broken by the interface. In addition, the �↵P term in the free
energy causes the polarization at the interface to decrease significantly when
the sign of ↵⇤ and the average polarization are opposite.

Finally, for a realistic system, where both interfacial and bulk coupling
constants are large, the polarization profile is shown in Fig. 9c. By inspec-
tion we can approximate this polarization profile to be a linear combination
of the polarization profiles in the low interfacial and low bulk coupling limits
discussed previously. The origin of why this approximation is valid is be-
cause the total free energy is a linear combination of interfacial and bulk free
energies.

Although the polarization profile is sensitive to the interfacial terms in the
free energy, the kinetic calculations, shown in Fig. 11a, reveal that only the
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details of the bulk coupling determine the shift and shape of the hysteresis.
However, it is interesting to note that by varying ↵ and �, shown in Fig. 10,
we are able to induce phase transitions in the ferroelectric. For su�ciently
strong interfacial coupling the system becomes paraelectric-like, shown in
Fig. 11b, where E⇤ = 0 is taken for clarity. In addition, for su�ciently large
�, potentially created by defects, the system becomes dielectric as shown in
Fig. 11c. An interesting note, for a critical value � ⇡ 0.073 the system loses
its ferroelectric properties even without bulk and interfacial coupling terms
in the free energy. This suggests that defect engineering in perovskite oxides
can create ferroelectric-paraelectric or ferroelectric-dielectric transitions.

To validate the LGDT results using first principles simulations we com-
pute the out-of-plane polarization profiles when PbTiO3 is subject to an
out-of-plane applied external electric field, shown in Fig. 12a, and a VPb-VO

vacancy pair, shown in Fig. 12b. We find that the applied external field
a↵ects both spontaneous polarizations in the same way, unlike the LGDT
results, which were dependent on the sign of �EDD ·P. We attribute this to
the stability of the polar state caused by the hybridization between the Ti 3d
and O 2p orbitals, and also the Pb 6s, Pb 6s and O 2p orbitals.[8] Comparing
the polarization profiles of the finite field and the VPb-VO vacancy pair, we
find large deviations specifically near the defect site. However, there is good
agreement between LGDT and DFT polarization profiles showing the correct
polarization behavior at the defect site when the sign of ↵ and the vacancy
charge match. This strongly implies that while the LGDT does not account
for the in-plane component of the DD dipole moment, including this con-
tribution in the free energy is not essential in reproducing the out-of-plane
polarization. We note that when �EDD ·P is negative, the magnitude of the
average polarization is higher in the DFT calculations, which we attribute
to not including higher order coupling terms, in the free energy, between ad-
jacent unit cells across the interface. We conclude that to properly explain
the ferroelectric-DD complex, considering only coupling of the bulk polariza-
tion to the DD electric field is insu�cient and must be amended to include
coupling of the local polarization at the DD site.

To better understand the di↵erences between the defect concentrations we
calculate the free energy surface, which is obtained by linearly interpolating
the atomic coordinates between the two polarization states and computing
their total energies. The asymmetrical double well, shown in Fig. 13a, is
commensurate with the hysteresis obtained from LGDT. In addition, our
first principles results reveal necessary considerations when formulating the
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up-down asymmetry caused by DDs. First, the notion that the defect con-
centration is a uniform bulk property e↵ecting the ferroelectric is erroneous.
The total energies, shown in Fig. 13b, reveal that while the energy barrier
is insensitive to the directional density of the defects, the up-down asym-
metry is stronger for nk than n?, suggesting that directional defect control
can be an interesting venue to reduce the asymmetry. Second, we find local
oxygen octahedra rotations that couple to the dipole moment of the VPb-VO

vacancy pair as shown in Fig. 14. This is clearly seen from the average
planar oxygen rotations for di↵erent defect concentrations, shown in Fig. 15.
The magnitudes of oxygen rotations only decrease for n? due to the decrease
in the defect concentration within those planes. In addition, we find that
the oxygen rotations are independent of the bulk polarization direction and
vanish within two unit cells, in the out-of-plane direction, from the vacancy
pair. Our results suggest that dipolar defects can be used to locally activate
oxygen rotations in ferroelectric materials.

8.5 Conclusion

The up-down asymmetry observed in ferroelectrics perovskites is a com-
bination of bulk polarization coupling to the constant electric field produced
by dipolar defects and local polarization coupling at the defect site. While
the bulk coupling is able to reproduce the correct shifted hysteresis, local
coupling is needed to accurately capture the polarization profile in the ferro-
electric. We also found oxygen octahedra rotations which couple to the local
polarization distortions created by the defects, suggesting a three parameter
phenomenological model is more appropriate to capture the corresponding
physics. Varying the degree of defect coupling and defect concentration it
may be possible to engineer a dielectric, or a paraelectric phase from a simple
ferroelectric perovskite oxide.
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(a) (b)

(c)

Figure 9: Polarization profiles obtained from LGDT where ↵⇤
1
= �↵

⇤, ↵⇤
2
=

↵
⇤ and hP i = hP i

���
↵⇤=0

with (a) ↵⇤ = 0.1, (b) E⇤ = 0.1 and (c) E⇤ = |↵⇤
1|+|↵⇤

2|
2

.
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Figure 10: Schematic representation of the �-↵ phase diagram of PbTiO3.
Here the FE, PE and DE refer to the ferroelectric, paraelectric and dielectric
phase of the material, respectively.

9 PbTiO3 based superlattices

9.1 Introduction

In an ideal ferroelectric the symmetries of the crystal only allow for the
expansion of the free energy in even powers of the polarization, producing
two degenerate ground states, one for each polarization direction, [19]. In the
presence of an electric field, the degeneracy breaks due to a linear coupling
between the field and polarization, favoring one state over the other depend-
ing on the sign of the field, which should produce ferroelectric polarization-
field hysteresis loops with two equal but opposite coercive fields. This result
would also hold for bulk-like ferroelectric layers within an inversion symme-
try allowed dielectric-ferroelectric superlattice structure,[115, 116] such as
SrTiO3/PbTiO3.[11].

However, electric polarization asymmetry where one polarization state is
preferred over another is often seen in ferroelectric thin films and superlattices[117,
118, 119, 120, 121]. Many contributing factors have been suggested as sources
of polarization asymmetry, for example polarization-strain gradient coupling[117,
122], chemical and or compositional gradient[118], domain pinning[121], asym-
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(a) (b)

(c)

Figure 11: Hysteresis curves obtained from LGDT where ↵⇤
1
= �↵

⇤, ↵⇤
2
= ↵

⇤,

(a) E
⇤
DD = |↵⇤

1|+|↵⇤
2|

2
, (b) E

⇤
DD = 0 and (c) E

⇤
DD = 0 with � = 0.07. Here

Ec = argmin
n
hP i

���
↵⇤=0

o
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↵⇤=0

o
.
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(a) (b)

Figure 12: Out-of-plane polarization profiles obtained from DFT for PTO (a)
with an applied electric field and (b) with dipolar defect, where the asterisk
signifies a plane with a vacancy. The dashed line represents the average
polarization.

