

Computer Vision in SBU: Generative Models and Human Behavior Modeling

Dimitris Samaras samaras@cs.stonybrook.edu

Computer Vision at Stony Brook

The Computer Vision Lab

Faculty:

Dimitris Samaras Haibin Ling Michael Ryoo (Robotics Lab also) Minh Hoai

BioMedical Informatics

Zhaozheng Yin Chao Chen Prateek Prasanna Other Faculty David Gu Hong Qin Arie Kaufman

40+ PhD students

Computer Vision at Stony Brook

The Computer Vision Lab

Faculty:

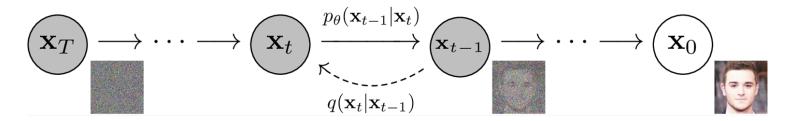
Dimitris Samaras Haibin Ling Michael Ryoo (Robotics Lab also) Minh Hoai

40+ PhD students

Diffusion generative models

Setting: Gaussian diffusion models

- Gaussian diffusion models are generative models that learn to reverse a corruption process that adds Gaussian noise
- The forward process (←) is a Markov chain that gradually adds noise to the data
- The reverse process (\rightarrow) is a Markov chain that gradually denoises the data
 - Denoising diffusion models learn a neural network approximation p_{θ} to the reverse process, defining the marginal distribution $p(\mathbf{x})$



[Figure from Ho, Jain, and Abbeel, NeurIPS 2020]

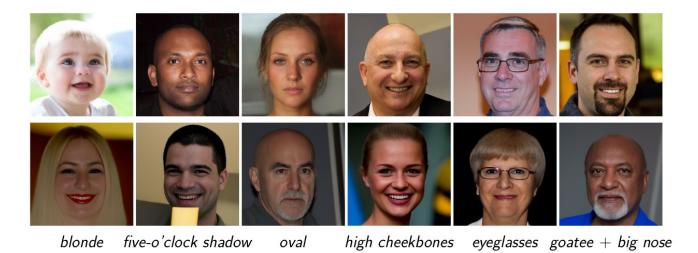
Controllable Generation

• A trained (Gaussian) diffusion model can generate diverse and high-quality unconditional samples from the learned distribution p(**x**)

[Images adapted from Ho, Jain, and Abbeel, NeurIPS 2020]

Controllable Generation - Posterior Inference

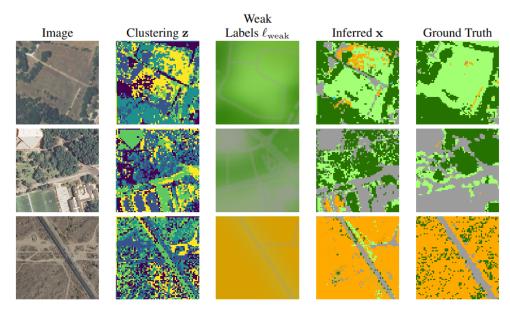
- A trained (Gaussian) diffusion model can generate diverse and high-quality unconditional samples from the learned distribution p(**x**)
- We want to use this trained model with additional constraints c to generate samples that satisfy both p(**x**) and c(**x**, y)
 - c(**x**, y) could be a separately trained attribute classifier, e.g. *facial attributes*



Diffusion models as plug-and-play priors, Graikos, Malkin, Samaras, Jojic, NeurIPS 2022

Controllable Generation - Segmentation

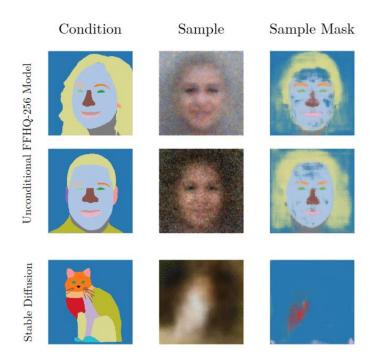
- We also show how a diffusion prior can be used for inferring color-invariant segmentations
 - Using a color clustering of the image we infer the segmentation that matches both a pre-trained diffusion prior and the clustering



