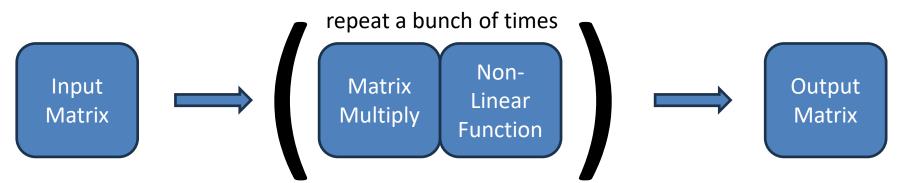


Al Hardware Evolution

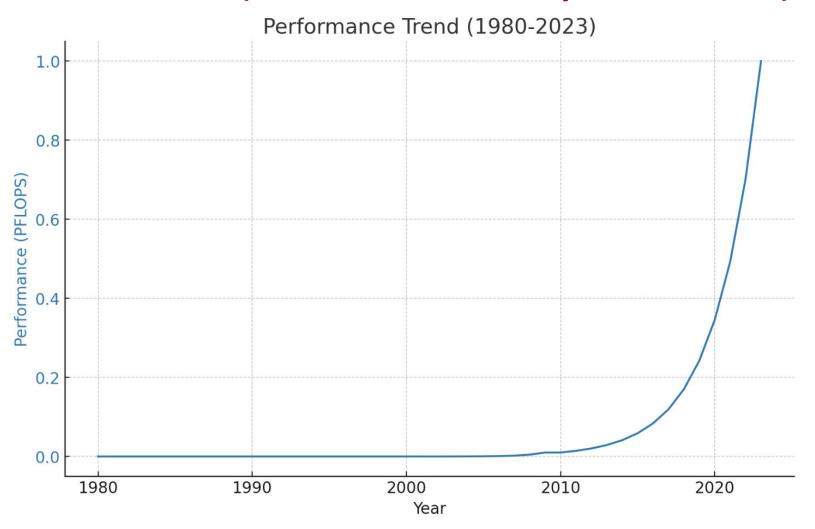
Mike Ferdman and Peter Milder

Brief Intro...

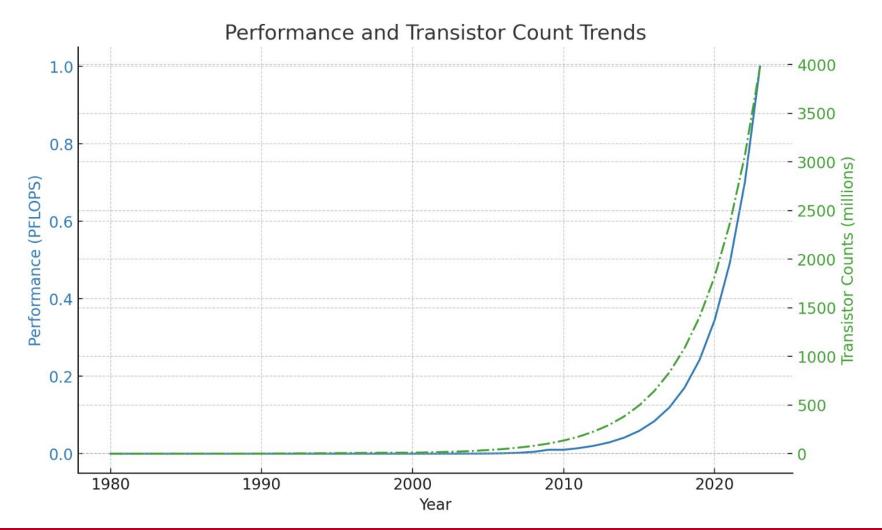

- Peter and I work on hardware accelerators
 - Much of our work is on AI/ML accelerators
 - Primarily targeting FPGAs
 - Two goals of our research
 - Find clever ways of improving computation efficiency
 - Develop techniques for making accelerators easier to program
- Goal of this talk
 - Explain how (I believe) hardware enabled the AI revolution
 - Explain how (I believe) hardware will limit AI progress

The Core of AI Computation

- All compute-intensive tasks are essentially the same: Matrix Multiply
 - Al is not an exception
 - IBM figured out how to do Matrix Multiply in the 60s


- The key is fast matrix multiply
 - Where did it come from?
 - How long will it last?

Hint: Exponentials always stop


The Data (hallucinated by ChatGPT)

The Data (hallucinated by ChatGPT)

The Data (hallucinated by ChatGPT)

Putting Power in Perspective

- Data center power density per rack
 - Traditional server rack
 - 2x 208V circuits, 30A breakers (per code, shouldn't exceed 80%, so 24A)
 - 10kW per rack (150W per sq. ft.)
 - Nvidia power consumption (8x GPU)
 - DGX A100: 6.5kW
 - DGX B200: 14.3kW
 - "Typical" AI racks: 40kW per rack
 - Steal power from nearby empty racks
- For comparison:
 - NCS building: 300kW total

We have ~4 generations of GPUs left (18 months per generation)

Training

- Run batches of data through model
- At each batch...
 - Compute gradient
 - Update model
- Time to train? (~GPT4)
 - ~1T parameters
 - 10,000 GPUs for 90 days
- Cost
 - \$100M in hardware + 8MW power

Inference

- Run once per output
 - ... per word in text generation
 - ... per diffusion in image generation

- Time to cheat on a homework?
 - 20 seconds on a series of GPUs
 - ~\$0.02
- Cost
 - Estimate 10B tokens per day
 - \$20M per month

Both are bad, but I'm interested more in the Inference side

Training is once, but inference is forever

- We train models on a bunch of high-end GPUs
 - Once we're done with training, someone else uses the GPU cluster
 - Quickly moving toward a world where only select few can train models
- We deploy models and continuously do inference on them
 - Efficiency necessary to mitigate hardware cost and power

Mechanisms to Improve Efficiency

- Model distillation
 - Transfer knowledge from larger model to a smaller one
- Quantization / reduced precision computation
 - Use fewer bits (e.g., 8-bit / 12-bit) computation
- Number formats
 - Fixed-point compute
 - Block-float compute (sharing exponents across multiple mantissas)
- Sparsity
 - Lots of zeros from non-linear functions, only multiply the relevant bits

Bottom three are features coming to a hardware accelerator near you

Potential Collaborations

- What we want (from our collaborators)
 - Real-world workloads so we can design (useful) efficient hardware
 - Expose us to AI/ML trends, guiding our work on accelerator programmability
- What we can offer (to our collaborators)
 - Help to build (FPGA-based) inference engines
 - Help evaluate, optimize, and tune AI/ML hardware platforms

Our BNL Collaborations

- Neural network models on FPGAs w/Ray Ren
 - Real-time data compression for sPHENIX
 - Disks aren't fast enough to write all data coming from experiment
 - Evaluating FPGA implementations of models for ATLAS
- FPGA Virtual Memory Support w/Lingda Li
 - Explore advanced Virtual Memory support on FPGAs
 - Study Unified Memory assist for hardware-accelerated apps
 - Large memory applications that don't fit into device memory
 - Need to move data between host and device memory
 - Provide "smart" Virtual Memory support infrastructure

Thanks!