(a) (b)

Figure 13: DFT calculations of the (a) double well potentials, where each
curve is relative to the ground state of the system, and (b) total energies,
where up (down) triangles represent positive (negative) polarization. In the
figures, the energies of n are scaled to match the energy at the potential well
maximum (P = 0) of n? and nk.
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Figure 14: Representation of the local oxygen octahedra rotations near the
VPb-VO vacancy pair. The purple vector, along the [101] axis, represents
the vacancy pair dipole moment. Red and green arrows represent rotations
around the [100] and [001] axis, respectively. Black, blue and red spheres
represent Pb, Ti, and O atoms, respectively.

metric interface[13], and other local inhomogeneities such as defects[123].
Due to all the intrinsic and extrinsic factors, it is di�cult to decisively iden-
tify the source of polarization asymmetry in any given material system, and
concrete solutions to control and tune this built-in bias are lacking. In ar-
tificially layered superlattices variables such as numbers of interface, asym-
metry at the interface, and the composition of the superlattice can be pre-
cisely controlled, providing an excellent opportunity to systematically study
the built-in bias. The goal of this study is to understand which symmetry
breaking defects are the cause of the large implicit bias behavior observed in
two-component superlattices, specifically SrTiO3/PbTiO3 (STO/PTO) and
SrRuO3/PbTiO3 (SRO/PTO).

9.2 Methods

9.2.1 Density functional theory

Our calculations involve density functional theory (DFT) within the local
density approximation (LDA) using numerical atomic orbitals implemented
in SIESTA[42] and augmented plane-waves implemented in LAUTREC, an
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(a) (b)

(c)

Figure 15: Rotations around the crystallographic axes for (a) n, (b) nk and
(c) n?, where z corresponds to the direction of spontaneous polarization and
the asterisk signifies a plane with a vacancy. Here x, y and z correspond to
the [001], [010], and [100] axis, respectively.
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in-house code.
For SIESTA, we used norm-conserving psuedopotentials generated using

the Trouiller-Martins[43] scheme. The exchange-correlation functional used
was PZ[124] The electrons treated explicitly with a single-⇣ were 5d10 (Pb),
4s24p6 (Sr, Ru) and 3s23p6 (Ti). The electrons treated with a double-⇣ were
6p2 (Pb), 5s2 (Sr), 4s23d2 (Ti), 5s14d7 (Ru) and 2s22p4 (O). The Brillouin
zone was sampled using a 6 ⇥ 6 ⇥ 1 Monkhorst-Pack[50] mesh with a plane
wave equivalent cuto↵ energy of 400 Ry. When possible the force and pressure
tolerances were 0.04 eV/Å and 0.0006 eV/Å3, respectively.

For LAUTREC, we used the projector augmented wave (PAW) scheme.[48]
The exchange-correlation functional used was PW92[111] which is equivalent
to PZ because they are fit to the same Ceperely-Alder data. The valence elec-
trons explicitly treated for Pb, Sr, Ti, Ru and O were 6s25d106p2, 4s24p65s2,
3s23p64s23d2, 4s24p65s14d7 and 2s22p4, respectively. The Brillouin zone was
sampled using a 2 ⇥ 2 ⇥ 1 Monkhorst-Pack mesh with a plane wave cuto↵
energy of 160 Ry. When possible the force tolerance was 0.08 eV/Å.

9.2.2 Polarization calculation

We calculate the polarization of our system along the growth direction
(x-direction) using the modern theory of polarization. In the 1-D Wannier
representation,[30] this can be written as
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⌦
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X̄l =
1

Nl

X

↵2l

X↵ (9.2.3)

where ⌦ is the volume of the supercell, indexes ↵, i, k, l run over atoms,
Wannier orbitals, k-points and layers respectively. p̄l is the k-space averaged
polarization of the l layer, Q↵ and X↵ are the ion core charges and the x
position of the ↵ atom, Nl is the number of atoms in the l layer, xik is the x
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position of the Wannier center of the i, k Wannier orbital, Nk is the number of
k-points and fik is the fractional occupation of the i, k Wannier orbital. The
third term on the RHS of Eq. 9.2.1 is the contribution to the polarization
due to the use of PAWs.[114] We emphasize that the average over k-space
should be done before doing the summation over the planes to calculate
polarization, as the total charge of the system

P
l Qlk at each k-point is

not zero, and therefore the polarization would be ill-defined otherwise. We
note that the use of the fractional occupation allows us to calculate the
polarization of metallic systems, which is not possible using the standard
Berry phase approach.[25]

Polarization calculations as defined above are computed using the LAUTREC
code on relaxed structures obtained with SIESTA. For SRO/PTO, the LAUTREC
code is also used to improve on the geometry optimization of the structures,
given that it implements an optimized relaxation scheme for metallic systems,
allowing for quicker convergence.[125]

9.3 Results

9.3.1 Pb and O vacancies

In bulk PTO the most stable point defects are charged O vacancies.[126]
However, such charged defects would lead to tail-to-tail domains[89] and
not create a built-in bias. The next likely candidate, charged Pb vacancies,
would similarly lead to head-to-head domains. We therefore consider Pb
and O complexes, which are either nearest or next-nearest neighbor. The
complexes are charge neutral because a charged Pb vacancy donates two
electrons, while a charged O vacancy accepts two electrons. The divacancies
can be exothermic depending on the position Fermi level in the band gap.[127]
It is known that dipolar defects strongly prefer one polarization state over
another which would lead to a built-in bias.[96, 94] We consider nearest
neighbor Pb-O divacancies since these are found to be lower in energy than
next-nearest neighbor divacancies.[110]

9.3.2 Pb-O divacancies in SrTiO3/PbTiO3

We investigated the potential energy surface of a (STO)2/(PTO)5 super-
lattice, with supercell area 2

p
2 ⇥ 2

p
2, which was chosen on the criteria of

having a large enough supercell to be able to simulate a moderate defect
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(a) (b)

Figure 16: Location of unique Pb-O divacancies dipole moments near the in-
terface in the (a) STO/PTO and (b) SRO/PTO superlattice. For STO/PTO
superlattices there is no intrinsic polarization due to the reflection symmetry
at the interface. Note that the actual position of the divacancy in the PTO
is much farther away from the interface than shown in the schematic.
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concentration, while not being so large that at computational cost became
impractical. To simulate growth on a STO substrate, the in-plane lattice con-
stant was constrained to the STO equilibrium lattice constant, determined
from first principles, to be 3.87 Å. The DVs are formed by removing a Pb
atom in a PbO plane and the O atom in the adjacent TiO2 plane which
minimizes the in-plane component of the DV dipole moment. Given that
STO/PTO superlattices have inversion symmetry, we only need to consider
one DV dipole moment orientation (this will not be the case for SRO/PTO
superlattices), shown in Fig. 16a.

We initialize our superlattice in the P4mm space group, which naturally
gives rise to polar distortions along the [001] direction. This is achieved
through distorting the TiO2 planes by displacing Ti atom above (below)
and the O atoms below (above) the planar center, which corresponds to the
system being polarized up (down). Relaxation of the system, in general,
leads to two stable polarization states of opposite sign.