Diffusion models as plug-and-play priors, Graikos, Malkin, Samaras, Jojic, NeurIPS 2022

Controllable Generation - Few-shot

• We introduce a method to draw conditional samples from a small set (~10) of condition-image pairs

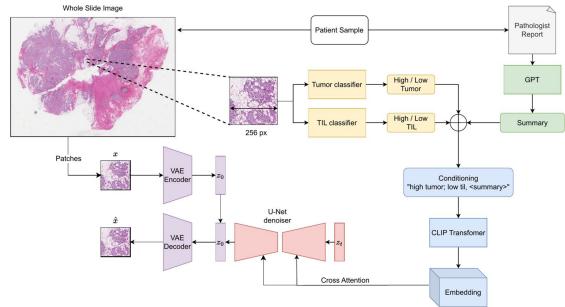


Diffusion models for Histopathology

- There is a need for generative models in *specialized* domains such as computational pathology
- Recent large-scale generative models depend on training on **vast amounts of data** and providing **per-image conditions** for controllable generation

Diffusion models for Histopathology - Text Conditioning

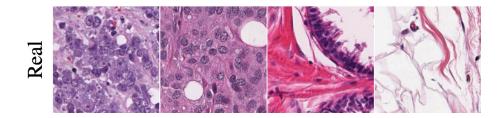
- We utilize recent LLM capabilities to summarize the **unstructured pathology reports** into concise text prompts
- Using these text prompts we train a diffusion model to generate patches of wholeslide histopathology images



PathLDM: Text conditioned Latent Diffusion Model for Histopathology, Yellapragada, Graikos, et al., WACV 2024

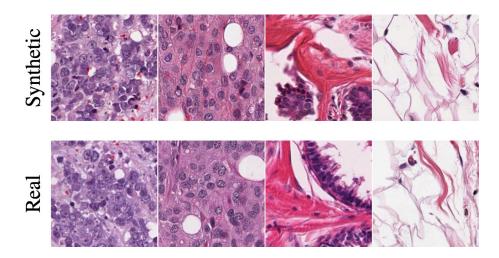
Diffusion models for Histopathology - SSL Conditioning

- Whole-slide text reports fail to describe local details
- Hand-annotating images per-patch is infeasible
 - A dataset of 1000 slides (15M patches) would require **>40.000** expert hours



Diffusion models for Histopathology - SSL Conditioning

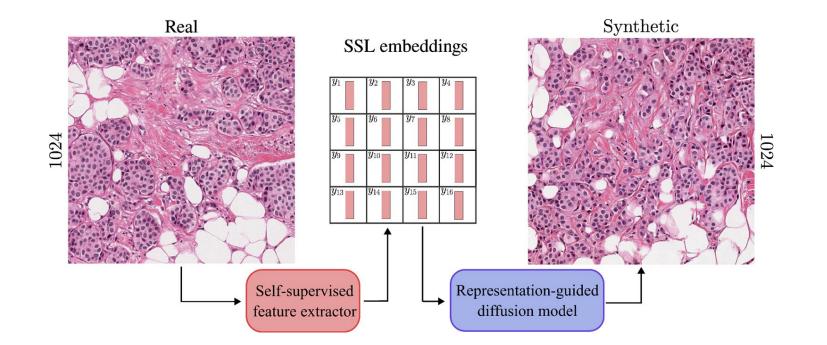
- We propose using **representations** learned with self-supervision **in place of human annotations**
 - We find that SSL representations can accurately describe images allowing us to train large-scale diffusion generative models



Learned representation-guided diffusion models for large-image generation, Graikos et al., CVPR 2024

