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Brief Intro…
• Peter and I work on hardware accelerators

– Much of our work is on AI/ML accelerators
– Primarily targeting FPGAs
– Two goals of our research

• Find clever ways of improving computation efficiency
• Develop techniques for making accelerators easier to program

• Goal of this talk
– Explain how (I believe) hardware enabled the AI revolution
– Explain how (I believe) hardware will limit AI progress



The Core of AI Computation
• All compute-intensive tasks are essentially the same: Matrix Multiply

– AI is not an exception
– IBM figured out how to do Matrix Multiply in the 60s

• The key is fast matrix multiply
– Where did it come from?
– How long will it last?
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Hint: Exponentials always stop
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Putting Power in Perspective
• Data center power density per rack

– Traditional server rack
• 2x 208V circuits, 30A breakers (per code, shouldn’t exceed 80%, so 24A)
• 10kW per rack (150W per sq. ft.)

– Nvidia power consumption (8x GPU)
• DGX A100: 6.5kW
• DGX B200: 14.3kW

– “Typical” AI racks: 40kW per rack
• Steal power from nearby empty racks

• For comparison:
– NCS building: 300kW total

We have ~4 generations of GPUs left (18 months per generation) 



Two Distinct Modes of AI Computation

Training
• Run batches of data through model
• At each batch…

– Compute gradient
– Update model

• Time to train? (~GPT4)
– ~1T parameters
– 10,000 GPUs for 90 days

• Cost
– $100M in hardware + 8MW power

Inference
• Run once per output

– … per word in text generation
– … per diffusion in image generation

• Time to cheat on a homework?
– 20 seconds on a series of GPUs
– ~$0.02

• Cost
– Estimate 10B tokens per day
– $20M per month

Both are bad, but I’m interested more in the Inference side



Training is once, but inference is forever
• We train models on a bunch of high-end GPUs

– Once we’re done with training, someone else uses the GPU cluster
– Quickly moving toward a world where only select few can train models

• We deploy models and continuously do inference on them
– Efficiency necessary to mitigate hardware cost and power



Mechanisms to Improve Efficiency
• Model distillation

– Transfer knowledge from larger model to a smaller one

• Quantization / reduced precision computation
– Use fewer bits (e.g., 8-bit / 12-bit) computation

• Number formats
– Fixed-point compute
– Block-float compute (sharing exponents across multiple mantissas)

• Sparsity
– Lots of zeros from non-linear functions, only multiply the relevant bits

Bottom three are features coming to a hardware accelerator near you



Potential Collaborations
• What we want (from our collaborators)

– Real-world workloads so we can design (useful) efficient hardware
– Expose us to AI/ML trends, guiding our work on accelerator programmability

• What we can offer (to our collaborators)
– Help to build (FPGA-based) inference engines
– Help evaluate, optimize, and tune AI/ML hardware platforms



Our BNL Collaborations
• Neural network models on FPGAs w/Ray Ren

– Real-time data compression for sPHENIX
• Disks aren’t fast enough to write all data coming from experiment

– Evaluating FPGA implementations of models for ATLAS

• FPGA Virtual Memory Support w/Lingda Li
– Explore advanced Virtual Memory support on FPGAs
– Study Unified Memory assist for hardware-accelerated apps

• Large memory applications that don’t fit into device memory
• Need to move data between host and device memory
• Provide “smart” Virtual Memory support infrastructure

Thanks!
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