Our results, plotted as double well potentials in Fig. 17a show that the
most stable polarization state is such that it always aligns with the DV dipole
moment. The largest di↵erence in total energy between the two polarization
states, is observed when the divacancy is in the central PTO unit cell rather
than at the interface. Performing simulations of model potentials by solving
Fokker-Planck equations, detailed in Appendix D, we can relate the energy
di↵erence between the two polarization states to a measurable bias in the
hysteresis. Fig. 17b shows that the preferred location of the DV is in the
interface between the PTO and STO. We note that when the DV is in the
interface the double well potential is shifted horizontally and the positive and
negative polarization states are quite di↵erent in magnitude. In the exper-
imental measurement of hysteresis we are not sensitive to this polarization
shift (see Appendix D) because only the di↵erence between the two polar-
ization states is measured through the integrated current as the material is
switched from one direction to the other.

A priori, it might be considered that DVs are equally likely to form in
either direction and would have no net e↵ect on the bias. However, as a
superlattice is a grown structure there is an asymmetry introduced by the
growth process. While it is not possible to directly capture this growth
induced assymetry using first principle calculations, we postulate that it is
this that allows the DVs to be a significant source of the bias in our samples.
Consider that bulk PTO has a larger lattice constant than bulk STO due
to having a larger A cation and that the superlattice as a whole is grown
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(a) (b)

Figure 17: 2/5 STO/PTO superlattice: (a) Double well potential, where the
intermediate points between the two local minima are calculated by interpo-
lating the atomic positions. The dashed lines are best fits to a sixth order
polynomial and each curve is plotted relative to its most stable state. (b) To-
tal energy, where the up and down triangles represent positive and negative
polarization of the local minima, respectively.

on an STO substrate. Therefore, when the PTO is grown on top of the
STO, there is an additional drive towards vacancy formation to enable the
PTO to conform to lattice constant to the substrate which is not present at
the interface where STO is grown on top of PTO. There is thus a preferred
interface where the DVs form with a fixed direction of the dipole moment.
As DVs continue to form within the bulk of growing PTO layers they will
tend to align themselves with the existing DVs that formed at the interface
layer and the collective alignment of the DV dipole moments would lead to the
experimentally observed bias. The observation that the built-in bias increases
with increasing PTO volume fraction can be explained through a mechanism
in which as thicker PTO layers are grown, more DVs are being continuously
formed and they collectively align and enlarge the bias. Using the energetics
of the superlattice with DVs we are able to construct a phenomenological
model that can accurately map the potential energy surface.
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9.3.3 Pb-O divacancies in SrRuO3/PbTiO3

Previous work[13] has shown that for SRO/PTO superlattices, with an
integer number of unit cells, the interface between the SRO and PTO breaks
inversion symmetry. The broken inversion symmetry adds stability to one of
the polarization directions along [001], dependent on the relative ordering of
the SrO and RuO2 planes at the interface, which leads to an intrinsic polar-
ization. This intrinsic polarization is observed in the free energy surface as
an asymmetric double well potential. This asymmetric double well potential
is connected to an built-in bias that would occur even in a ideal superlattice
that lacked any defects. It turns out that the di↵erence in energy between
the two polarization states decreases with increasing PTO volume fraction,
while for very low PTO volume fractions only one of the two states sur-
vives and the potential energy surface can be approximated as a single well
potential.[13] However, just the presence of the broken inversion symmetry
cannot explain the experimentally observed trend of the built-in bias with
PTO volume fraction. The observed trend seen in SRO/PTO is also quali-
tatively di↵erent than in STO/PTO. Unlike the positive and monotonically
increasing bias in STO/PTO, the bias, in SRO/PTO, is first positive and
monotonically increasing, then at some critical PTO volume fraction, the
bias becomes negative and monotonically decreasing.

During and after the growth of the superlattice it is not possible to ex-
perimentally determine the type of metal-ferroelectric interfaces present and
therefore the direction of the intrinsic polarization. However, since the sign
of the built-in bias holds for a multitude of synthesized samples, for the
same PTO and SRO volume fractions, we are confident that the interfaces
throughout the samples are of the same kind. Therefore, our goal is to shed
light on the mechanisms behind the change in the sign of the built-in bias
given a specific interface, rather than explain how and why a given interface
is formed, which is outside the scope of first principles.

Ideally, to consider the role of divacancies, we would want to consider
a superlattice with a very large PTO volume fraction, where the broken
inversion symmetry contribution is on the order of the numerical accuracy,
so that we do not confound di↵erent e↵ects, however the convergence of
such a system, with divacancies, would be impractical. Instead we studied
divacancies in (SRO)1/(PTO)7 and (SRO)1/(PTO)10 superlattices, where
contributions from the asymmetry was significant, but the two data sets, with
respect to PTO volume fraction, allowed us to make confident extrapolations
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(a) (b)

Figure 18: (a) Double well potential, where the intermediate points between
the two local minima are calculated by interpolating the atomic positions.
The dashed lines are best fits to a sixth order polynomial and each curve
is plotted relative to its most stable state. (b) Total energy, where the up
and down triangles represent positive and negative polarization of the local
minima, respectively.

for larger PTO volume fractions that are outside the reach of first principles
calculations.

9.3.3.1 SrRuO3/PbTiO3 1/7 superlattice We begin by considering

the (SRO)1/(PTO)7 superlattice, with supercell area 2
p
2⇥ 2

p
2, which has

a relatively high PTO volume fraction and is still computationally feasible
after the introduction of DVs. Again the in-plane lattice constant was con-
strained to the STO equilibrium lattice constant of 3.87 Å. We initialize our
PTO unit cells in the P4mm space group by distorting the TiO2, as in the
STO/PTO superlattice, giving two possible polarizations along [001]. The
DVs are formed by removing a Pb atom in the PbO plane and the O atom in
the adjacent TiO2 or RuO2 plane which minimizes the in-plane component
of the DV dipole moment, such that the main component is along the [001]
direction. For DVs formed at the interface, there are three unique locations,
where the location fixes the direction of the DV dipole moment and unlike the
interfacial DVs in the STO/PTO superlattice, these DVs cannot be related
through a ⇡ rotation.
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The three interfacial DVs, shown in Fig. 16b, are in the PTO unit cell
near to the RuO2 layer (Interface I), in the PTO unit cell near the SrO
layer (Interface III) and in the PbO-RuO2 layers, which we refer to as the
PbRuO3 (PRO) unit cell (Interface II). We note that Interface I and Inter-
face III dipole moments are parallel with the direction of the asymmetry in
the superlattice, while for Interface II the dipole moment is antiparallel. For
DVs formed in the center of the PTO, we must consider both orientations,
because, in contrast to DVs in PTO/STO, they would not lead to the same
energetics due to the presence of the asymmetry. To summarize, in total,
we separately consider 5 DVs, for both of the initial polarizations, three in
the interface, at di↵erent locations with varying orientations, and two in the
same central PTO unit cell, but with di↵erent orientations.