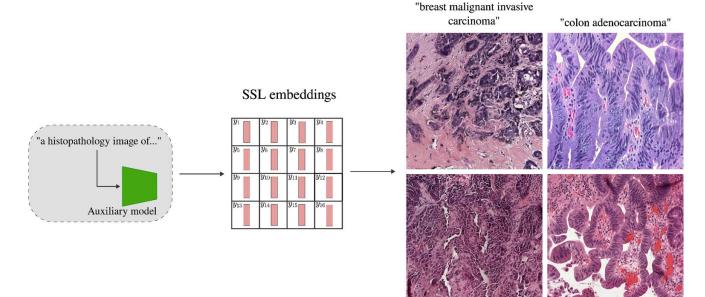
Diffusion Models for Histopathology - Large Images

- Impractical to train directly on the entire digitized slides (32.000 x 32.000 px)
 - We introduce an algorithm to **synthesize large histopathology images** by spatially controlling the local, patch-based model



Diffusion Models for Histopathology - Large Images

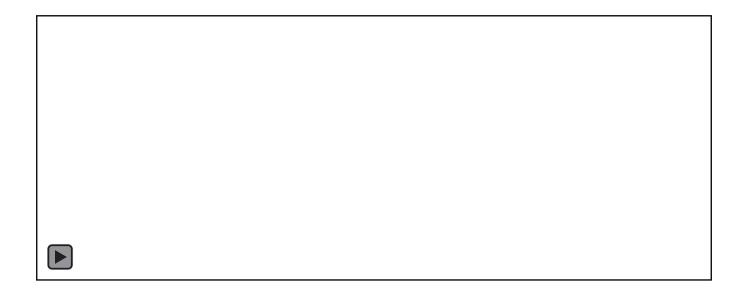
- Previous framework constrained to using representations from reference images
 - We train small, auxiliary models that learn to map any condition to the selfsupervised representations and generate new images



