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Diffusion generative models



Setting: Gaussian diffusion models

● Gaussian diffusion models are generative models that learn to reverse a corruption 
process that adds Gaussian noise

● The forward process (←) is a Markov chain that gradually adds noise to the data
● The reverse process (→) is a Markov chain that gradually denoises the data

○ Denoising diffusion models learn a neural network approximation pθ to the reverse 
process, defining the marginal distribution p(x)
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[Figure from Ho, Jain, and Abbeel, NeurIPS 2020]



Controllable Generation

● A trained (Gaussian) diffusion model can generate diverse and high-quality 
unconditional samples from the learned distribution p(x)
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[Images adapted from Ho, Jain, and Abbeel, NeurIPS 2020]



Controllable Generation - Posterior Inference

● A trained (Gaussian) diffusion model can generate diverse and high-quality 
unconditional samples from the learned distribution p(x)

● We want to use this trained model with additional constraints c to generate 
samples that satisfy both p(x) and c(x, y)

○ c(x, y) could be a separately trained attribute classifier, e.g. facial attributes

7Diffusion models as plug-and-play priors, Graikos, Malkin, Samaras, Jojic, NeurIPS 
2022



Controllable Generation - Segmentation

● We also show how a diffusion prior can be used for inferring color-invariant 
segmentations

○ Using a color clustering of the image we infer the segmentation that matches both 
a pre-trained diffusion prior and the clustering

8Diffusion models as plug-and-play priors, Graikos, Malkin, Samaras, Jojic, NeurIPS 
2022



Controllable Generation - Few-shot

● We introduce a method to draw conditional samples from a small set (~10) of 
condition-image pairs

9Conditional Generation from Unconditional Diffusion Models using Denoiser Representations, Graikos, Yellapragada, Samaras, BMVC 2023



Diffusion models for Histopathology

● There is a need for generative models in specialized domains such as 
computational pathology

● Recent large-scale generative models depend on training on vast amounts of data
and providing per-image conditions for controllable generation
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Diffusion models for Histopathology - Text Conditioning

● We utilize recent LLM capabilities to summarize the unstructured pathology 
reports into concise text prompts

● Using these text prompts we train a diffusion model to generate patches of whole-
slide histopathology images

11PathLDM: Text conditioned Latent Diffusion Model for Histopathology, Yellapragada, Graikos, et al., WACV 2024



Diffusion models for Histopathology - SSL Conditioning

● Whole-slide text reports fail to describe local details
● Hand-annotating images per-patch is infeasible

○ A dataset of 1000 slides (15M patches) would require >40.000 expert hours
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Diffusion models for Histopathology - SSL Conditioning

● We propose using representations learned with self-supervision in place of 
human annotations

○ We find that SSL representations can accurately describe images allowing us to 
train large-scale diffusion generative models

13Learned representation-guided diffusion models for large-image generation, Graikos et al., CVPR 2024



● Impractical to train directly on the entire digitized slides (32.000 x 32.000 px)
○ We introduce an algorithm to synthesize large histopathology images by 

spatially controlling the local, patch-based model
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Diffusion Models for Histopathology - Large Images



● Previous framework constrained to using representations from reference images
○ We train small, auxiliary models that learn to map any condition to the self-

supervised representations and generate new images
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Diffusion Models for Histopathology - Large Images
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Detailed Audio-Visual 4D Face Reconstruction

Input Reconstructio
n






Detailed Audio-Visual 4D Face Reconstruction

Input Reconstructio
n

Lip shape & facial details



Detailed Audio-Visual 4D Face Reconstruction

Input Reconstructio
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Detailed Audio-Visual 4D Face Reconstruction

Input Reconstructio
n

Accurate 4D reconstruction 
under occlusion
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LipNeRF: What is the right feature 
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Lip Synchronization with Speech

Original Audio & Video Dubbed Audio & Original 
Video

Lips are out of sync









Audio-driven Talking Head Video Synthesis (or Lip 
Syncing)

Input 
Video

Target 
Speech

Lip Sync

Lip Synced Video to Spanish



MI-NeRF: Learning a Single Face 
NeRF from Multiple Identities

Aggelina Chatziagapi Grigorios G. 
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arXiv 2024



Learning a single NeRF for multiple identities



A single face NeRF
can generate multiple identities























Standard single-identity NeRFs cannot 
generalize to challenging novel expressions



Target Expression NeRFace
Single-Identity NeRF

(Standard)









Learning from multiple identities,
our multi-identity NeRF (MI-NeRF) can 

synthesize novel expressions for any input identity



Target Expression MI-NeRF
Multi-Identity NeRF

(Ours)

NeRFace
Single-Identity NeRF

(Standard)
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Human Gaze Modeling
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Gaze prediction for Visual Search

● Predict human scanpath for categorical visual search.

Microwave search Clock search



COCO-Search18

Available at https://github.com/cvlab-stonybrook/Scanpath_Prediction



Predicting Goal-directed Human Attention Using
Inverse Reinforcement Learning (CVPR 2020)

S1, R1, A2, S2, R2, A3, … , An-1, Sn, Rn

State
s

Actions

Reward
s

FixationsCollected behavior data

Reward can be learned using inverse reinforcement learning

Key assumption: human gaze behaviors are optimal with respect to quickly locating 
the target (i.e., maximizing the total rewards)

Unknown

Dynamic 
Contextual Beliefs



Foveated feature maps (ECCV 2022)



Gazeformer: Scalable, Effective and Fast Prediction of Goal-
Directed Human Attention (CVPR 2023)

● We propose a novel ZeroGaze task to evaluate scalability

● We propose a novel Gazeformer model to solve ZeroGaze
○ Gazeformer is more scalable, more effective and faster than previous methods
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Gazeformer Architecture

● Gazeformer adopts a transformer encoder-decoder architecture 
○ Learns interactions between image and target semantics
○ Models spatio-temporal context for scanpath generation
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Gazeformer’s Extensibility to Uncommon Categories

● Gazeformer extends to unknown and uncommon targets

Hyponyms or 
synonyms of 
target names

No annotation 
in COCO 
dataset



Unifying Prediction of Top-down and Bottom-up attention
(CVPR 2024)

● A single model for both top-down (visual search) and bottom-up (free-viewing) 
attention prediction.

○ TV for target-present (TP), sink for target-absent (TA)
● Human Attention Transformer (HAT)



Current work: Visual Search with Referring 
Expressions
● In real life, 

○ More than one object of same type
○ We use referring expressions

■ Instance-level
■ Resolve ambiguity
■ Provide search guidance

○ Visual Grounding of referring expressions
■ Also called object referral
■ Naturalistic visual search

The black 
bag next to 
person in 
white 
sweatshirt

Found it!



Current Work: RefCOCO-Gaze
● RefCOCO-Gaze dataset

○ Based on RefCOCO dataset
■ MS-COCO training images
■ Referring expressions from RefCOCO

○ ~2000 image-text pairs from RefCOCO
■ Gaze collected while listening to the 

referring expression

“Bike …”

“... on the right”
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