The intrinsic polarization direction, shown by the asymmetric double well
in Fig. 18a, is determined by the order of the SrO and RuO2 planes, which
we keep constant throughout all our other calculations. We found that for
all DVs, except the one formed in Interface II, we were only able to stabilize
the intrinsic polarization state. Among the interfacial DVs, the most stable
location is Interface I followed by Interface III, with the least stable being
Interface II, as shown in Fig. 18b. We speculate that the reason Interface
II has two stable polarization states is because of the metallic RuO2 layer
screening the DV, which reduced the coupling of the DV with the asymmetry.
Likewise, Interface I is the most stable configuration due to favorable cou-
pling with the asymmetry as well as being closer to the RuO2 layer to better
screen the polarization charges. In addition, the computational constraints
on the calculations cause the defect concentration, calculated in Appendix
E, to be significantly higher than experiments. The result that the majority
of the calculations lead to a single polarization state give evidence that even
for a superlattice, with a relatively high PTO volume fraction, the broken
inversion symmetry plays a very dominant role. However, we do note that
the di↵erence in energy between the two polarization states is decreased, rel-
ative to the pristine case, when the DV exists in the interface. We emphasize
that in experiments, the PTO volume fraction in SRO/PTO superlattices
needed to achieve the same asymmetry seen in first principle calculations
would be significantly lower and therefore we should not interpret our results
as probing the true high PTO volume fraction superlattices.

In the absence of the asymmetry, the stability of the interfacial DVs
would involve an interplay between epitaxial strain, screening and electro-
static coupling, whose sources are the STO substrate, Ru atoms and the PTO
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(a) (b)

Figure 19: 1/10 SRO/PTO superlattice: (a) Double well potential, where
the intermediate points between the two local minima are calculated by in-
terpolating the atomic positions. The dashed lines are best fits to a sixth
order polynomial and each curve is plotted relative to its most stable state.
(b) Total energy, where the up and down triangles represent positive and
negative polarization of the local minima, respectively.

unit cells, respectively. We can get an insight into how the these e↵ects con-
tribute to the ground state energy by analyzing the formation energy of the
Pb-O DV in bulk PRO and PTO constrained to the STO lattice constant,
which corresponds to competition of the epitaxial strain with the screen-
ing and electrostatic coupling e↵ects, respectively. The results, detailed in
Appendix F, suggest that, in the absence of the asymmetry, the most en-
ergetically favorable location for the DV to form is in the PRO unit cell,
previously labeled as Interface II. Coupling these results with the increase
in the stability of the polarization opposite to the intrinsic direction when the
DV is present in Interface II, we further probe the SRO/PTO superlattice
with even higher PTO volume fraction to observe a new intrinsic polarization
direction.

9.3.3.2 SrRuO3/PbTiO3 1/10 superlattice We followed the same
methodology as for the 1/7 superlattice, except, due to computational con-
straints, only studied the DVs located in the central layer of the PTO and
PRO layer of the interface. Our results, summarized in Fig. 19a, confirm

90



a new intrinsic polarization direction, relative to the pristine superlattice,
when the DV is present in the interface. While we do not observe such a
reversal when the DVs are in the PTO, we emphasize that we are now able
to stabilize two polarization states, strongly implying that a reversal would
occur at higher PTO volume fractions. The most stable location for DV
formation, shown in Fig. 19b, is in the PTO when the orientation of the DV
dipole moment is parallel to the intrinsic polarization. We strongly suspect
from the trend in the data that going to higher PTO concentrations would
yield even more favorable results for DVs to form in Interface II. While the
total energy is higher for the DV to form in the interface than the PTO,
we emphasize that growth conditions need to be taken into account, which
favor the DVs to initially form in the interface as the superlattice is being
grown. Therefore, during growth, the initial formation of DVs at Interface II
cause additional DVs that form in the PTO to align with their orientation.
The collective coupling of the DVs leads to the stability of the polarization
state that is opposite to the intrinsic polarization induced from the broken
inversion symmetry at the interface.

The experimentally seen built-in bias can thus be divided into two regimes,
the low PTO volume fraction and the high PTO volume fraction regime,
where the bias is positive and negative, respectively. In the low PTO regime
the superlattice asymmetries are dominated by the inversion symmetry break-
ing at the interface, which as the previous authors[13] has shown, can be
e↵ectively described as a single well potential. The negative sign of the bias
is determined by the direction of the asymmetry, fixed by the ordering of
the interface during growth. It is likely that DVs are also are formed in this
regime, however their e↵ects are washed out due to the strength of the asym-
metry. As the superlattice is grown with higher PTO volume fractions the
e↵ects from the inversion symmetry breaking, while present, become much
weaker and the e↵ects of the DVs start to dominate. The most energetically
favorable interfacial DV to form is within the PRO unit cell (Interface II)
and its dipole moment direction is opposite to that of the intrinsic polar-
ization direction coming from the broken inversion symmetry. This implies
that there should be a reversal in the sign of the bias when the inversion
symmetry breaking e↵ects are su�ciently weak and the bias now being de-
termined by the collective alignment of dipole moments, to minimize the
total energy, whose orientations are fixed by the DVs formed in the PRO.
We can summarize the behaviors of the two regimes by stating that the low
PTO regime is dominated by inversion symmetry breaking that favors a par-
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ticular polarization direction, while the high PTO regime is dominated by
DVs, whose dipole moment orientations are precisely opposite to that of the
intrinsic polarization direction.

9.4 Conclusion

Our results attribute the built-in bias, seen in experiments, to Pb-O di-
vacancy formation, whose orientation determines the sign of the bias. In
STO/PTO superlattices, growth conditions determine the dipole moment ori-
entation of the divacancies nucleating at the interface, with additional diva-
cancies forming parallel in the PTO, as the superlattice is being grown, lead-
ing to a larger bias with increasing PTO thickness. Meanwhile, in SRO/PTO
superlattices the location and orientation of the divacancy dipole moment is
determined by the interplay between the strength of the inversion breaking
asymmetry, regulated by the PTO thickness, screening, and the epitaxial
strain, which leads to the formation of two regimes, with opposite bias. By
identifying the mechanisms behind the presence of the asymmetries we will
able to engineer robust superlattices by combining the phenomena that cause
biases, with opposite signs, creating an built-in bias-free superlattice.
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10 PbTiO3 based capacitors

10.1 Introduction

Thin film capacitors have an encouraging outlook on being used as mem-
ory storage devices over flash memory, primarily due to their low energy
consumption and write speed. Lead titanate is a suitable candidate for
such devices primarily due to its large switching charge and low process
temperature,[128] however, in trying to push the boundaries of informa-
tion storage density, scalability issues arise. There has been experimental
evidence[129, 130] showing that the ferroelectric phase of lead titanate is
limited by the layer thickness, where the suppression of the ferroelectricity
is due to the reconstruction of atoms. In addition, the decrease of the lead
titanate phase would add importance to any e↵ects coming from the fer-
roelectric/metal interface. Therefore, understanding the interfacial e↵ects
would aid in tailoring the design of nanocapacitors with favorable properties.