AVFace: Towards Detailed Audio-Visual 4D Face Reconstruction

Aggelina Chatziagapi

Dimitris Samaras



Input

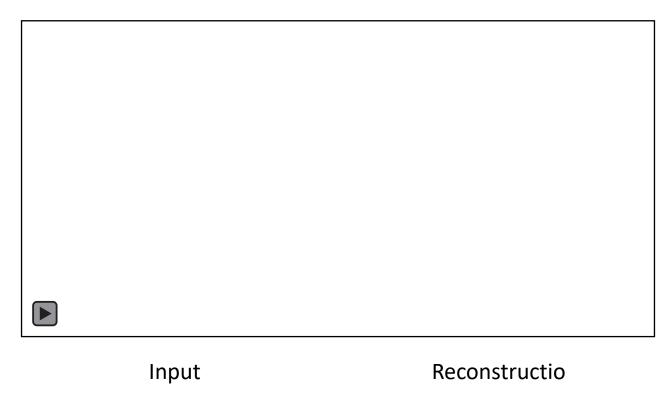
Reconstructio

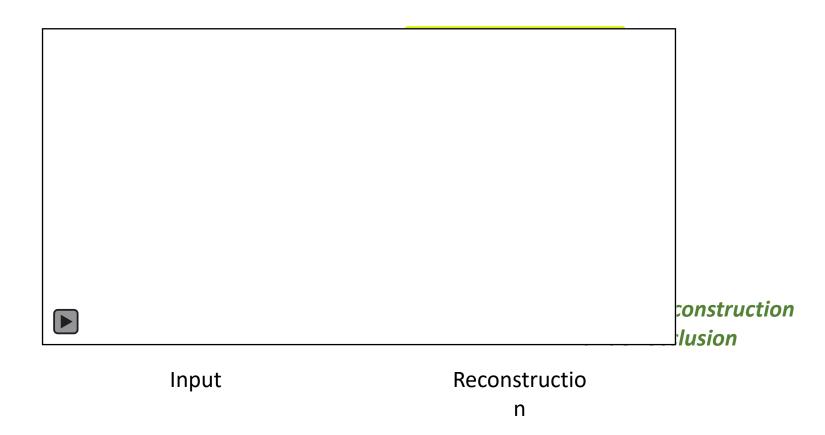
Lip shape & facial details

Input

Reconstructio

n



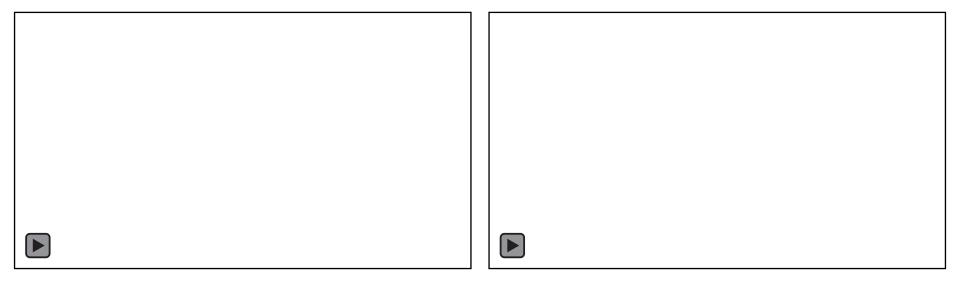


Project page:

LipNeRF: What is the right feature space to lip-sync a NeRF?

Aggelina Chatziagapi ShahRukh Athar Abhinav Jain Rohith MV Vimal Bhat Dimitris Samaras

Lip Synchronization with Speech



Original Audio & Video

Dubbed Audio & Original Video *Lips are out of sync*

Audio-driven Talking Head Video Synthesis (or Lip

Input Video



Lip Synced Video to Spanish

MI-NeRF: Learning a Single Face NeRF from Multiple Identities

Aggelina Chatziagapi Grigorios G. Chrysos Dimitris Samaras

arXiv 2024

WISCONSIN-MADISON

Learning a *single* NeRF for *multiple* identities

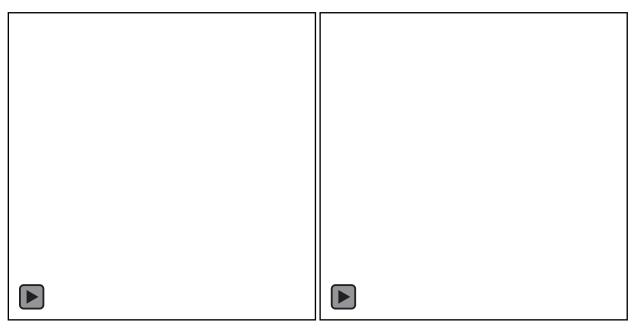
Single-Identity NeRF (Standard)

Multi-Identity NeRF (Ours)