While previous studies on PbTiO3 (PTO) with SrRuO3 (SRO) electrodes
have been studied for both capacitors[131] and superlattices,[13] to our knowl-
edge, there lacked a systematic study of the interfacial e↵ects to determine
the underlying mechanics in the enhancement or suppression of the polar or-
der in these materials. In this first principles study, we focus on symmetrical
SRO/PTO capacitors and superlattices, under epitaxial strain, allowing us
to analyze interfacial e↵ects for both paraelectric and ferroelectric phases.
We relate our results to the conclusions drawn by previous work done on
these systems and suggest other systems where our results can be applied to.

10.2 Methods

Our calculations involve density functional theory (DFT) within the local
density approximation (LDA) using numerical atomic orbitals implemented
in the SIESTA[42] code. We used norm-conserving psuedopotentials gener-
ated using the Trouiller-Martins[43] scheme. The electrons treated explicitly
with a single-⇣ were 5d10 (Pb), 4s24p6 (Sr, Ru) and 3s23p6 (Ti). The electrons
treated with a double-⇣ were 6p2 (Pb), 5s2 (Sr), 4s23d2 (Ti), 5s14d7 (Ru) and
2s22p4 (O). The Brillouin zone was sampled using a 6 ⇥ 6 ⇥ 1 Monkhorst-
Pack[50] mesh. We converged our electronic density with a tolerance of 10�4

eV on a uniform real space grid with a plane wave equivalent cuto↵ energy
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of 400 Ry and a Fermi smearing temperature of 0.009 eV (100 K) for quicker
convergence. The force and pressure tolerances were 0.01 eV/Å and 0.0006
eV/Å3, respectively.

The systems under consideration are symmetrically terminated SRO/(PTO)m
superlattice and SRO/(PTO)m/SRO capacitors, wherem is an integer. There
are two possible cases, either we have RuO2-SrO-RuO2/(PbO-TiO2)m-PbO/[RuO2-
SrO-RuO2] or SrO-RuO2-SrO/TiO2-(PbO-TiO2)m/[SrO-RuO2-SrO] layers,
as illustrated in Fig. 20a and 20b, where the term in the square brackets
is absent if our system is a superlattice. We refer to these two cases, both
for superlattice and capacitor, as Sr and Ru excess, respectively. To probe
the rich parameter space available, we varied the amount of PTO layers from
2 and 4, the supercell area from 1 ⇥ 1 to

p
2 ⇥

p
2 and the in-plane lattice

constant (a = b) from 3.87 Å, which is the superlattice SrTiO3 (STO) equilib-
rium lattice constant, a0, determined from first principles, to 3.67 Å. Varying
the lattice constant is equivalent to inducing an epitaxial strain e = a�a0

a on
the crystal from 0% to -5.16%. To determine the lowest energy ground state
we avoid initializing our system in highly symmetric space groups such as
P4/mmm and Pm3̄m because it allows our system to be trapped in a saddle
point. Instead, we initialized our system in either the P4mm or P4bm space
group when the supercell area was either 1⇥1 or

p
2⇥

p
2, respectively. The

P4mm and P4bm space groups naturally give rise to polar distortions along
the c-axis and additionally oxygen octahedra rotations around the c-axis,
respectively. It is important to note that we did not enforce any symmetry
group constraints during the course of the relaxation.

10.3 Results

The main challenge for synthesizing ferroelectric materials as the bound-
ary condition changes from closed to open is the presence of the depolariza-
tion field.[69] The strength of the depolarization field depends on the amount
of screening charge coming from the electrodes. For fixed screening length,
the electrode with more metallic states should be able to better stabilize the
ferroelectric state. However, this picture is not fully applicable to the systems
in question, because the electrode is only a single layer thick, and thus we
might expect pathological cases to develop. In addition, the electrode is sub-
ject to the same strain conditions as the ferroelectric, potentially modifying
its screening properties.
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(a) (b)

Figure 20: Supercell of the capacitor for SRO/(PTO)2/SRO where the inter-
face has an excess of either (a) Sr or (b) Ru. Green, grey, brown, blue and
red correspond to Sr, Pb, Ru, Ti and O, respectively.
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10.3.1 Superlattices

Although the superlattices are not subject to surface e↵ects, each metal/ferroelectric/metal
layer in the superlattice needs to be able to screen the bound charges to
develop a polarization within the ferroelectric. Therefore, the more metal
present at the interface the better the charge screening. The nature of ferro-
electricity in PTO originates from the hybridization of the Ti 3d and O 2p
orbitals.[8] This implies that the sensitivity of the hybridization, and thus
the polar order, will be dependent on the distance between the Ti and O
atom lying along the direction of polarization. We thus define the average
distance along the z axis (the axis of polarization), between Ti and O atoms,
normalized to superlattice PTO (cf. Ref. [132]) as the parameter of interest,
given in Eq. 10.3.1.

�norm =
d̄
p
� d̄

f

d
p
PTO � d

f
PTO

(10.3.1)

Here d̄p and d̄
f is the average distance between the Ti and the apical O atoms

for the paraelectric and the ferroelectric phase of the PTO/SRO superlat-
tice, respectively. �norm is zero when the ground state of the superlattice is
paraelectric and can go above 1 if the polar order is greater than bulk PTO.
We access the paraelectric phase of the superlattice by initializing the PTO
layers in the P4/mmm space group and constraining the PTO layers to be
centrosymmetric.

In Fig. 22a, �norm, for either amount of PTO layers, is larger when there
is an excess of Ru than Sr at the interface. In addition, for m = 2, superlat-
tices with Ru excess interfaces are able to undergo a ferroelectric transition
at a smaller strain (larger lattice constant) than an interface with Sr excess,
irrespective of the supercell area. The general trend is an enhancement of
�norm for Ru excess interfaces regardless of lattice strain or PTO composi-
tion, which thus far can be attributed to double the amount of free charge
in Ru excess interface relative to the Sr excess interface.

To analyze the e↵ects on �norm coming from the SRO, shown in Fig. 21,
we fixed our parameters to be m = 2, A = 1 ⇥ 1 and the in-plane lattice
constant as 3.72 Åand varied the amount of SRO layers in the superlattice
from 1 to 3. In the figure, �norm for Sr excess superlattices decreases with
increasing SRO layers, due to a lack of coupling between adjacent PTO layers,
while�norm for Ru excess superlattices is able to keep its polar order constant
up to two layers of SRO, after which it converges to the Sr excess value. We
can conclude that interface e↵ects are only relevant below three layers of
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Figure 21: �norm measure of SRO/PTO superlattices. Black, red and blue
correspond to superlattices with Sr excess, Ru excess and asymmetric inter-
faces, respectively.

SRO.

10.3.2 Capacitors

To determine the polar order of the capacitors we calculate the macro-
scopic dipole moment of the supercell given in Eq. 10.3.2.

µ =

Z

⌦

z(⇢ (r)� ⇢atom(r)) dr (10.3.2)

Here ⌦, ⇢, and ⇢atom is the volume of the supercell, pseudovalence charge den-
sity and atomic (non-interacting) pseudovalence charge density, respectively.
The quantity, ⇢ � ⇢atom, is also equivalent to the charge deformation den-
sity. The dipole moment, µ, is uniquely defined because periodic boundary
conditions are broken along the z direction.