A *single* face NeRF can generate *multiple* identities

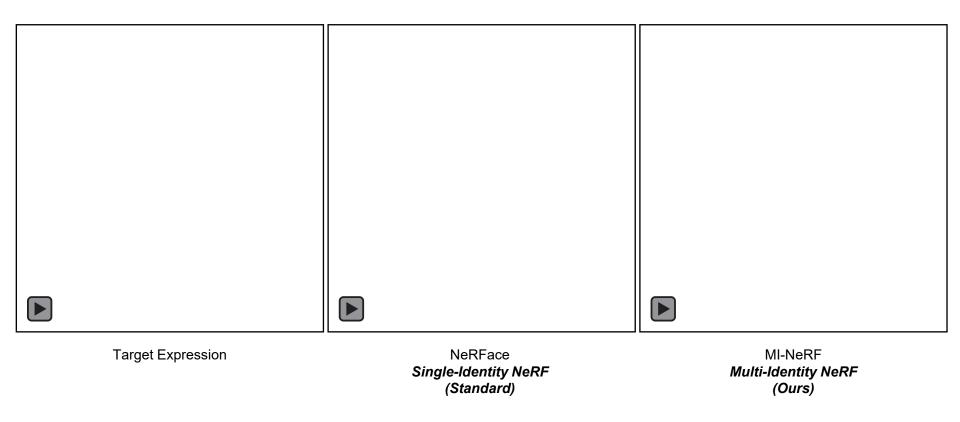


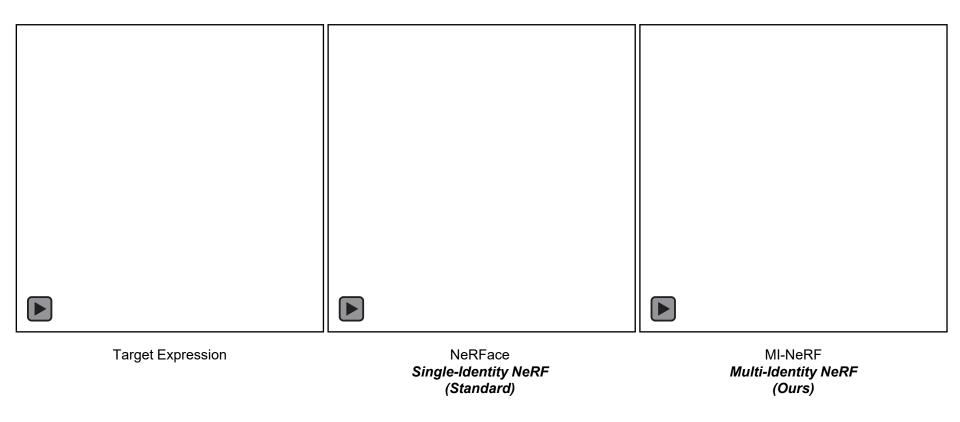
Standard **single-identity** NeRFs cannot generalize to challenging novel expressions



Target Expression

NeRFace Single-Identity NeRF (Standard) Learning from multiple identities, our **multi-identity NeRF (MI-NeRF)** can synthesize **novel** expressions for any input identity





Human Gaze Modeling

Zhibo Yang, Sounak Mondal

Collaborators: Seoyoung Ahn, Yupei Chen, Lihan Huang, Zijun Wei, Ruoyu Xue, Souradeep Chakraborty, Gregory Zelinsky, Dimitris Samaras and Minh Hoai

Gaze prediction for Visual Search

• Predict human scanpath for categorical visual search.

Microwave search

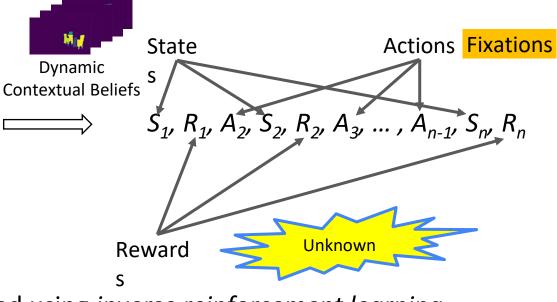
Clock search

COCO-Search18

Available at https://github.com/cvlab-stonybrook/Scanpath_Prediction

Predicting Goal-directed Human Attention Using Inverse Reinforcement Learning (CVPR 2020)