The uniformity of the polar order that was seen in the superlattices is
absent when we study capacitors, suggesting that surface e↵ects are present.
In Fig. 22b, we rea�rm that for A = 1⇥ 1, Ru excess capacitors undergo a
ferroelectric transition at a smaller strain than Sr excess capacitors, but there
are significant di↵erences. (i) When the supercell area is 1⇥ 1 and at a high
strain the dipole moment is larger for Sr excess than Ru excess capacitors. (ii)
The polar order in Ru excess capacitors varies little with increased strain or
amount of PTO layers, but varies greatly with the supercell area. (iii) When
the supercell area is

p
2 ⇥

p
2 both Sr and Ru excess interfaces undergo
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a ferroelectric transition at the same strain. These di↵erences occur due
to multiple competing mechanisms present in the capacitors, which will be
analyzed separately and related to the deviation from the superlattice results.

We find that Sr excess interfaces require a larger strain to overstabilize the
polar order relative to Ru excess interfaces because of a charge spillout from
the electrode.[68] One of the TiO2 planes closest to the electrode becomes
metallic, as shown in Fig. 24a, which prevents that Ti from taking part in
the development of polar order, however at relatively large strains where the
polar order is stabilized anyway, the TiO2 metallic layer provides additional
screening and thus the capacitor is able to develop a stronger polar order. It
is important to note that this e↵ect only occurs when A = 1⇥ 1 and thus is
an artifact, as shown in Fig. 24b, attributed to the underapproximation of
the conduction band minimum in the DFT calculation.

The weak dependence of the polar order on strain in Ru excess capacitors
can be explained by the formation of a relatively huge surface dipole, with
opposite orientation to the dipole moment of the PTO layers. Analyzing the
pattern of the charge deformation density reveals that Ti ions in Sr excess
capacitors, polarize in the direction of the total dipole moment as expected,
shown in Fig. 26a. However, Ti ions in Ru excess capacitors are anomalously
polarized in the opposite direction, shown in Fig. 26b.

To get a better understanding of how e↵ects (i) and (ii) influence the
total dipole moment of the capacitor, we define the charge neutral unit cell
dipole moment, given in Eq. 10.3.3.

µi =

Z

⌦i

z�̃(z)dz (10.3.3)

Here �̃ and ⌦i is the nanosmoothed[133] linear charge deformation density
and the length of the unit cell along the c-axis, subject to the constraintR
⌦i
�̃(z)dz = 0, respectively. The charge neutral unit cells are uniquely

defined, due to a lack of periodic boundary conditions, as long as ⌦i do not
envelope the vacuum region. In the paraelectric phase, the µi have inversion
symmetry, as shown in Fig. 25a. However, not only is the inversion symmetry
broken during the ferroelectric phase transition, giving rise to a net dipole in
the PTO, but also a large dipole is present in the outer RuO2 layer, because of
the suppressed charge deformation, shown in Fig. 25b. This surface dipole
always forms on the electrode which is at the head of the dipole moment
vector in the PTO, and thus the surface dipole points into the interface. It

98



(a) (b)

Figure 22: Ferroelectricity measures for (a) capacitor SRO/(PTO)m/SRO
and (b) superlattice SRO/(PTO)m. Black and red correspond to capacitors
(superlattices) with Sr excess and Ru excess interfaces, respectively. Open
circles, closed circles and open squares correspond to (m,A) values of (2,
1⇥ 1), (2,

p
2⇥

p
2) and (4, 1⇥ 1), respectively.

is important to note that when the simulation is repeated with more than
one layer of SRO, the surface dipole disappears.

When the area of the supercell is doubled, additional structural relax-
ations occur in the form of oxygen octahedra rotations around the z-axis.
Sr excess capacitors exhibit, in Glazer notation,[134] a0a0c+ and a

0
a
0
c
� tilts

in the PTO, shown in Fig. 23a, while for Ru excess capacitors only a
0
a
0
c
�

tilts are present for both PTO and SRO, shown in Fig. 23b. The addition
of rotations diminish the stability of the polar order, which is evident for Ru
excess capacitors where the polar order is suppressed at 3.77 Å. It is also in-
teresting to note that the surface dipole in Ru excess capacitors is enhanced
from the oxygen rotations. However, for both types of capacitors, the oxy-
gen rotations have a minimal e↵ect on µi and thus are secondary corrections,
relative to strain, to the ferroelectricity.

10.4 Conclusion

We have investigated the e↵ects of interfaces on polarization in epitaxially
strained SRO/PTO superlattices and capacitors by varying the supercell area
and PTO volume fraction for a given strain. Our results indicate that, for
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(a) (b)

Figure 23: Rotations around the c-axis for (a) Sr and (b) Ru excess interfaces,
p
2⇥

p
2 capacitor.

(a) (b)

Figure 24: Projected Ti dx2�y2 orbitals on the electronic dispersion for Sr
excess capacitor (m = 2; A =

p
2 ⇥

p
2) with (a) frozen A = 1 ⇥ 1 and (b)

fully relaxed configurations. Red, blue, and green correspond to the first,
second, and third TiO2 layer relative to the head of the dipole moment in
the capacitor, respectively.
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(a) (b)

Figure 25: The blue lines and red data points represent the nanosmoothed
linear charge deformation density and the layer dipole moment, respectively,
when the Ru excess

p
2⇥

p
2 capacitor is (a) paraelectric and (b) ferroelectric.

The black dashed lines represent the average position of the atoms in that
plane.

(a) (b)

Figure 26: Charge deformation density, in units of e/Å3, ⇢ � ⇢atom for (a)
Sr and (b) Ru excess

p
2 ⇥

p
2 ferroelectric capacitor. Positive (negative)

charge density correspond to electron deficient (excess) regions.
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superlattices, the polar order is proportional to the amount of screening
charge available, coming from the Ru ions at the interface and is insensitive
to the other parameters we varied. Therefore, a possible way to determine
the type of interfaces in the superlattice is to keep the amount of PTO layers
fixed, while varying the SRO from one to two layers. A decrease in the polar
order would signify Sr excess interfaces, while a lack of change would imply
Ru excess interfaces.

Capacitors under strain exhibit oxygen octahedra rotations, although
their contribution to the polar order was secondary compared to the other
parameters that were varied. For capacitors, with Ru excess surfaces, we ob-
served an anomalously large surface dipole on the RuO2 layer, coming from
the epitaxial strain on the electrode. The surface dipole moment is aligned
opposite to the dipole moments of the PTO layers and dominates the total
dipole moment of the capacitor. While the surface dipole would either form
on the top or bottom electrode depending on the polarization direction of the
PTO, in practice, the bottom electrode would be attached to the substrate,
which could provide additional screening to the polarization and suppress the
formation of the dipole in the bottom electrode. Since a surface dipole would
only form for one direction of the polarization, a measurable bias would form
even when both surfaces are symmetric. If the amount of SRO layers is
increased, the surface dipole disappears, suggesting that the metallic layer
should be no smaller than two layers to have a functional capacitor.
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A Fast evaluation of the Madelung constant

Evaluations of Madelung constants is important to perform charge cor-
rections or any other interactions that involve central potentials. In general
we want to evaluate the following quantity

↵s(d) =
1X

n=�1

q(n)

|A · n� d|s
⌘

1X

n=�1

e
2⇡ic·A·n

|A · n� d|s
(A.1)

where A, n, d, c, s is the matrix governing the periodicity of the crystal,
3-dimensional vector of integers, vector where we evaluate the Madelung
constant at, auxiliary vector that gives the charges at the lattice points and
a complex number, respectively. This form of the Madelung constant is
known as the generalized (Epstein) zeta function, and it is implied that the
summation over vanishing denominators is ignored. Computing ↵s involves
using the Theta function identity[135]

1X

n=�1
e
2⇡ic·A·n�⇡t|A·n�d|2 = t

�3/2 e
2⇡ic·d

detA

1X

k=�1

e
�2⇡id·B·k�⇡|B·k�c|2/t (A.2)

where B = A�T and t is a real number. Now to proceed, we can recast the
zeta function as a Mellin transform,[136] and we write

↵s(d) =
⇡
s/2

�(s/2)

Z 1

0

t
s/2�1

h
� �(d) +

1X

n=�1
e
2⇡ic·A·n�⇡t|A·n�d|2

i
dt. (A.3)

Next, we split the integral into (0, 1) and (1,1). Then, for the integral over
(1,1) we do a change of variables to u = 1/t. Finally, evaluating both
integrals yields incomplete gamma functions and results in[135]

↵s(d) =
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s/2

�(s/2)

"
�(c) detB

s/2� 3/2
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3�s
2

#

(A.4)

which, while nuanced, is computationally feasible due to the rapidly decaying
sums of incomplete gamma functions.
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B Hybrid Wannier functions

Often one is interested in the polarization of a system only along one
direction. In the Wannier representation the 1D polarization would then be
given by

P =
e

⌦

X

n

hxin +
e

⌦

X

I

ZIXI (B.1)

which is defined modulo eL/⌦, where L is the dimension of the primitive cell
parallel to the direction of polarization. Since we are only interested in the x
position of the center of mass we can potentially generate Wannier functions
that are maximally localized in x, but delocalized in the other orthogonal
directions. Such functions are called hybrid Wannier functions, however we
do not need to explicitly calculate them and we can obtain hxin through
other means.[137]

We begin by constructing the overlap matrix

M
(ki)
mn = humki |unki+1i (B.2)

where the increment of k is along the direction polarization. Next, we can
construct M to be Hermitian from the singular value decomposition by

M = V ⌃W † = (V ⌃V †)(VW
†) (B.3)

therefore to cancel out VW
† we must apply a unitary transformation on M

by WV
†. The unitary transformation WV

† is applied at each k-point in
succession to pick up a generalized Berry phase[30] defined by

⇤ =
NY

j=1

W
(kj)V

†(kj) (B.4)

where the product spans a closed path. Finally the positions are obtained
from

hxin = �
L

2⇡
= log(�n) (B.5)

where �n are the eigenvalues of ⇤.
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C Dipole lattices

The dipolar defects (DDs) in a ferroelectric can be considered to exist
on a lattice and assuming the defect density is dilute, their interactions can
be described using a dipole approximation. Such a derivation of the electric
field is preferred over the use of spherical inclusions[96, 138] because the
calculation becomes cumbersome when DD electric field EDD is not oriented
with the spontaneous polarization Ps and the crystal symmetry needs to be
accounted for.[139] We calculate the electric field arising from these dipole
interactions and the energy of the DD lattice to determine which defect
formations are the most stable.

C.1 Electric field of the dipole lattice

We begin by considering a dielectric with negligible polarization, such as
a ferroelectric shortly after growth, with point DDs ordered in orthorhombic
lattices. The structure of dipoles lead to a macroscopically observable EDD

which is the contribution of the dipole electric field at one dipole caused by
all the other dipoles.[140] The total field can be written as

E(⌫0)
DD =

X

⌫

X

i

3(pi⌫ · ri⌫)ri⌫ � r
2

i⌫pi⌫

r
5

i⌫

(C.1)

where pi⌫ and ri⌫ is the ith dipole of the ⌫th sublattice and i
th dipole position

of the ⌫th sublattice relative to the ⌫0 sublattice. It is possible to rewrite Eq.
C.1 as

E(⌫0)
DD =

X

⌫

S(⌫0)
⌫ · p⌫ (C.2)

where S(⌫0)
⌫ is a symmetric traceless tensor[141] of the ⌫th sublattice, whose

origin is relative to the ⌫0 sublattice and p⌫ is the dipole species of the ⌫th

lattice. The details of calculating S involve summations of rapidly decaying
exponentials, related to the symmetry of the lattice, found in Ref [141]. We
note that in the calculation of S it is assumed that the shape of the material
is a slab, which fixes the depolarization field to be only in the direction of
the spontaneous polarization.
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C.2 Energy of the dipole lattice-ferroelectric system

The ferroelectric-DD complex can be described as a ferroelectric crystal
embedded with electric DDs and elastic DDs[142, 96] and immersed in the
DD electric field. Then, the energy density is defined as

w = �

X

⌫

P⌫ · EDD �Ps({�}) · EDD �

X

⌫

g⌫(�⌫) (C.1)

where P⌫ ⌘ p⌫/⌦⌫ the polarization density of the ⌫th sublattice, ⌦⌫ is the
primitive unit cell of the ⌫th sublattice, �⌫ is the elastic dipole tensor of
the ⌫th sublattice, Ps is the spontaneous polarization density and g⌫ is the
free energy of the elastic DD from the ⌫th sublattice. We emphasize that
the spontaneous polarization is modified by the presence of the elastic DDs.
It can be shown[142] that g⌫ is linear in �⌫ and �⌫ is proportional to linear
combinations of a�1

·@a/@⌦�1

⌫ where a is the lattice vector of the ferroelectric
primitive unit cell. Experimentally it is observed that DDs are stabilized
when then the perovskite has tetragonal symmetry[93] and first principle
calculations show that the lattice constants and polarization change slowly
under strain.[143] Therefore, for a ferroelectric perovskite, we expect the
lattice constants to have a weak dependence on the defect density, so that
we can drop the last term because it is approximately constant and consider
the energy density of the system to be

w = �

X

⌫

P⌫ · EDD �Ps · EDD (C.2)

where we note that the spontaneous polarization is for a pristine ferroelectric.