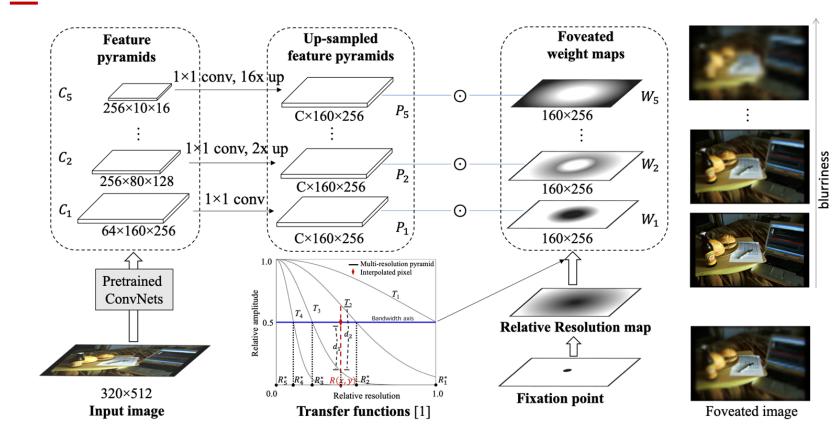
Collected behavior data



Reward can be learned using inverse reinforcement learning

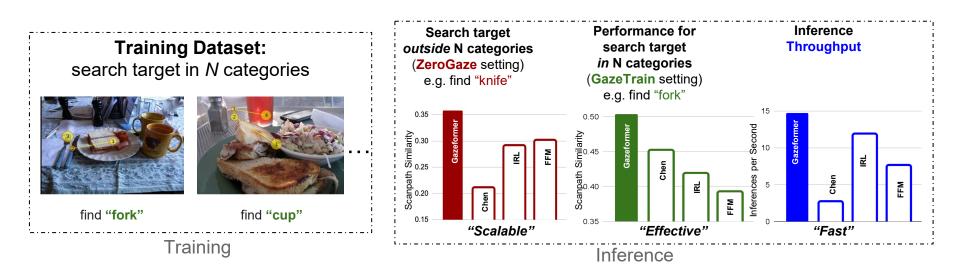
Key assumption: human gaze behaviors are optimal with respect to quickly locating the target (i.e., maximizing the total rewards)

Foveated feature maps (ECCV 2022)



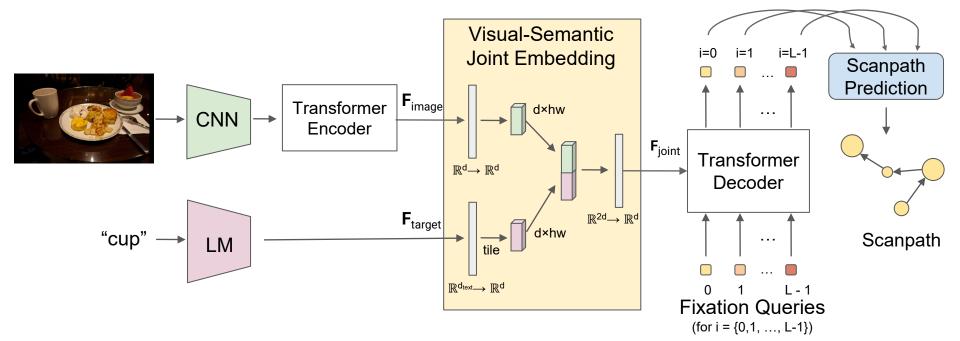
Gazeformer: Scalable, Effective and Fast Prediction of Goal-Directed Human Attention (CVPR 2023)

- We propose a novel **ZeroGaze** task to evaluate scalability
- We propose a novel *Gazeformer* model to solve ZeroGaze
 - *Gazeformer* is more scalable, more effective and faster than previous methods



Gazeformer Architecture

- Gazeformer adopts a transformer encoder-decoder architecture
 - Learns interactions between image and target semantics
 - Models spatio-temporal context for scanpath generation



Gazeformer's Extensibility to Uncommon Categories

Hyponyms or synonyms of target names

find "sedan"

find "mug"

No annotation in COCO dataset

find "hatchback"

find "trash can"

find "pizza cutter"

find "soda can"

• Gazeformer extends to unknown and uncommon targets

Unifying Prediction of Top-down and Bottom-up attention (CVPR 2024)

- A single model for both top-down (visual search) and bottom-up (free-viewing) attention prediction.
 - TV for target-present (TP), sink for target-absent (TA)
- Human Attention Transformer (HAT)

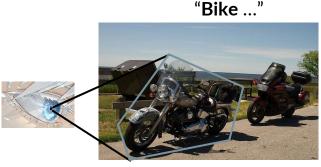
Current work: Visual Search with Referring Expressions

- In real life,
 - More than one object of same type
 - We use **referring expressions**
 - Instance-level
 - Resolve ambiguity
 - Provide search guidance
 - Visual Grounding of referring expressions
 - Also called object referral
 - Naturalistic visual search

The black bag next to person in white sweatshirt

Current Work: RefCOCO-Gaze

- RefCOCO-Gaze dataset
 - Based on RefCOCO dataset
 - MS-COCO training images
 - Referring expressions from RefCOCO
 - ~2000 image-text pairs from RefCOCO
 - Gaze collected *while* listening to the referring expression



"... on the **right**"