C.3 Orthorhombic dipole lattices

We consider a set of dipole lattices, listed in Table 2, of either a single
dipole species with a net in-plane dipole moment or two dipole species with-
out a net in-plane dipole moment. We find, for fixed dipole densities, dipole
lattices with a net in-plane dipole moment are more stable than dipole lat-
tices without. When increasing the out-of-plane (in-plane) dipole density, the
stability, shown in Fig. 27, of the dipole lattices with a net in-plane dipole
moment is higher (lower) than dipole lattices without a net in-plane moment.
In our DFT simulations the in-plane defect density is always smaller than
the out-of-plane defect density and contains a net in-plane dipole moment
which justifies not considering more than one dipolar defect.
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Lattice Species Sublattice Origin
U (0, 0, p) (0, 0, 0)
A+

1p
2
(p, 0, p) (0, 0, 0), 1

2
(a, 0, 0)

A�
1p
2
(p, 0, p) (0, 0, 0)

1p
2
(�p, 0, p) 1

2
(a, 0, 0)

B+
1p
2
(p, 0, p) (0, 0, 0), 1

2
(a, b, 0)

B�
1p
2
(p, 0, p) (0, 0, 0)

1p
2
(�p, 0, p) 1

2
(a, b, 0)

C+
1p
2
(p, 0, p) (0, 0, 0), 1

2
(a, b, c)

C�
1p
2
(p, 0, p) (0, 0, 0)

1p
2
(�p, 0, p) 1

2
(a, b, c)

Table 2: Dipole lattices, where p is the dipole moment and a, b and c are the
axial distances of the orthorhombic lattice.

Figure 27: Energy densities w of dipole lattices normalized to the energy
density of the U lattice w0 with unit axial distances and cell volume V0. Solid
and dashed lines represent increasing the axial distance of c and a, b(= a),
respectively. Here the volume V of an orthorhombic cell is ca2.
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D Stochastic hysteresis

Hysteresis can be broadly understood as an overshoot phenomena, where
a system responds, relative to the rate of transitions between its states, to
a time dependent perturbation. For a uniaxial ferroelectric material, we
typically present its states, within the Landau framework, as a free energy
surface defined by the double well potential

�(P, t) =
1

4
bP

4
�

1

2
aP

2
� E(t)P (D.1)

and
E(t) = E0 + E!t (D.2)

where E0 and E! is the built-in bias and sweep rate of the electric field,
respectively. Here the coupling between the time dependent electric field
and the polarization is the perturbation that leads to the transition between
the stable and metastable state.

Modeling the hysteresis involves determining the probability distribution
⇢ of a successful transition at E(⌧), where ⌧ is the mean first passage time
(MFPT), the average time needed for one state to transition into the other.
For E! = 0, the MFPT can be approximated, in the overdamped limit, by
quadrature[80] to be

⌧(P ;E) =
1

D

Z Pb

P

dP
0
e
�(P 0

)/D

Z P 0

Pm

dP
00
e
��(P 00

)/D
, Pb > Pm (D.3)

where D, Pb and Pm is the di↵usion constant, the polarization at the barrier
and the polarization at the local minimum we start in, respectively. When
E! 6= 0 it turns out that ⌧ and likewise ⇢ cannot be calculated by quadra-
ture because the bounds, Pb and Pm, now have a time dependence, which is
equivalent to having time independent bounds, but at the cost of a multidi-
mensional ⌧ .[85]

Instead we consider the sweeping field to be a series of successive ”mi-
crosteps” such that

E(⌧) ⌘ En = E0 + E!n� (D.4)

where � is the time step connecting rapidly equilibrated states, whose value
does not influence the results. Under such an approximation,[86] we can
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(a) (b)

Figure 28: The hysteresis of a ferroelectric system where the free energy �
is (a) rigidly shifted and (b) asymmetrical, respectively. The inset shows the
free energy in arbitrary units of energy.

write an iterative solution for the probability distribution as

⇢(E(⌧)) ⌘ ⇢(En) =
h
1�

n�1X

i

⇢(Ei)�
i
e
��/⌧(Pm;En)

⌧(Pm;En)
. (D.5)

We emphasize that the approximation breaks down when E0 is near the
transition where � has a single well. Finally, we can write the polarization,
normalized to its maximum magnitude, as

P (E(⌧)) = 1� 2

Z E0

E(⌧)

⇢(E 0)dE 0 (D.6)

which gives the upper branch of the hysteresis loop, with the lower branch
given by recalculating ⌧ when Pb is less than Pm and the sign of E! is reversed.

Our results, reveal that a rigid shift in �, shown in the inset of Fig. 28a,
does not lead to any changes in the observed hysteresis. Therefore, rigid
shifts in the hysteresis, require an asymmetric � as shown in Fig. 28b. The
values used in our calculations for a, b, E!, D, �, Ec and Pr were 2.0, 1.0,
5.4⇥10�3, 0.1, 5.0⇥10�4, 1.0887 and 2.0, respectively.

E Defect concentration

For a given superlattice period we can have a wide range of defect concen-
trations within a simulation, that depend on the supercell area and length.
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In practice, the supercell length is that of a single bilayer, while the supercell
area varies depending on which properties are of interest in the superlattice.
Therefore, from a theoretical point of view, it is fruitful to discuss quantities
such as energy and number of divacancies per supercell area. However to
link theory and experiments we calculate an order of magnitude value for
the defect concentration. The order of magnitude value should be the same
for both STO/PTO and SRO/PTO due to the volumetric di↵erence between
STO/PTO and SRO/PTO is only in the number of unit cells of the bilayer
which is 7 and 8, respectively. The supercell area contains 8 unit cells and we
approximate the a and c lattice constants to both be 4 Å. Therefore the su-
percell volume is 103 Å3, which corresponds to defect concentration of 10�21

cm�3.

F Thermochemistry

The formation energies of Pb-O divacancies can be calculated by

Eform = ED � EH + q(✏v +�✏F ) +
X

i

niµi (F.1)

where ED, EH , ✏v, �✏F , ni and µi is the total energy of host+defect su-
percell, total energy of host supercell, energy of the valence band maximum
of the host, Fermi energy relative to the VBM, number of i’th defects in
the supercell and chemical potential of the i’th defect. The chemical poten-
tials chosen are such that they correspond to the details of the experimental
conditions.[126] The results, summarized in Table 3, highlight that regard-
less of the chemical potential used, forming a divacancy in the PRO is always
more energetically favorable, sometimes even thermodynamically favorable.
We note that the chemical potential channel where the divacancy is formed
through the loss and gain of a PTO and TiO2 unit cell, respectively, would
not be possible in bulk PRO, however because we ultimately consider su-
perlattices with both SRO and PTO present, these channels would not be
forbidden.
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[44] D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-conserving pseu-
dopotentials,” Phys. Rev. Lett., vol. 43, pp. 1494–1497, Nov 1979.

[45] L. Kleinman and D. M. Bylander, “E�cacious form for model pseu-
dopotentials,” Phys. Rev. Lett., vol. 48, pp. 1425–1428, May 1982.

[46] O. F. Sankey and D. J. Niklewski, “Ab initio,” Phys. Rev. B, vol. 40,
pp. 3979–3995, Aug 1989.

[47] E. Artacho, D. Snchez-Portal, P. Ordejn, A. Garca, and J. M. Soler,
“Linear-scaling ab-initio calculations for large and complex systems,”
physica status solidi (b), vol. 215, no. 1, pp. 809–817, 1999.
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